ПРИАМУРЬЕ И ПРИМОРЬЕ

Н.С. Коваленко, Т.А. Фокина, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

В 2006 г. непрерывная регистрация землетрясений на территории Приамурья и Приморья продолжала осуществляться сетью из восьми аналоговых станций: «Николаевск-на-Амуре», «Бомнак», «Кировский», «Ясный», «Зея», «Горный», «Экимчан», «Терней». Данные о станциях и параметры аппаратуры приведены в табл. 1.

Таблица 1. Аналоговые сейсмические станции Приамурья и Приморья (в хронологии их открытия), работавшие в 2006 г., и их параметры

№	№ Станция			Дата	Координаты			Аппаратура				
	Название	Ко	д	открытия	φ°, N	λ°, Ε	<i>h</i> ,	Тип	Компо-	$V_{\rm max}$	$\Delta T_{\rm max}$,	
		межд.	рег.				м	прибора	нента	чувстви-	С	
										тельность		
1	Николаевск-	NKL	НКЛ	01.07.1970	53.15	140.68	15	СКМ-3	N, E, Z	60000	0.27-0.65	
	на-Амуре								N, E, Z	29000	0.28-0.64	
									N, E, Z	11500	0.27-0.63	
								СКД	N, E, Z	1043	0.2–20	
									N, E, Z	500	0.15–17	
									N, E, Z	200	0.15–15	
								C-5-C	N, E, Z	100	0.016-4.58	
								Велосиграф	N, E, Z	27.2 c	0.047-4.58	
								C-5-C				
								CCP3-M	Ν	$0.00215 c^2$	0.06–1.0	
									E	$0.00201 c^2$	0.06–1.0	
									Z	$0.00220 c^2$	0.06–1.0	
								ОСП-2М	N, E, Z	$0.04 c^2$	0.02-2.1	
2	Бомнак	BMKR	БМН	01.11.1974	54.71	128.85	342	CKM-3	E, Z	281000	0.50-0.66	
									E, Z	98940	0.40-0.67	
									Ν	67670	0.37–0.67	
									Ν	26140	0.35-0.66	
								Велосиграф	N, E, Z	27.2 с	0.014-4.6	
								C-5-C				
									N, E, Z	2.72 c	0.014–4.6	
								ОСП-2М	N, Z	$0.03 c^2$	0.02–3.0	
									E	$0.03 c^2$	0.02–2.0	
								CCP3-M	Ν	$0.00208 c^2$	0.067–11.0	
									E	$0.00203 c^2$	0.064–11.0	
									Z	$0.00209 c^2$	0.052-10.9	
3	Кировский	KROS	КРС	01.04.1974	54.433	126.971	455	СКМ-3	N, E, Z	158200	0.45-0.72	
									N, E, Z	67450	0.37-0.72	
								Велосиграф С-5-С	N, E, Z	27.2 c	0.014–4.6	
									N, E. Z	2.72 c	0.014-4.6	
								ОСП-2М	N	$0.03 c^2$	0.019-3.3	
									Е	$0.03 c^2$	0.019-2.9	
									Ζ	$0.03 c^2$	0.019–3.5	
4	Ясный	YASR	ЯСН	01.12.1974	53.29	127.98	330	СКМ-3	N, E, Z	160000	0.45-0.67	
									N, E, Z	67920	0.37-0.67	

N⁰	Ста	анция		Дата Координаты			Аппаратура				
	Название	Ко	д	открытия	φ°, N	λ°, Ε	<i>h</i> ,	Тип	Компо-	V _{max} /	$\Delta T_{\rm max}$,
		межд.	рег.				м	прибора	нента	чувстви-	С
										тельность	
5	Зея*	ZEA	ЗЕЯ	01.06.1976	53.76	127.30	273	СКМ-3	Ζ	20700	0.3-0.8
									N, E, Z	10300	0.3-0.7
									N, E	5150	0.3-0.7
								СКД	N, E, Z	1040	0.2–18
									N, E, Z	500	0.2–18
								Велосиграф С-5-С	N, E, Z	27.2 с	0.014-4.6
									N, E, Z	2.72 c	0.014-4.6
									N	$0.05 c^2$	0.02-2.3
								ОСП-2М	Е	$0.05 c^2$	0.02-2.1
									Ζ	$0.05 c^2$	0.02-3.4
								P33	N, E, Z	50.1	0.2-18.0
								СБМ		1.1	0.25
6	Горный	GRNR	ГРН	01.12.1978	50.769	136.422	450	СКМ-3	N, E, Z	87360	0.28-0.64
	_								N, E, Z	52940	0.25-0.63
									N, E, Z	26135	0.24-0.61
								Велосиграф	N, E, Z	27.5 c	0.05-4.59
								C-5-C			
									N, E, Z	2.75 c	0.05-4.59
								ОСП-2М	Ν	$0.04 c^2$	0.02-1.92
									E	$0.04 c^2$	0.02-1.84
									Ζ	$0.04 c^2$	0.019–2.6
								CCP3-M	Ν	$0.0029 c^2$	0.067–11.0
									E	$0.0029 c^2$	0.066–11.0
									Ζ	$0.0029 c^2$	0.061-11.0
7	Экимчан	EKMR	ЭКМ	01.12.1979	53.072	132.95	543	CKM-3	N, E, Z	131600	0.37-0.67
									N, E, Z	59025	0.29-0.65
								Велосиграф С-5-С	N, E, Z	27.2 c	0.085–4.6
									N, E, Z	2.72 c	0.014-4.6
								ОСП-2М	N, E	$0.04 c^2$	0.02-1.1
									Ζ	$0.04 c^2$	0.02–2.0
8	Терней	TEY	TPH	01.02.1982	45.036	136.603	50	СКМ-3	N, E, Z	60700	0.3–0.6
									N, E, Z	28900	0.28-0.6
									N, E, Z	11500	0.27–0.6
								СКД	N, E, Z	1043	0.2–20
									N, E, Z	501	0.15–17
									N, E, Z	200	0.15–15
								Велосиграф	N, E, Z	27.2 c	0.045-4.5
								C-5-C			
									N, E, Z	2.72 c	0.045-4.5
								ОСП-2М	N, E, Z	$0.04 c^2$	0.02-2.6

Примечание. Знаком * отмечена опорная станция; сейсмографы С-5-С и РЗЗ, велосиграфы С-5-С и акселерографы ОСП-2М и ССРЗ-М, а также сейсмометры балльности СБМ работают в ждущем режиме регистрации.

В рамках научного сотрудничества между сообществом университетов Японии и ГС РАН по проекту «Исследование сейсмотектоники Охотоморской плиты» расширилась сеть цифровых сейсмических станций на базе регистраторов Datamark LS-7000XT с короткопериодными сейсмометрами L4C-3D и длиннопериодными – STS-2. В мае 2006 г. возобновили свою работу цифровые станции «Хабаровск», «Горный», «Терней», установленные в августе-сентябре 2005 г. [1] и закрытые в ноябре-декабре того же года. В июле-августе 2006 г. подобные регистраторы были установлены еще на двух сейсмических станциях: «Зея» и «Горнотаежное» (табл. 2).

N⁰	Станция			Дата	Ко	ординаты		Тип станции
	Название	Код		пуска	φ°, N	λ° , Ε	<i>h</i> ,	
		межд.	рег.				м	
1	Хабаровск	KHBR		17.05.2006	48.474	135.056	81	Datamark LS-7000XT
2	Горный	GRNR	ГРН	12.05.2006	50.769	136.422	450	Datamark LS-7000XT
3	Терней	TEY	TPH	10.05.2006	45.036	136.603	50	Datamark LS-7000XT
4	Зея	ZEA	ЗЕЯ	29.07.2006	53.757	127.290	273	Datamark LS-7000XT
5	Горнотаежное	GRTR	ГРТ	23.08.2006	43.707	132.156	263	Datamark LS-7000XT

Таблица 2. Цифровые сейсмические станции Приморья и Приамурья в 2006 г.

Данные о параметрах цифровых сейсмических станций на территории Приамурья и Приморья в 2006 г. приведены в табл. 3.

Название станции	Тип датчика	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Эффективная разрядность АЦП	Чувствительность, велосиграф – отсчет/(<i>м</i> / <i>c</i>)
Хабаровск	L4C-3D	LH (N, E, Z) v	1.0-20	100	24	$2.57 \cdot 10^7$
	STS-2	BH (N, E, Z) v	0.00833-50	100	24	1.96·10 ⁸
Горный	L4C-3D	LH (N, E, Z) v	1.0–20	100	24	$2.57 \cdot 10^7$
	STS-2	BH (N, E, Z) v	0.00833-50	100	24	$1.96 \cdot 10^8$
Терней	L4C-3D	LH (N, E, Z) v	1.0–20	100	24	$2.57 \cdot 10^7$
	STS-2	BH (N, E, Z) v	0.00833-50	100	24	$1.96 \cdot 10^8$
Зея	L4C-3D	LH (N, E, Z) v	1.0–20	100	24	$2.57 \cdot 10^7$
	STS-2	BH (N, E, Z) v	0.00833-50	100	24	$1.96 \cdot 10^8$
Горнотаежное	L4C-3D	LH (N, E, Z) v	1.0–20	100	24	$2.57 \cdot 10^7$
	STS-2	BH (N, E, Z) v	0.00833-50	100	24	1.96·10 ⁸

Таблица 3. Данные об аппаратуре цифровых станций в 2006 г.

К сожалению, эти станции не были оснащены удовлетворительными программами обработки сигнала. Можно было использовать лишь японскую программу визуализации для выделения вступлений сейсмических волн. Записи на всех станциях имели достаточно большой фон помех и выделить слабые вступления землетрясений на их фоне было невозможно без использования фильтров. В результате в 2006 г. записи цифровых станций Datamark использовались лишь для обработки более сильных ($K_P \ge 8.6$) землетрясений, улучшив надежность определения их эпицентров, но не внося существенных изменений в снижение энергетической представительности землетрясений K_{min} в регионе.

Расположение сейсмических станций показано на рис. 1. В сводной обработке также были использованы данные сейсмических сетей Сахалина [2], Курильских островов [3], бюллетени Прибайкалья, Якутии, ГС РАН [4], ЈМА, NEIC, ISC [5]. Методика обработки данных [6–12], границы региона и сейсмоактивных районов [13], по сравнению с таковыми в 2005 г. [1], не изменились.

Карта энергетической представительности K_{\min} , рассчитанная с учетом конфигурации сети сейсмических станций, изображена на рис. 1. Из нее следует, что на значительной территории Приморья и Приамурья представительными являются землетрясения с K_{\min} =9, но в южной его части без пропусков могут регистрироваться лишь события с $K_{\min} \ge 10$. В 2006 г. по причине остановки станции «Ясный» с третьей декады июня по конец июля, а также ремонта станции «Бомнак» в течение первой декады августа представительный класс в районе Зейского водохранилища возрос до K_{\min} =7. Сейсмические станции «Кировский», «Ясный», «Бомнак» являются самыми высокоинформативными в регионе, и если одна из них не работает, то представительность класс в районе водохранилища ухудшается на порядок.

Рис. 1. Карта энергетической представительности землетрясений K_{\min} Приморья и Приамурья в 2006 г. 1, 2 – сейсмическая станция региональная и ГС РАН соответственно; 3 – изолиния K_{\min} ; 4 – номер и граница района; 5 – государственная граница.

В региональный каталог [14] включены основные параметры 587 сейсмических событий, ИЗ них 374 являются коровыми землетрясениями (*h*≤30 км), 6 – глубокофокусными $(h=335-576 \kappa M)$, а 207 событий отнесены к категории «возможно взрыв». На рис. 2 представлено помесячное распределение сейсмических событий, зарегистрированных в регионе в 2006 г. Отдельно даны распределения взрывов и землетрясений во времени. Согласно рис. 2, наибольшее число (N=42) землетрясений зарегистрировано в марте, наименьшее (N=13) – в июле, что напрямую связано с отсутствием регистрации на станции «Ясный» в течение всего июля.

Карта эпицентров землетря-

сений дана на рис. 3, где лишь десять землетрясений находятся вне зоны ответственности сети СФ ГС РАН. Самое сильное (K_P =11.9) коровое землетрясение 2006 г. (4 на рис. 3) произошло в Становом районе 17 октября в 12^h56^m на глубине *h*=9 км. Среди глубокофокусных наиболее значительным (*MPVA*=4.7) явилось землетрясение (3), произошедшее 9 октября в 19^h46^m в Сихотэ-Алинском районе на глубине *h*=335 км. Максимальная глубина *h*=576 км отмечена для земле-

трясения 26 июля в $20^{h}51^{m}$ с MSHA=4.5. Для трех землетрясений имеются макросейсмические данные по одному населенному пункту: 19 августа в $13^{h}14^{m}$ с $K_{P}=10.1$ – Кульдур (29 км) 3 балла; 3 сентября в $02^{h}06^{m}$ с $K_{P}=8.6$ – Токур (14 км) 3 балла; 17 октября в $12^{h}56^{m}$ с $K_{P}=11.9$ – Юктали (215 км) 2 балла [14]. Следовательно, максимальная интенсивность сотрясений в 2006 г. не превышала I=3 баллов. Для двух глубокофокусных землетрясений (3 марта в $15^{h}39^{m}$ с h=347 км, MSHA=4.6; 9 октября в $19^{h}46^{m}$ с h=335 км, MSHA=5.1) определены механизмы очагов [15]. Еще один механизм добавлен *ped*. [16] для глубокого землетрясения 12 сентября в $06^{h}39^{m}$ с h=418 км, MSHA=4.7 [14] (по данным из [5], с Mw=4.5).

Рис. 3. Карта эпицентров землетрясений Приамурья и Приморья в 2006 г.

1 – энергетический класс K_P ; 2 – магнитуда *MPVA*; 3 – площадка промышленных взрывов; 4 – глубина *h* гипоцентра, *км*; 5 – стереограмма механизма очага, нижняя полусфера, зачернена область волн сжатия; 6, 7 – аналоговая и цифровая сейсмическая станция соответственно; 8 – номер и граница условного района; 9 – государственная граница. В течение 2006 г. продолжалась работа по распознаванию записей промышленных взрывов по методике [17]. Число основных площадок проведения взрывных работ увеличилось до семи (рис. 4). Возможно, это связано с началом промышленного освоения территории Амурской области, по которой прокладывается трубопроводная система «Восточная Сибирь–Тихий океан». Увеличивается и число карьеров для выработки полезных ископаемых. Как указано выше, в 2006 г. суммарное число взрывов равно N=207 (в 2005 г. N=203 [1]), их энергетический диапазон составил $K_P=5.7-9.0$. Наибольшее число (N=34) взрывов зарегистрировано в марте, наименьшее (N=4) – в июле (рис. 2). Суммарная сейсмическая энергия всех событий каталога [14] с индексом «возможно взрыв» равна $\Sigma E_{взр}=0.016 \cdot 10^{12} Дж$, что составляет менее 4% годовой суммарной сейсмической энергии коровых землетрясений.

Рис. 4. Площадки взрывных работ и эпицентров взрывов на территории регтона в 2006 г.

1 – энергетический класс *K*_P; 2 – магнитуда *MPVA*; 3 – площадка промышленных взрывов; 4 – знак взрыва и глубины гипоцентров соответственню; 5 – стереограмма механизма очага в проекции нижней полусферы; 6, 7 – аналоговая и цифровая сейсмическая станция соответственню; 8 – номер и граница условного района; 9 – государственная граница.

В табл. 4 приведено распределение коровых землетрясений по энергетическому классу K_P и суммарная сейсмическая энергия ΣE по данным каталогов Приморья и Приамурья за 2000–2006 гг., а на рис. 5 показано изменение ежегодных чисел коровых землетрясений и количества сейсмической энергии в течение 2000–2006 гг. Сравнение значений N_{Σ} и ΣE за 2000–2006 гг. проводится для землетрясений с $K_P \ge 7.6$, поскольку область представительной регистрации K_{\min} =8 на протяжении последних 6 лет практически не менялась и охватывает значительную часть региона. Однако следует заметить, что в число землетрясений с K_P =7.6–8.5 могут входить и взрывы, которые не удалось выявить при обработке.

Год			K	(P	-	-	N_{Σ}	ΣΕ,
	8	9	10	11	12	13		10 ¹² Дж
2000	142	48	13	3	3		209	1.68
2001	183	37	10	3	2		235	0.92
2002	190	36	7	4	1		238	1.01
2003	193	44	17	1	6		261	2.58
2004	185	46	16	8	2	1	258	6.55
2005	138	53	15	5	5		216	2.54
Сумма	1031	264	78	24	19	1	1417	15.28
Среднее	171.83	44.00	13.00	4.00	3.17	0.17	236	2.55
2006	112	36	12	1	1		162	0.397

Таблица 4. Распределение коровых землетрясений по энергетическому классу и суммарная сейсмическая энергия Σ*E* региона Приамурье и Приморье за период 2000–2006 гг.

Как видно из табл. 4 и рис. 5, число коровых землетрясений, регистрируемых в регионе в 2006 г., на треть меньше среднегодового числа за период наблюдений 2000–2005 гг. Уровень сейсмической активности, достигший своего промежуточного максимума в 2004 г., в 2006 г. был минимальным. Суммарная сейсмическая энергия, высвобожденная коровыми землетрясениями в 2006 г., почти в 6 раз меньше среднего значения за последние шесть лет наблюдений.

Число всех зарегистрированных коровых землетрясений в регионе в 2006 г. составило N=364, что на 10.8% меньше, чем соответствующее значение для 2005 г. [1]. Суммарная сейсмическая энергия коровых землетрясений (табл. 4, 5, рис. 5) достигла величины $\Sigma E=0.397 \cdot 10^{12} Дж$, что в 6.4 раза меньше такового значения в 2005 г. [1].

В 2006 г. было зарегистрировано шесть глубокофокусных землетрясений, их магнитуда *MPVA* не превысила величину M=5.0, суммарная сейсмическая энергия составила $\Sigma E=0.249 \cdot 10^{12} \ Дж$, что в 6 раз больше энергии глубокофокусных землетрясений 2005 г. (табл. 5) [1].

Далее приводится обзор сейсмичности по районам.

В табл. 5 дано распределение числа коровых землетрясений по энергетическому классу K_P , а глубокофокусных — по магнитуде *MPVA*, а также рассчитана суммарная сейсмическая энергия по районам региона за 2006 г.

Наибольшее число (*N*=166) землетрясений с очагами в земной коре произошло в Янкан-Тукурингра-Джагдинском районе (№ 2). Ни одного корового землетрясения в 2006 г. не было зарегистрировано в Сихотэ-

Рис. 5. Изменение ежегодного числа коровых землетрясений Приамурья и Приморья и суммарной сейсмической энергии *ΣE* за 2000–2006 гг.

Алинском районе (№ 5). К сожалению, существующая в 2006 г. малочисленная сеть сейсмических станций не позволила повысить уровень представительности землетрясений в этом районе (рис. 1).

На рис. 6 приведено распределение числа коровых землетрясений и суммарной сейсмической энергии по районам региона, а на рис. 7 дано сравнение величины сейсмической энергии по районам за 2005–2006 гг.

Максимальное количество (66%) высвобожденной сейсмической энергии коровых землетрясений отмечено в Становом районе (табл. 5, рис. 6, 7).

Таблица 5.	Распределение коровых землетрясений по энергетическому классу К _Р , глубоко-
	фокусных – по магнитуде MPVA и суммарная сейсмическая энергия ΣE по
	районам Приамурья и Приморья в 2006 г.

	һ≤30 км											
N⁰	Районы						N_{Σ}	ΣΕ,				
		5	6	7	8	9	10	11	12	_	10 ¹² Дж	
1	Становой		6	42	28	6	1		1	84	0.261	
2	Янкан-Тукурингра-Джагдинский	8	35	65	40	14	3	1		166	0.065	
3	Зейско-Селемджинский		4	13		3				20	0.002	
4	Турано-Буреинский		3 28 30			12	4			77	0.051	
5	Сихотэ-Алинский								0	0		
6	Приграничный	1 13			1	2			17	0.018		
	Всего	8 48 149 111			36	10	1	1	364	0.397		
	Вне зоны ответственности	1 6 1				2			10	0.006		
	h≥300 км											
N⁰	Районы	MPVA				N_{Σ}	ΣΕ,					
		4					5				10 ¹² Дж	
5	Сихотэ-Алинский	3				2				5	0.218	
6	Приграничный					1				1	0.031	
	Всего			3			3			6	0.249	

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде *M* путем пересчета из классов *K*_P для коровых землетрясений и из магнитуд *MPVA* – для глубокофокусных по следующим соотношениям: *M*=(*K*_P-4)/1.8; *M*=1.77·*MPVA*-5.2 (70 км<h≤390 км); *M*=1.85·*MPVA*-4.9 (*h*>390 км) [18].

Puc. 6. Распределение числа коровых землетрясений и суммарной сейсмической энергии Σ*E* по районам Приамурья и Приморья в 2006 г.

1 – число землетрясений; 2 – энергия ΣE , $10^{12} \square m$.

Рис. 7. Изменение суммарной сейсмической энергии Σ*E* по районам Приамурья и Приморья в 2005–2006 гг.

Распределение взрывов по районам региона представлено в табл. 6.

	Таблии	a 6.	Расп	ределение	числа вз	рывов в	регионе П	римо	эья и П	риаму	рья в	2006	Г
--	--------	------	------	-----------	----------	---------	-----------	------	---------	-------	-------	------	---

N⁰	Район	ΣN	$\Delta K_{ m P}$
1	Становой	9	6.4-8.4
2	Янкан-Тукурингра–Джагдинский	34	6.3-8.3
3	Зейско-Селемджинский	86	5.7-8.4
4	Турано-Буреинский	78	6.6–9.0

Примечание. В районах № 5, № 6 взрывы не зафиксированы.

В Становом районе (№ 1) в 2006 г. зарегистрировано 84 коровых землетрясения, т.е. почти столько же, как и в 2005 г. [1], хотя суммарная сейсмическая энергия, равная $\Sigma E=0.261 \cdot 10^{12} \ Дж$, в 4.4 раза выше соответствующей величины в 2005 г. (табл. 5, рис. 6, 7).

Самое сильное (K_P =11.9, MLH=4.2) землетрясение (4) зарегистрировано в западной части Станового хребта 17 октября в 12^h56^m с h=9±1 км. Землетрясение ощущалось на расстоянии Δ =215 км в пос. Юктали с интенсивностью сотрясений *I*=2 балла. Оно сопровождалось пятью афтершоками в течение октября–декабря 2006 г., наиболее сильный (K_P =10.1) из которых зарегистрирован 30 ноября в 18^h04^m (табл. 6). Чуть восточнее эпицентральной области землетрясения располагается карьер, где с некоторым разбросом регистрируются взрывы с K_P =6.4–8.4 (рис. 3, 4, табл. 6).

Таблица 7. Основные параметры главного толчка и афтершоков землетрясения 17 октября в 12^h56^m с K_P=11.9, *MLH*=4.2

N⁰	Дата,	$t_0,$	Эпи	центр	h,	MLH	$K_{ m P}$				
	д м	ч мин с	ϕ°, N λ°, E		КМ						
			Главный толч	ок							
	17.10	12 56 49.3	55.83	124.84	9	4.2	11.9				
Афтершоки											
1	20.10	04 20 46.3	55.86	124.85	8		9.2				
2	10.11	05 20 42.2	55.79	124.34	10		7.4				
3	26.11	01 29 01.3	55.88	124.07	10		7.6				
4	30.11	18 04 12.5	55.83	124.48	8		10.1				
5	12.12	22 40 02.7	55.87	124.77	10		6.7				

Как и в 2005 г. [1], в верховье р. Зея, в районе хр. Токинский Становик, продолжали регулярно происходить землетрясения с $K_P < 9.0$ (рис. 3). Природа этих событий пока не выяснена, они были отнесены к естественным землетрясениям, поскольку было замечено, что эти землетрясения происходят в основном в ночные часы, в то время как взрывы регистрируются, как правило, днем.

В непосредственной близости от северной части Зейского водохранилища, так же как и в 2005 г. [1], наблюдалась крайне слабая сейсмическая активность. Восточная окраина района продолжает находиться в спокойном состоянии. Лишь одно землетрясение с K_P =9.1 (рис. 3) зарегистрировано в отрогах Прибрежного хребта 6 декабря в 15^h50^m [14].

Янкан-Тукурингра-Джагдинский район (№ 2) в 2006 г., как и в 2005 г. [1], являлся самым активным по числу зарегистрированных коровых землетрясений. Представительным классом на большей части территории этого района является K_{\min} =6.0, что обусловлено наличием высокочувствительной, хотя и устаревшей, аналоговой аппаратуры. С возможностями сети, повидимому, связано значительное число зарегистрированных здесь слабых землетрясений (табл. 5). Отличительной особенностью этого района является наличие высокого уровня слабой сейсмичности – на протяжении многих лет здесь фиксируется максимальное число слабых землетрясений, при этом величина суммарной сейсмической энергии (ΣE =0.065·10¹² Дж) в 2006 г. в шесть раз меньше таковой в 2005 г. (табл. 5, рис. 6, 7), главным образом из-за отсутствия землетрясений с K_P >11.

Умеренная сейсмическая активность наблюдалась вдоль всего Тукурингра-Джагдинского разлома. Эпицентр наиболее сильного (K_P =10.9) землетрясения (1), произошедшего 11 января в 23^h21^m с *h*=13±2 *км*, располагался в районе хр. Соктахан, к востоку от Зейского водохранилища. Наибольшая плотность эпицентров землетрясений с K_P =5.3–9.9 наблюдалась к западу от Зейского водохранилища, вдоль всего хр. Тукурингра.

На территории района выделяются две активные площадки, где производятся промышленные взрывы (рис. 4). В течение 2006 г. к западу от Зейского водохранилища (рис. 4) зарегистрировано 34 сейсмических события с K_P =6.3–8.3 (табл. 6), идентифицированных как «возможно взрыв».

В Зейско-Селемджинском районе (№ 3) в 2006 г. продолжалось снижение сейсмической активности после ее всплеска в 2004 г. [1, 19], когда на территории района 16 января 2004 г. произошло сильное (*MLH*=5.0) для этих мест землетрясение с активным развитием афтершокового процесса, наблюдавшегося в 2004–2005 гг. [1, 19]. В течение 2006 г. в эпицентральной области этого землетрясения зарегистрировано пять афтершоков с *K*_P=6.9–8.7.

Суммарная сейсмическая энергия района, равная $\Sigma E=0.002 \cdot 10^{12} \ \square \mathcal{D}\mathcal{K}$, снизилась на порядок, по сравнению с таковой в 2005 г. (табл. 5, рис. 6, 7) [1], несмотря на то, что число зарегистрированных землетрясений почти не изменилось. Наиболее сильным на данной территории оказалось землетрясение с $K_P=9.0$, которое произошло 4 августа в $14^{h}41^{m}$ западнее пос. Ясный. Вся центральная и южная части района асейсмичны.

В районе зарегистрировано самое большое число (N=86) взрывов с $K_P=5.7-8.4$. Площадки взрывных работ располагаются в северо-западной части района и на крайнем юге (рис. 4, табл. 6).

В Турано-Буреинском районе (\mathbb{N} 4) зарегистрировано 77 коровых землетрясений, что на треть меньше, чем в 2005 г. Суммарная сейсмическая энергия, равная $\Sigma E=0.051 \cdot 10^{12} \ \mathcal{Am}$, в 25 раз ниже соответствующей величины в 2005 г. (табл. 5, рис. 6, 7). Наиболее сильное ($K_P=10.3$) землетрясение с $h=15\pm3 \ \kappa m$ произошло 5 января в $02^{h}58^{m}$ южнее пос. Кульдур, рядом с площадкой проведения промышленных взрывов (рис. 3, 4). Здесь необходимо заметить, что проблема наведенной сейсмичности в регионе не изучена и остается актуальной на сегодняшний день. Эпицентр этого землетрясения приурочен к Хинганскому глубинному разлому, входящему в систему разломов Тан-Лу [20]. Активность этого разлома, простирающегося с территории Китая вдоль хр. Малый Хинган и Баджальского хребта к г. Николаевску-на-Амуре, в 2006 г. подтверждается тремя произошедшими здесь землетрясениями с $K_P=9.9-10.3$, одно из которых (19 августа в $13^{h}14^{m}$) ощущалось, как отмечено выше, в пос. Кульдур с интенсивностью сотрясений I=3 балла.

На северо-западе района, в полосе λ =132–134°E, наблюдалась умеренная сейсмическая активность с K_P <9.9. Здесь обращает на себя внимание землетрясение с K_P =8.6 и h=6 км, которое произошло 3 сентября в 02^h06^m и ощущалось в пос. Токур (Δ =14 км) с интенсивностью сотрясений I=3 балла.

На территории района в течение 2006 г., как и в 2005 г., продолжалась регистрация взрывов с K_P =6.6–9.0 в окрестностях пос. Кульдур и пос. Чегдомын (рис. 3, 4), число которых составило N=78 (табл. 6).

В Сихотэ-Алинском районе (№ 5) в 2006 г. не зарегистрировано ни одного корового землетрясения. На данный момент для всей территории района представительными являются лишь землетрясения с K_{\min} =10 (рис. 1). Одной из причин низкой представительности является слабая оснащенность района регистрирующей аппаратурой.

Число глубокофокусных землетрясений с $h=341-461 \ \kappa m$ в районе составило N=5, а суммарная сейсмическая энергия – $\Sigma E=0.22 \cdot 10^{12} \ Дж$, что более чем в 5 раз превышает таковое значение в 2005 г. (табл. 5). Основная часть эпицентров располагалась в акватории Японского моря, вдоль побережья Приморского края (рис. 3). Распределение глубокофокусных землетрясений во времени представлено на рис. 8 (включая одно землетрясение из района № 6). Наибольшее число глубоких землетрясений пришлось на весенне–осеннее время года. Магнитудная оценка глубоких землетрясений варьировалась в пределах MPVA=4.3-5.0. Для двух глубокофокусных землетрясений (2, 3) удалось определить механизм очага [15].

Рис. 8. Пространственно-временное распределение глубокофокусных землетрясений Приамурья и Приморья в 2006 г.

Землетрясение (2) с МРVА=4.5 произошло на территории Приморского края (под хр. Сихотэ-Алинь) 3 марта в $15^{h}39^{m}$ на глубине *h*=347±6 км. Землетрясение реализовалось под воздействием преобладающего близгоризонтального напряжения растяжения и близвертикального напряжения сжатия. Одна из возможных плоскостей разрыва имеет северное простирание с довольно крутым (DP=54°) падением на восток. Другая возможная плоскость разрыва, имеющая юго-восточное простирание, менее круто (DP=43°) падает на юго-запад. Тип подвижки в очаге – сброс.

Второе землетрясение (3) с MPVA=4.7, зарегистрировано в шельфовой зоне Японского моря северо-восточнее пос. Терней 9 октября в $19^{h}46^{m}$ на глубине $h=335\pm10 \ \kappa m$. Анализ механизма его очага позволяет установить, что оно произошло под воздействием близгоризонтально ориентированных напряжений сжатия и более крутых напряжений растяжения. Одна из возможных плоскостей разрыва имеет запад-юго-западное ($STK=249^{\circ}$) простирание и крутое ($DP=71^{\circ}$) падение на северо-запад. Другая возможная плоскость разрыва имеет субмеридиональное простирание ($STK=11^{\circ}$) с довольно пологим ($DP=33^{\circ}$) падение на восток. Тип подвижки по крутой плоскости – взброс с компонентами правостороннего сдвига, по пологой – левосторонний сдвиг с компонентами надвига.

Добавленный *ped*. [16] механизм очага землетрясения 12 сентября в $06^{h}39^{m}$ с *h*=418 км, *MPVA*=5.0 [14] изображен на рис. 9. В его очаге абсолютно превалировали напряжения растяжения, ориентированные на север. Обе нодальные плоскости близширотны (*STK*₁=268°, *STK*₂=95°), примерно равного наклона (*DP*₁=46°, *DP*₂=44°). Тип подвижки по обеим плоскостям – чистый сброс.

Рис. 9. Стереограмма механизма очага землетрясения 12 сентября 2006 г. с *Мw*=4.5 в проекции нижней полусферы

 нодальные линии; 2, 3 – оси главных напряжений растяжения и сжатия соответственно; зачернена область волн сжатия.

В Приграничном районе (№ 6) общий уровень сейсмической активности снизился. Несмотря на то, что число коровых землетрясений (N=17) лишь на 19% меньше, чем в 2005 г., суммарная сейсмическая энергия составила $\Sigma E=0.018 \cdot 10^{12} \ Дж$ (табл. 5, рис. 6, 7), что в 43 раза ниже такового значения в 2005 г. Самое сильное ($K_P=10.3$) коровое землетрясение зарегистрировано в западной части района, на границе с Китаем 28 сентября в $02^{h}17^{m}$ на глубине $h=22\pm2 \ \kappa M$. Эпицентры более слабых землетрясений с $K_P=7.4-8.5$ сгруппировались к югу от Еврейской автономной области, характеризуя умеренную сейсмическую активность северной части системы разломов Тан-Лу (рис. 3) [19].

Единственное глубокофокусное землетрясение в 2006 г. на территории Китая, западнее г. Уссурийск, было зарегистрировано 26 июля в $20^{h}51^{m}$ с *MPVA*=4.7 на глубине $h=576\pm9 \ \kappa m$ (рис. 3), в результате которого выделилась сейсмическая энергия, равная $E=0.018\cdot10^{12} \ Дж$ (табл. 5).

Литература

- 1. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 168–179.
- 2. Фокина Т.А., Кислицына И.П., Сафонов Д.А. Сахалин. (См. раздел (Обзор сейсмичности) в наст. сб.).
- 3. Фокина Т.А., Дорошкевич Е.Н., Сафонов Д.А. Курило-Охотский регион. (См. раздел (Обзор сейсмичности) в наст. сб.).
- 4. Сейсмологический бюллетень (ежедекадный) за 2006 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2006–2007. – [Электронный ресурс]. – *ftp://ftp.gsras.ru/pub/Teleseismic bulletin/2006*.
- 5. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008.
- 6. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 7. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI. Проблемы сейсмической опасности Дальневосточного региона. – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.

- 8. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 9. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 10. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология. Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- 12. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 13. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С 139.
- 14. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я. Каталог землетрясений (*N*=380) и взрывов (*N*=207) Приамурья и Приморья за 2006 г. (См. Приложение к наст. сб. на CD).
- 15. Коваленко Н.С. (отв. сост.). Каталог механизмов очагов землетрясений Приамурья и Приморья за 2006 г. (*N*=2). (См. Приложение к наст. сб. на CD).
- 16. Левина В.И. (сост.). Дополнение к каталогу механизмов очагов землетрясений Приамурья и Приморья за 2006 г. (*N*=1). (См. Приложение к наст. сб. на CD).
- 17. Годзиковская А.А. Местные взрывы и землетрясения. Личный архив, 2000. 108 с.
- 18. Каталоги землетрясений по различным регионам России // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 52–53.
- 19. Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии в 2004 году. Обнинск: ГС РАН, 2010. С. 164–172.
- 20. Тектоника, глубинное строение и минерагения Приамурья и сопредельных территорий / Отв. ред. Г.А. Шатков, А.С. Вольский – СПб.: ВСЕГЕИ, 2004. – 190 с.