СЕВЕРО-ВОСТОК РОССИИ

Е.И. Алёшина, Л.В. Гунбина, Л.И. Карпенко, Б.М. Седов

Магаданский филиал ГС РАН, г. Магадан, evgeniya@memsd.ru

Сейсмический мониторинг территории Магаданской области, Чукотского автономного округа (ЧАО) и шельфов прилегающих морей в 2006 г. осуществлялся Магаданским филиалом ГС РАН 17-ю сейсмическими станциями. В Магаданской области действовали девять станций, в ЧАО – семь; в Хабаровском крае – одна. В 2006 г. была изменена граница зоны ответственности МФ ГС РАН, что связано с усилением сейсмической активности в Корякском нагорье. Большая часть **района** \mathbb{N} 7 (Корякия) перешла Камчатскому филиалу ГС РАН, поскольку сетью станций Магаданского филиала в этом районе возможно локализовать события лишь с $K_P \ge 10.0$. В результате района \mathbb{N} 7 не стало.

В сети станций в 2006 г. произошли следующие изменения: на территории Центральной Колымы со 2 октября 2006 г. возобновила работу сейсмическая станция «Синегорье» (SNGR), работа которой была приостановлена в октябре 2004 года. В Корякском автономном округе 20 апреля 2006 г. в $23^{h}24^{m}$ произошло сильное Олюторское землетрясение с Mw=7.6 [1, 2]. Для записи его афтершоков 5 мая была запущена в эксплуатацию станция «Эвенск» (EVNR). Работа станции «Талая» была приостановлена 21 февраля 2006 г. в связи с аварией в арендуемом помещении.

На территории ЧАО в течение года работали станции «Билибино» (BILL), «Анадырь» (ANDR). Открытые в декабре 2005 г. сейсмические станции «Угольные Копи» (AN-2) и «Лаврентия» (LAVR) проработали семь и пять месяцев соответственно и были остановлены из-за неисправности аппаратуры. По техническим причинам 6 октября 2006 г. была закрыта станция «Нешкан» (NSH). В июле 2006 г. была открыта временная станция «Уэлен» (ULN). После длительного перерыва (1994–2006 гг.) в июне 2006 г. была вновь открыта станция «Провидения» (PRVR).

Сведения о сейсмических станциях и типах аппаратуры приведены в табл. 1, 2, местоположение станций показано на рис. 1.

-	î.										
№	Название	Стан	ция	Аналогова	ая станция	Цифрова	я станция	φ°, N	λ°, Ε	$h_{\rm v}$,	Тип
		Ко	д	Да	ата	Да	ата			м	цифровой
		межд.	рег.	открытия	закрытия	открытия	закрытия				станции
1	Омсукчан	OMS	OMC	01.12.1967	31.12.2005	04.07.2001		62.515	155.774	527	PAR-24B
2	Сеймчан	SEY	СМЧ	03.04.1969	31.12.2000	19.09.1999		62.933	152.382	218	PAR-24B
3	Сусуман	SUUS	CMH	01.08.1969	01.06.1999			62.781	148.149	640	
				01.06.1999	17.08.1999	17.08.1999		62.779	148.167	640	PAR-24B
4	Стекольный	MGD	СТК	26.03.1971	13.10.2004	13.10.2004		60.046	150.730	221	PAR-24B
5	Анадырь	ANDR	АНД	10.11.1981	26.04.1989			64.783	177.583	20	
	_			26.04.1989	01.04.1993			64.734	177.496	55	
				01.09.1996	01.05.2002						
						24.01.2003	07.09.2003	64.734	177.496	70	PAR-24B
						22.12.2005					
6	Талая	TLAR	ТЛА	20.11.1989	29.07.1999	29.07.1999		61.129	152.392	730	
						22.09.2000	21.02.2006	61.130	152.398	730	PAR-24B
7	Магадан	MA2				22.10.1993	17.07.1995	59.575	150.768	339	IRIS
						31.10.1995					
8	Билибино	BILL				01.08.1995		68.039	166.271	299	IRIS
9	Омчак	OCHR	ОМЧ			01.10.1999		61.665	147.867	820	PAR-24B

Таблица 1. Сейсмические станции Северо-Востока России в хронологии их открытия

				1		1		i	1		i -
№	Название	Стан	ция	Аналогова	ая станция	Цифрова	я станция	φ°, N	λ°, Ε	$h_{\rm y},$	Тип
		Ко	д	Да	ата	Да	ата			м	цифровой
		межд.	рег.	открытия	закрытия	открытия закрытия					станции
10	Охотск	OHTR	OXT			06.07.2000	02.06.2005	59.359	143.331	40	PAR-24B
		OKHR				05.10.2005		59.361	143.248	8	
11	Синегорье		SNG			26.04.2003	13.10.2004	62.059	150.405	450	PAR-24B
		SNGR				02.10.2006		62.08	150.521	300	
12	Нешкан		NSH			11.09.2003	06.10.2006	67.036	-172.960	0.8	PAR-24B
13	Лаврентия	LAVR				15.12.2005	18.07.2006	65.585	-171.012	18	PAR-24B
14	Угольные Копи		AN-2			26.12.2005	09.05.2006	64.719	177.740	48	PAR-24B
15	Эвенск	EVNR				05.05.2006		61.924	159.267	75	PAR-24B
16	Провидения	PRVR		01.09.1980	01.01.1994	14.06.2006		64.446	-173.175	86	PAR-24B
17	Уэлен*		ULN			15.07.2006		66.160	-169.819	13	PAR-24B

Примечание. Символом * отмечена временная станция.

	1	v n nn
	annanatyne illumnopliy	станнии в ЛПБ г
		$\mathcal{L}_{\mathcal{L}}$
, , ,		

Название станции	Тип датчика	Перечень каналов	Частотный диапазон, Гц	Частота дискрети- зации, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м</i> / <i>c</i>), акселерограф – отсчет/(<i>м</i> / <i>c</i> ²)
Омсукчан	CM-3	SH (N. E. Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Сеймчан	STS-1	BH (N, E, Z) v	0.1-100	50	24	$9.73 \cdot 10^{10}$
Сусуман	CM-3	SH (N, E, Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Стекольный	CM-3	SH (N, E, Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Анадырь	CM-3	SH (N, E, Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Талая	CM-3	SH (N, E, Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Магадан	STS-1	BH (N, E, Z) v	0.0028-3.0	20	24	9.89·10 ¹⁰
		LH (N, E, Z) v	0.0028-0.25	1	24	$2.47 \cdot 10^{10}$
		VH (N, E, Z) v	0.0028-0.02	0.1	24	6.18·10 ¹¹
		VM (N, E, Z) a	0-0.0028	0.01	24	8.14·10 ¹¹
	GS-13	EH (N, E, Z) v	0.05-20.0	80	24	$7.76 \cdot 10^{12}$
		SH (N, E, Z) v	0.05-20.0	40	24	$7.76 \cdot 10^{12}$
Билибино	STS-1	BH (N, E, Z) v	0.0028-3.0	20	24	$9.89 \cdot 10^{10}$
		LH (N, E, Z) v	0.0028-0.25	1	24	$2.47 \cdot 10^{10}$
		VH (N, E, Z) v	0.0028-0.02	0.1	24	6.18·10 ¹¹
		VM (N, E, Z) a	0-0.0028	0.01	24	$8.14 \cdot 10^{11}$
	GS-13	EH (N, E, Z) v	0.05-20.0	80	24	$7.76 \cdot 10^{12}$
		SH (N, E, Z) v	0.05-20.0	40	24	$7.76 \cdot 10^{12}$
Омчак	CM-3	SH (N, E, Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Охотск	CMG-40T	SH (N, E, Z) v	0.06-100	50	24	$2.8 \cdot 10^8$
Синегорье	CM-3	SH (N, E, Z) v	0.5-50	50	24	$2.8 \cdot 10^8$
Нешкан	CM-3	SH (N, E, Z) v	0.2–10	50	24	$2.8 \cdot 10^8$
Лаврентия	CM-3	SH (N, E, Z) v	0.2-10	50	24	$2.8 \cdot 10^8$
Угольные Копи	CM-3	SH (N, E, Z) v	0.2–10	50	24	$2.8 \cdot 10^8$
Эвенск	CM-3	SH (N, E, Z) v	0.8-10	50	24	$2.8 \cdot 10^8$
Провидения	CM-3	SH(N, E, Z)v	0.5-10	50	24	$6.5 \cdot 10^8$
Уэлен	CM-3	SH (N, E, Z) v	0.8–10	50	24	$2.8 \cdot 10^8$

Примечание. Буквами v и а обозначены велосиграф и акселерограф соответственно.

Энергетическая представительность землетрясений K_{\min} , обеспечиваемая данной сетью, показана на рис. 1. Минимальный уровень энергии представительных землетрясений соответствует K_{\min} =6 в области наибольшей плотности сети станций в центре Колымы (район № 2). Конфигурация изолиний K_{\min} =7–9 в 2006 г. несколько изменилась, по сравнению с таковой в 2005 г., за счет открытия станции «Эвенск» в мае 2006 г. и закрытия станции «Кубака» в апреле 2005 г. При этом площадь регистрации сейсмических событий с K_{\min} =7–10 в 2006 г., по сравнению с таковой в 2005 г. [3], практически не изменилась.

Для территории ЧАО из-за недостаточности материалов сейсмических наблюдений удалось построить лишь предполагаемую изолинию $K_{\min}=9$.

Рис. 1. Карта энергетической представительности *К*_{min} землетрясений Северо-Востока России по данным наблюдений за 2006 г.

1, 2 – изолиния K_{\min} уверенная и приближенная соответственно; 3 – сейсмическая станция; 4, 5 – граница района и региона соответственно (пунктиром здесь и на рис. 2 изображен фрагмент границы по 2005 г.); 6 – номер района.

Параметры землетрясений рассчитывались по программе HYP2DT (версия 7.1), составленной в отделе геологии и геофизики Университета штата Мичиган (США) (разработчик – К.Д. Маккей) с использованием времен пробега прямых и преломленных *P* и *S*-волн.

В каталог землетрясений Северо-Востока и приграничных районов за 2006 г. включены 117 событий с K_P =6.1–13.7, из них 16 находятся за границами зоны ответственности сети МФ ГС РАН [4]. Очаги всех землетрясений расположены в пределах земной коры на глубинах $h \leq 33$ км. Карта эпицентров рассматриваемых землетрясений представлена на рис. 2.

Рис. 2. Карта эпицентров землетрясений Северо-Востока России за 2006 г.

1 – энергетический класс *K*_P; 2, 3 – граница района и региона соответственно; 4 – номер района; 5 – номер сильного (*K*_P≥10.6) землетрясения, указанного в графе 1 каталога [4].

Распределение землетрясений по энергетическим классам и выделенной суммарной сейсмической энергии в разных районах представлено в табл. 3.

N⁰	Район				N_{Σ}	ΣΕ,						
		6	5 7 8		9 10		11	12	13 14			$10^{11} Дж$
1	Охотское море		2	5	5			1			13	6.38
2	Колыма	3	25	38	17	3					86	0.55
3	Западная Чукотка											
4	Восточная Чукотка											
5	Чукотское море											
6	Берингово море							1	1		2	110.00
	Всего внутри региона	3	27	42	23	3		2	1		101	116.93
	Якутия		3	6	5		1			1	16	503.79
	Всего	3	30	49	27	3	1	2	1	1	117	620.72

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарной сейсмической энергии Σ*E* по районам № 1–№ 6 и приграничной Якутии

Суммарная сейсмическая энергия, выделившаяся внутри границ региона, в 2006 г. составила $\Sigma E=116.93 \cdot 10^{11} \ \text{Д} \infty$, что в 6.5 раз больше ее уровня в 2005 г. ($\Sigma E=17.94 \cdot 10^{11} \ \text{Д} \infty$) [3]. Число событий увеличилось незначительно (2006 г. – $N_{\Sigma}=101$; 2005 г. – $N_{\Sigma}=91$). Увеличение количества высвобожденной сейсмической энергии связано с землетрясениями (3, 4), произошедшими в Беринговом море (район N_{Σ} 6) с энергетическими классами $K_{P}=12.0$ и $K_{P}=13.0$. В их очагах высвободилась энергия, равная $\Sigma E=110.00 \cdot 10^{11} \ \text{Д} \infty$, или 94% от суммарного ее значения в границах ответственности региона ($\Sigma E_{II}=116.93 \cdot 10^{11} \ \text{Д} \infty$).

Эпицентры землетрясений распределены по территории региона крайне неравномерно (рис. 2). Рассмотрим сейсмичность по районам Северо-Востока.

В Охотском море (№ 1) локализованы 13 землетрясений с K_P =7.5–11.8, что составляет 12.9% от общего числа событий. Доля выделившейся сейсмической энергии за год составила 5.5% (ΣE =6.38·10¹¹ Дж) от суммарной. Основная часть энергии высвобождена в очаге ощутимого землетрясения (2), которое произошло 28 мая в 20^h19^m (2) на глубине *h*=5 км с K_P =11.8, *MPSP*=4.7 и вызвало в Магадане (Δ =194 км) сотрясения с интенсивностью *I*=2 балла. Зарегистрированы два его афтершока – 29 мая в 04^h26^m с K_P =9.4 и в 17^h33^m с K_P =7.3. Главный толчок и оба афтершока приурочены к Спафарьевскому поднятию фундамента Северо-Охотоморского прогиба [6, 7]. Событие (2) произошло в эпицентральной зоне Спафарьевского-II землетрясения 07.11.2001 г. с K_P =12.6 [8], которое вызвало в Магадане сотрясения с интенсивностью *I*=3–4 балла.

В районе Колымы (№ 2) зарегистрировано наибольшее число (*N*=86) землетрясений с K_P =6.1– 10.0, что составляет 85% от всей суммы событий в регионе. Однако выделенная ими суммарная сейсмическая энергия за год составила ΣE =0.55·10¹¹ Дж (3.2%), что в 33 раза меньше таковой в 2005 г. (ΣE =17.94·10¹¹ Дж). Это объясняется отсутствием событий с K_P >10.0.

Сильное (K_P =13.7, Mw=5.2) землетрясение (5) произошло 19 октября в 07^h15^m на глубине h=22 км и приурочено к крупнейшему глубинному разлому Улахан. Разлом имеет северо-западное простирание [9] и входит в состав Индигиро-Колымской системы. На разломе Улахан протяженностью около 1500 км наблюдаются левосторонние сдвиги [10]. По данным каталога [4], его эпицентр находится в зоне ответственности Якутского филиала ГС СО РАН. Землетрясение 19 октября ощущалось с интенсивностью *I*=5 баллов в сел. Сусуман (150 км) и Омчак (260 км), 4 балла – в Сеймчан (194 км) и 2 балла – в Стекольном (445 км) и Магадане (511 км) (рис. 3). После него зарегистрирован лишь один поздний толчок (12 ноября в 05^h46^m с K_P =8.7).

Рис. 3. Макросейсмические проявления землетрясения 19 октября с *К*_P=13.7

 инструментальный эпицентр; 2 – интенсивность сотрясений в баллах по шкале MSK-64 [11].

Для этого землетрясения в [12] есть решение механизма очага, согласно которому в его очаге несколько превалировали напряжения сжатия, т.к. $PL_P=18^\circ < PL_T=31^\circ$ (табл. 3). Такая система напряжений обусловила преимущество сдвиговых подвижек: практически чистый правосторонний сдвиг по наклонной ($DP=54^\circ$) плоскости NP1 с незначительной взбросовой составляющей, а по крутой ($DP=82^\circ$) плоскости NP2 – левосторонний взбросо-сдвиг. С учетом левосторонних сдвигов на разломе Улахан в качестве действующей плоскости следует выбрать крутую плоскость NP2 с азимутом 128°, т.е. простирающуюся с юго-востока на северо-запад (табл. 3, рис. 3).

Агент-	Дата,	<i>t</i> ₀ ,	h,	Mar	тниту	/ды	K _P	0	Оси главных напряжений Нодальные плоскости						Источ-					
ство	дм	ч мин с	КМ	Mw	MS	Ms		Т			N P		Р	NP1			NP2			ник
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
HRVD	10.07	15 30 28.1	0	4.9	4.1	4.2	13.0	2	348	11	257	79	89	89	44	-74	247	48	-105	[12]
GCMT	19.10	07 15 34.4	25	5.2	4.7	4.7	13.7	31	356	53	139	18	254	31	54	170	128	82	36	[12]

Таблица 3. Параметры механизмов очагов землетрясений в 2006 г.

В районе **Берингова моря** (№ 6) величина высвобожденной за год сейсмической энергии составила $\Sigma E=110.0\cdot10^{11} \ \mathcal{Aw}$ (94.1%). Здесь локализована группа из двух сильных землетрясений (3, 4) с близким расположением эпицентров – 8 июля в $09^{h}05^{m}$ с $K_{P}=12.0$ [4], Ms=4.4 [13] и 10 июля в $15^{h}30^{m}$ с $K_{P}=13.0$ [4], Ms=4.2 и Mw=4.9 [13]. Второй толчок более сильный, т.к. записан большим числом мировых станций – n=746, а для первого – n=258 [13]. Оба землетрясения ощущались в пос. Лаврентия, находящемся на расстоянии $\Delta=65 \ \kappa m$ и $\Delta=62 \ \kappa m$ к юго-западу от эпицентров с интенсивностью I=2-3 балла. Сразу после землетрясений был обследован район вблизи поселка. На берегу зал. Лаврентия найден небольшой срыв пород, состояние которого позволяет предполагать, что он образовался лишь за несколько дней до момента обследования. К сожалению, нет бесспорных доказательств того, что он возник при землетрясениях 8 или 10 июля 2006 г.

Для второго толчка в [12] имеется решение механизма очага, согласно которому в его очаге абсолютно преобладали напряжения растяжения, т.к. они горизонтальны – $PL_T=2^\circ$. В результате по близнаклонным ($DP_1=44^\circ$, $DP_2=48^\circ$) нодальным плоскостям реализовались практически чисто сбросовые подвижки (табл. 3, рис. 4).

Рис. 4. Стереограмма механизма очага землетрясения 10 июля в 15^h30^m с *K*_P=13.0 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений: сжатия и растяжения, соответственно (зачернена область волн сжатия).

В районах Западная Чукотка (№ 3), Восточная Чукотка (№ 4) и Чукотское море (№ 5) в 2006 г. не локализовано ни одного сейсмического события.

Литература

- 1. Гунбина Л.В., Лещук Н.М., Курткин С.В. Северо-Восток России и Чукотка // Землетрясения России в 2006 году. Обнинск: ГС РАН, 2009. С. 38–41.
- 2. **Левина В.И., Чебров В.Н.** Камчатка и Командорские острова // Землетрясения России в 2006 году. Обнинск: ГС РАН, 2009. С. 42–47.
- 3. Алёшина Е.И., Гунбина Л.В., Карпенко Л.И., Комарова Р.С., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2010. С. 228–233.
- 4. Алёшина Е.И., Комарова Р.С. (отв. сост.). Каталог землетрясений Северо-Востока России за 2006 г. (*N*=117). (См. Приложение к наст. сб. на CD).
- 5. Сейсмологический бюллетень (ежедекадный) за 2006 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2006–2007. – [Электронный ресурс]. – *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2006*.

- 6. Sedov B.M. The Setting of the Okhotsk Sea Microplate Northern Boundary and its Seismicity // Abs. AGU meeting, San-Francisco, 2004.
- 7. Алёшина Е.И., Седов Б.М. Развитие структуры и геодинамики северной границы Охотоморской плиты // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Тезисы докладов на региональной научно-технической конференции. – Петропавловск-Камчатский: КФ ГС РАН, 2009. – С. 11.
- 8. Алёшина Е.И., Гунбина Л.В., Лещук Н.М., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 223–232.
- 9. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 10. **Кузнецов В.М., Алевская Н.**Л. Схема тектонического районирования Колымо-Охотского водораздела. Масштаб 1: 1 000 000. – ФГУП «Магадангеология», 2001.
- 11. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 12. Lamont Doherty Earth Observatory (LDEO), Columbia University, 61 Route 9W, P.O. Box 1000, Palisades, NY 10964-1000, U.S.A. *http://www.globalcmt.org*
- 13. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008.