КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина¹, Е.Н. Дорошкевич¹, Д.А. Сафонов^{1,2}

¹Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск

Сеть сейсмических станций на территории Курило-Охотского региона в 2006 г., как и в предыдущие одиннадцать лет, состояла из трех станций Сахалинского филиала ГС РАН: «Северо-Курильск» (SKR), «Курильск» (KUR) и «Южно-Курильск» (YUK) (рис. 1). Для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Сахалина [1], Приамурья и Приморья [2], а также бюллетени ГС РАН [3], JMA, ISC [4]. Методика обработки данных [5–13], границы региона [14] и сейсмоактивных районов (рис. 1), а также параметры аппаратуры на сейсмических станциях не изменились по сравнению с таковыми в 2005 г. [15].

Рис. 1. Карта энергетической представительности землетрясений *K*_{min} и сеть сейсмических станций Курило-Охотского региона в 2006 г.

1 – изолиния K_{\min} ; 2 – сейсмическая станция; 3 – номер района и его граница; 4 – граница региона; 5 – ось глубоководного Курило-Камчатского желоба.

В качестве оценки величины землетрясений использована расчетная магнитуда M^p , значения которой определены следующим образом [10–12]:

– для событий с глубиной *h*≤80 км: M^{p} =*MLH*; M^{p} =(*K*_C−1.2)/2; M^{p} =(*MSH*−1.71)/0.75; M^{p} =(*MPV*−2.5)/0.65; M^{p} =(*MSH*−1.71)/0.75; M^{p} =(*MPV*−2.5)/0.65;

– для событий с $h>80 \ \kappa M$: $M^{\rm p}=(MSH-1.71)/0.75$; $M^{\rm p}=(MPV-2.5)/0.65$; $M^{\rm p}=(K_{\rm C}-1.2)/2$; $M^{\rm p}=(MSHA-1.71)/0.75$; $M^{\rm p}=MLH$; $M^{\rm p}=(MPVA-2.5)/0.65$.

На рис. 1 представлена карта энергетической представительности сети, рассчитанная с учетом всех станций, участвующих в обработке, из которой следует, что на большей части территории Курило-Охотского региона представительными являются землетрясения с $K_{\min}=9$ ($M^{p}_{\min}=4$), а на территории Онекотан-Матуанского района (N_{2} 2) и северо-восточной части Охотского моря (район N_{2} 8) без пропусков могут регистрироваться лишь события с $K_{\min}\geq10$ ($M^{p}_{\min}\geq4.5$). И только на небольшом участке юго-западной части Охотского моря, находящемся в окружении станций «Южно-Сахалинск», «Курильск» и «Южно-Курильск» представительными являются землетрясения с $K_{\min}\geq8$ ($M^{p}_{\min}\geq3.5$).

В региональный каталог [16], публикуемый в наст. сб., включены все обработанные землетрясения с $M^p=2.5-8.0$, суммарное число которых составило $N_{\Sigma}=1009$, что в 3 раза больше, чем значение $N_{\Sigma}=332$ в 2005 г. [15]. Карта эпицентров землетрясений за 2006 г. приведена на рис. 2.

Рис. 2. Карта эпицентров землетрясений Курило-Охотского региона в 2006 г.

1 – расчетная магнитуда M^p ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – стереограмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия; 5 – граница и номер района соответственно; 6 – граница зоны ответственности сети; 7 – ось глубоководного Курило-Камчатского желоба.

Гипоцентры 886 землетрясений (88% от общего числа) расположились в верхнем глубинном интервале $h \le 80 \ \kappa m$, 729 из них (72%) находились в слое $h=21-70 \ \kappa m$ (табл. 1, рис. 3); 106 событий (10%) произошло в промежуточном интервале $h=81-300 \ \kappa m$; 17 (<2%) отмечено в нижнем интервале глубины $h>300 \ \kappa m$. Как и в 2005 г., наблюдается увеличение числа землетрясений в интервале глубин $h=320-420 \ \kappa m$. Самое глубокое ($h=588\pm24 \ \kappa m$) землетрясение региона произошло 7 марта в $00^{h}18^{m}$ с магнитудой $MSHA=4.7, M^{p}=4.0$ под акваторией Охотского моря.

Таблица 1. Число мелкофокусных (*h*≤80 *км*) землетрясений разных магнитуд *N*(*M*) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2006 гг.

Год				M^{p}					N_{Σ}	N_{Σ}	ΣΕ,	ΣΕ,
	≤4	4.5	5	5.5	6	6.5	7	8		$(M^{p}>4)$	10 ¹² Дж	10 ¹² Дж
												$(M^{p}>4)$
2001	239	108	26	5	4		1		383	144	4362.23	4343.75
2002	217	85	10	2	3	1			318	101	734.72	717.02
2003	256	140	33	15	9	2			455	199	1959.97	1937.82
2004	173	155	24	8	2	2	2		366	193	3887.31	3874.87
2005	150	79	16	2	2				249	99	242.22	230.36
Сумма	1035	567	109	32	20	5	3		1771	736	11186.45	11103.82
Среднее	207	113.4	21.8	6.4	4	1	0.6		354.2	147.2	2237.29	2220.76
2006	405	371	75	21	7	5	1	1	886	481	66766.49	66730.70

Рис. 3. Распределение землетрясений Курило-Охотского региона по глубине гипоцентра в 2006 г.

Активность поверхностных землетрясений 2006 г. намного в превосходит таковую В течение 2001-2005 гг. (табл. 1, Число рис. 4). представительных землетрясений с *М*^р>4 в 2006 г., в 3.3 раза выше, чем среднее значение за предыдущие пять лет. высвобожленная Сейсмическая энергия, поверхностными очагами в 2006 г. в 6 раз превосходит величину суммарной энергии очагов 2001-2005 гг. за счет сильнейшего (*MLH*=8.0, *Mw*=8.3) землетрясения (23 на рис. 2) 15 ноября в 11^h14^m с *h*=37±1.9 км [16]. Эпицентр находился восточнее о. Симушир, поэтому землетрясение было названо Симуширским. Удаленный ($\Delta > 400 \ \kappa M$) макросейсмический эффект землетрясения составил 3-4 балла в г. Курильск (Д=442 км), 3 балла – в г. Северо-Курильск (Д=491 км), 2 балла – в пос. Южно-Курильск (Д=647 км).

Глубокофокусная активность в регионе в 2006 г. оставалась на среднем уровне по числу землетрясений, но по величине высвобожденной энергии была намного ниже таковой в 2005 г. (табл. 2, рис. 4 б). Самое сильное (*MSH*=6.6, $M^{\rm p}$ =6.5) глубокофокусное землетрясение (12) было зафиксировано 22 июня в 10^h53^m южнее о. Уруп на глубине *h*=106 км. Максимальный макросейсмический эффект с интенсивностью *I*=4 балла от землетрясения (12) отмечен в пос. Рейдово (Δ =112 км) и в Курильске (Δ =122 км).

Всего в регионе отмечено 70 ощутимых землетрясений. Наибольшее их число (N=36) произошло в Кунашир-Шикотанском районе ($N \ge 5$), 16 зарегистрировано в районе о. Хоккайдо ($N \ge 6$) (табл. 3). Землетрясение с MLH=4.3 и $h=59\pm5$ км, произошедшее 30 декабря в $22^{h}34^{m}$, вызвало на востоке о. Хоккайдо сотрясения с интенсивностью I=IV по шкале JMA [17], или I=6-7 баллов по шкале MSK-64 [18]. На территории России землетрясение ощущалось в

пос. Южно-Курильск (Δ =51 км) с интенсивностью сотрясений *I*=2–3 балла. Максимальный макросейсмический эффект на территории региона с интенсивностью *I*=5 баллов был зафиксирован в пос. Малокурильское (о. Шикотан, Δ =27 км) при землетрясении, произошедшем 22 ноября в 11^h15^m на глубине *h*=89±3 км с магнитудой *MLH*=4.9.

Год	M^{p}									N_{Σ}	ΣΕ,	ΣΕ,
	≤4	4.5	5	5.5	6	6.5	7	8		$(M^{p}>4)$	10 ¹² Дж	10 ¹² Дж
												$(M^{p}>4)$
2001	64	53	25	8	4	3	1		158	94	6087.98	6083.70
2002	64	53	32	11	3	2	1	1	167	103	65492.03	65487.96
2003	54	55	31	19	4		1		164	110	1479.57	1476.04
2004	25	21	24	13	3		1		87	62	1852.69	1851.02
2005	24	17	20	17	3	1			82	58	741.38	739.79
Сумма	231	199	132	68	17	6	4	1	658	427	75653.65	75638.51
Среднее	46.2	39.8	26.4	13.6	3.4	1.2	0.8	0.2	131.6	85.4	15130.73	15127.7
2006	16	22	48	31	4	2			123	107	1241.02	1240.30

Таблица 2. Число глубокофокусных (*h*>80 км) землетрясений разных магнитуд *N*(*M*) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2006 гг.

Рис. 4. Годовые числа *N* и величина Σ*E* сейсмической энергии, высвобожденной в Курило-Охотском регионе мелкофокусными (а) и глубокими (б) землетрясениями с *M*^{*p*}>4 за период 2001–2006 гг.

1 – N; 2 – Σ*E*; 3 – среднегодовое число землетрясений за 2001–2005 гг.; 4 – среднегодовое значение высвобожденной энергии за 2001–2005 гг.

Как следует из табл. 3, гипоцентры наибольшего числа ощутимых на поверхности землетрясений зафиксированы в диапазоне глубин $h=31-80 \ \kappa m$.

Таблица 3. Распределение землетрясений по интервалам глубины h, максимальные значения интенсивности сотрясений I_{max} , энергетического класса K_{Cmax} и магнитуды M^p в районах $N_0 1 - N_0 8$

№	Район	һ км	N_{Σ}	<i>N</i> ощут.	$I_{\rm max}$	$K_{\rm C max}$	M _{max}			
							MLH	MSH	M^{p}	
1	Парамуширский	0-30								
		31-80	1	1	2	12.0	4.5	5.2	4.5	
		≥81								
2	Онекотан-Матуанский	0–30	139	1	I(2)	13.6	6.1	6.3	6.3	
		31-80	261	2	2	13.3	6.4	6.7	6.4	
		81–163	24			11.5	4.6	6.0	5.9	
3	Симушир-Урупский	0-30	103	2	II(3–4)	13.8	6.8	7.0	6.8	
		31-80	243	3	3-4	13.1	8.0	7.6	8.0	
		81-149	37			11.0	4.2	6.1	5.9	

N⁰	Район	һ км	N_{Σ}	<i>N</i> ощут.	I _{max}	K _{C max}	M _{max}			
							MLH	MSH	M^{p}	
4	Северо-Итурупский	0–30	8			12.0	4.9	5.4	4.9	
		31-80	30	4	3–4	12.5	4.7	5.2	5.4	
		81-158	12	2	4	10.8	5.5	6.6	6.5	
5	Кунашир-Шикотанский	0–30	9			10.5	3.9	4.8	4.7	
		31-80	78	22	IV(6–7)	12.5	4.5	5.5	5.7	
		81-148	25	14	5	10.8	4.9	5.7	5.7	
6	О. Хоккайдо	0–30	3	2	III(5)	11.4	4.6	5.9	4.6	
		31-80	11	9	III(5)	12.5	5.1	5.6	5.1	
		81-131	5	5	III(5)	11.8	4.4	5.7	5.7	
8	Охотское море	0-30								
		31-80								
		81-588	20	3	II(3–4)		5.1	6.4	6.3	

Примечание. Римскими цифрами обозначена интенсивность по японской шкале JMA [17], по которой приближенное соответствие оценок интенсивности сотрясений по шкалам JMA и MSK-64 следующее: І → 1–2 балла; ІІ → 3–4 балла; ІІІ → 5 баллов; IV → 6–7 баллов; V → 8 баллов; VI → 9–10 баллов; VII → 11–12 баллов.

По знакам первых смещений в продольных волнах, записанных мировой сетью сейсмических станций, определены механизмы очагов 13 землетрясений [19], 11 из них относятся к мелкофокусным ($h\leq 80 \ \kappa m$), два – с промежуточной глубиной очага ($h=81-300 \ \kappa m$).

Рассмотрим более детально сейсмичность Курило-Охотского региона по районам.

В табл. 4 приведено распределение чисел землетрясений, зарегистрированных в регионе в 2006 г., и величины выделенной в них сейсмической энергии по районам, а на рис. 5 дано их графическое представление для событий с $M^{p}>4$.

N⁰	Район М ^р								ΣN	ΣΕ,	
			4.5	5	5.5	6	6.5	7	8		10 ¹² Дж
1	Парамуширский		1							1	0.36
2	Онекотан-Матуанский	180	158	41	15	4	2			400	1099.50
3	Симушир-Урупский	147	159	28	4	3	3	1	1	346	65598.97
4	Северо-Итурупский	20	15	2	1					38	18.64
5	Кунашир-Шикотанский	49	34	3	1					87	45.13
6	О. Хоккайдо	9	4	1						14	5.35
8	Охотское море										
	Всего	405	371	75	21	7	5	1	1	886	66765.96
				h>	80 км						
1	Парамуширский										
2	Онекотан-Матуанский	3	3	9	8	1				24	161.92
3	Симушир-Урупский	2	6	18	10	1				37	195.53
4	Северо-Итурупский	2	3	5	1		1			12	374.47
5	Кунашир-Шикотанский	1	6	10	8					25	118.52
6	О. Хоккайдо		2	1	2					5	30.31
8	Охотское море	8	2	5	2	2	1			20	360.57
	Всего	16	22	48	31	4	2	0	0	123	1241.32

Таблица 4. Распределение землетрясений по магнитуде *M*^р и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона в 2006 г.

Как видно из рис. 5 и табл. 4, в поверхностном слое наиболее активны были Онекотан-Матуанский (\mathbb{N} 2) и Симушир-Урупский (\mathbb{N} 3) районы, где располагался очаг Симуширского землетрясения 15 ноября 2006 г. с Mw=8.3 (23). Инструментальный эпицентр этого землетрясения локализован в районе \mathbb{N} 3, поэтому кривая распределения энергии имеет максимум в этом районе. Активность районов \mathbb{N} 1 и \mathbb{N} 6, границы которых сильно изменены в 2004 г. [14], в 2006 г. была незначительна.

Puc. 5. Распределение числа мелкофокусных (а) и глубокофокусных (б) землетрясений с *M*^{*p*}>4 и величины суммарной сейсмической энергии Σ*E* по районам Курило-Охотского региона в 2006 г.

1 – число землетрясений N; 2 – сейсмическая энергия ΣE; 3 – среднее число землетрясений по данным за 2001–2006 гг.; 4 – средняя величина энергии за период 2001–2006 гг.

В глубокофокусном слое наибольшее количество сейсмической энергии высвобождено в Северо-Итурупском (№ 4) районе, где 22 июня в $10^{h}53^{m}$ произошло самое сильное (*MSH*=6.6, *Mw*=6.0) глубокое землетрясение региона (12), а также в районе Охотского моря (№ 8), где произошло два землетрясения с $M^{p}>6-18$ января в $11^{h}10^{m}$ (2) и 9 декабря в $09^{h}14^{m}$ (35).

Представление о вариациях сейсмического режима отдельных районов Курило-Охотского региона во времени можно получить из анализа табл. 5 и рис. 6, где приведены ежегодные числа и величина сейсмической энергии в каждом из них за 2001-2006 гг. Сопоставление параметров сейсмичности проведено для землетрясений с магнитудой $M^{P}>4$.

Год	Район										
	Nº 2			<u>№</u> 3		<u>№</u> 4		<u>№</u> 5	Nº 8		
	N_{Σ}	ΣE									
h≤80 км											
2001	12	50.19	21	79.76	38	4078.94	35	69.10	1	0.25	
2002	12	40.79	16	5.98	21	510.43	26	95.72			
2003	17	101.79	15	13.08	31	89.03	28	50.75			
2004	23	416.02	28	21.47	32	147.53	65	2047.56			
2005	12	87.63	20	18.18	17	6.89	25	13.42			
Сумма	76	696.42	100	138.47	139	4832.82	179	2276.55	1	0.25	
Среднее	15.2	139.28	20	27.69	27.8	966.56	35.8	455.31	0.2	0.05	
2006	220	1084.34	199	65584.81	18	16.97	38	1.58			
				h	е>80 км						
2001	5	710.14	17	357.56	10	12.79	13	4005.37	27	880.33	
2002	13	1426.10	10	89.16	17	19.09	17	435.59	21	63315.52	
2003	11	17.76	20	67.88	5	15.29	21	75.60	13	55.21	
2004	5	32.49	13	1508.37	10	88.04	16	66.29	13	119.44	
2005	1	0.7	12	213.06	8	50.72	18	346.75	15	123.81	
Сумма	35	2187.19	72	2236.03	50	185.93	85	4929.6	89	64494.31	
Среднее	7	437.44	14.4	447.21	10	37.19	17	985.92	17.8	12898.86	
2006	21	161.78	35	195.34	10	374.35	24	118.5	12	360.32	

Таблица 5. Число землетрясений с *M*^{*p*}>4 и их суммарная сейсмическая энергия по некоторым районам Курило-Охотского региона за 2001–2006 гг.

Примечание. Суммарная энергия в табл. 6 дана в единицах *E*, 10¹² Дж.

Рис. 6. Распределение ежегодных чисел землетрясений и величины высвобожденной сейсмической энергии в поверхностном (а) и глубоком слое (б) по районам Курило-Охотского региона в 2001–2006 гг.

1-N; 2-ΣЕ; 3, 4-среднее значение числа землетрясений и суммарной высвобожденной энергии по данным 2001-2005 гг.

В Парамуширском районе (\mathbb{N} 1) зарегистрировано лишь одно мелкофокусное ($h=43\pm7 \ \kappa m$) землетрясение, произошедшее 7 февраля в $11^{h}50^{m}$ с *MLH=4.5*, $K_{C}=12.0$, *Mw=5.0*. Оно ощущалось в г. Северо-Курильск ($\Delta=250 \ \kappa m$) с интенсивностью сотрясений *I=*2 балла [16].

В Онекотан-Матуанском районе ($\mathbb{N} 2$) наблюдался резкий всплеск мелкофокусной сейсмической активности: зарегистрировано 220 событий с магнитудой $M^{P}>4$, что значительно выше среднегодового значения за период 2001–2005 гг., величина суммарной сейсмической энергии также превышает среднегодовое значение (табл. 5, рис. 6 а). Усиление сейсмической активности связано с форшок-афтершоковым процессом в очаге Симуширского землетрясения (23), зарегистрированного 15 ноября в $11^{h}14^{m}$ на глубине $h=38\pm 2 \kappa M$ с MLH=8.0, MSH=7.6, Mw=8.3.

Число землетрясений в интервале глубины $h=81-163 \ \kappa m$, равное N=21, превышает среднегодовое значение за указанный период, однако суммарная сейсмическая энергия, высвобожденная в очагах этого слоя, меньше средней (табл. 5, рис. 6 б).

Самым сильным (*MLH*=6.4, *MSH*=6.7), по данным регионального каталога [16], землетрясением района явился афтершок Симуширского землетрясения (29), произошедший 15 ноября в $21^{h}22^{m}$ на глубине $h=43\pm6$ км. Тип сейсмодислокации в его очаге – пологий сброс. Ось нейтральных напряжений субгоризонтальна (*PL*_N=16°) и параллельна островной дуге. Ось растяжения близгоризонтальна и направлена вкрест простирания структур сейсмофокальной зоны. Одна из нодальных плоскостей круто падает на северо-запад под острова, другая – близгоризонтальна и падает на восток.

Механизмы очагов определены еще для четырех землетрясений района: 22, 31, 32, 38 (рис. 2).

В очагах (22, 38) тип сейсмодислокации – пологий надвиг. Оси нейтральных напряжений горизонтальны ($PL_N=6^\circ$) и параллельны Курильской островной дуге. Оси сжатия близгоризонтальны и направлены вкрест фокальной зоны. Одна из нодальных плоскостей практически вертикальна и падает на юго-восток, под ложе Тихого океана, другая плоскость – близгоризонтальна и падает под острова. Оба землетрясения ощущались в г. Северо-Курильск ($\Delta=315 \ \kappa m$ и 263 κm , соответственно) с интенсивностью сотрясений в *I*=2 балла (табл. 3).

Тип сейсмодислокации в очаге землетрясения (31) с эпицентром в районе желоба – сброс. Близгоризонтальная ось растяжения направлена поперек структур курильской сейсмофокальной зоны. Простирание обеих нодальных плоскостей совпадает с направлением островной дуги, крутая плоскость разрыва падает под острова, другая – более полого – на юго-восток, под ложе Тихого океана.

Тип сейсмодислокации землетрясения (32) – сдвиг. Оси растяжения и сжатия близгоризонтальны. Одна из нодальных плоскостей вертикальна и направлена вдоль островной дуги, направление подвижки вдоль нее – левостороннее, другая – с правосторонней подвижкой – имеет небольшой наклон на северо-восток и направлена вкрест простирания островной дуги. Макросейсмический эффект отмечен для трех землетрясений (22, 27, 38), он не превышал 2 баллов (табл. 3).

В Симушир-Урупском районе ($\mathbb{N} 2$) зарегистрирован еще более резкий скачок сейсмической активности, чем в Онекотан-Матуанском ($\mathbb{N} 2$), поскольку на его территории находился эпицентр сильнейшего (*MLH*=8.0, *MSH*=7.6) в Курило-Охотском регионе Симуширского землетрясения (23), произошедшего 15 ноября. И величина суммарной сейсмической энергии, и число поверхностных землетрясений намного превосходят средние значения таковых параметров по данным за 2001–2005 гг. (табл. 5, рис. 6 а).

В интервале глубины *h*=81–149 *км* число землетрясений больше среднегодового значения за указанный период, однако суммарная сейсмическая энергия несколько меньше среднегодового значения (табл. 5, рис. 6 б).

Несмотря на высокую сейсмическую активность, наблюдаемую в 2006 г. в районе № 3, всего два землетрясения имели макросейсмические проявления на территории региона. Наиболее сильный макросейсмический эффект наблюдался при Симуширском землетрясении (23) [16]. Вторым ощутимым событием района явилось довольно слабое (*MLH*=4.9) для региона землетрясение, произошедшее 7 апреля в $14^{h}59^{m}$ на глубине $h=35\pm8 \ \kappa m$. Интенсивность сотрясений от этого землетрясения составила в г. Курильск ($\Delta=190 \ \kappa m$) I=2 балла [16]. Еще три землетрясения ощущались в Японии с интенсивностью I не более II (3–4) баллов. Такое небольшое число ощутимых землетрясений при всплеске сейсмической активности объясняется удаленностью населенных пунктов, расположенных на флангах Курильской гряды, от эпицентральной зоны района. На Средних Курилах в настоящее время населения нет.

Механизмы землетрясений (17, 19, 20), а также Симуширского землетрясения (23) идентичны: во всех случаях тип сейсмодислокации – пологий надвиг. Ось нейтральных напряжений горизонтальна ($PL_N=0-1^\circ$) и субпараллельна Курильской островной дуге. Оси растяжения во всех случаях близгоризонтальны и направлены вкрест островной дуги. Крутая плоскость разрыва имеет северо-восточное направление и падает на юго-восток, под ложе Тихого океана, другая плоскость близгоризонтальна и падает под острова.

Для землетрясения (34) с эпицентром в районе желоба тип сейсмодислокации – сброс. Ось нейтральных напряжений горизонтальна (*PL*_N=8°) и субпараллельна островной дуге. Близвертикальная подальная плоскость падает под острова, другая – более полого – на юго-восток, под ложе Тихого океана.

Эпицентр землетрясения (15) расположен на внешнем склоне желоба (или за желобом), тип сейсмодислокации – взбросо-сдвиг. Ось нейтральных напряжений падает на юго-восток под углом $PL_N=32^\circ$, одна из нодальных плоскостей ($STK_2=101^\circ$) падает на восток, по ней наблюдается взбросовая подвижка с компонентами правостороннего сдвига, другая ($STK_1=339^\circ$) – с левосторонней сдвиговой компонентой – падает на юг.

В Северо-Итурупском районе (\mathbb{N} 4) мелкофокусная сейсмическая активность продолжала оставаться на невысоком уровне: 18 землетрясений произошло на глубине $h \leq 80 \ \kappa m$, их число, сопоставимо с таковым значением в 2005 г. и меньше среднегодового значения за период 2001–2005 гг. (табл. 5, рис. 6 а).

В интервале глубины *h*=81–158 *км* зарегистрировано 10 землетрясений, ровно столько, сколько составляет среднегодовое число по данным за 2001–2005 гг., однако суммарная сейсмическая энергия в 10 раз больше среднегодовой величины (табл. 5, рис. 5 б).

На территории района отмечено шесть ощутимых землетрясений (табл. 3). Максимальная интенсивность сотрясений составила I=4 балла в пос. Рейдово ($\Delta=112 \ \kappa m$) и г. Курильск ($\Delta=122 \ \kappa m$) при землетрясении (12), произошедшем 22 июня в $10^{h}53^{m}$ на глубине $h=106\pm11 \ \kappa m$, с эпицентром под островной дугой и с магнитудой MLH=5.5, MSH=6.6. Это землетрясение было самым сильным в районе, для него определен механизм очага. Тип сейсмодислокации – пологий сброс. Ось нейтрального напряжения субгоризонтальна ($PL_{N}=21^{\circ}$) и ориентирована на запад. Одна нодальная плоскость ($STK_{2}=256^{\circ}$) почти вертикальна и падает на север под островную дугу, другая – очень полого – падает на юго-запад.

В Кунашир-Шикотанском районе (№ 5) сейсмическая активность также оставалась на невысоком уровне как в поверхностном слое, так и в глубоком. И число землетрясений, и величина сейсмической энергии ниже среднегодовых значений, рассчитанных для этого района по

данным 2001–2005 гг. (табл. 5, рис. 6 а, б). Величина сейсмической энергии поверхностных очагов в 2006 г. составила $\Sigma E=1.58\cdot 10^{12} \ Дж$, что явилось самым низким значением за шестилетний период.

Самое сильное (K_C =12.5) мелкофокусное землетрясение района (9) произошло 6 мая в 19^h47^m на глубине *h*=49±3 км. Оно вызвало колебания с интенсивностью *I*=2 балла в пос. Южно-Курильск (Δ = 204 км).

В промежуточном интервале глубины самое сильное (*MPVA*=5.5, *MSHA*=5.9) землетрясение района (4) произошло 24 февраля в $23^{h}01^{m}$ на глубине *h*=86±4 км. Макросейсмический эффект отмечен не был.

Для 36 землетрясений (табл. 3) наблюдался макросейсмический эффект в населенных пунктах Японии и Курильских островов. Максимальная интенсивность сотрясений достигла I=IV по шкале JMA [17] или I=6–7 баллов по шкале MSK-64 [18] на востоке о. Хоккайдо от землетрясения 30 декабря в $22^{h}34^{m}$, h=59±5 км, MLH=4.3. На территории России землетрясение ощущалось в пос. Южно-Курильск (Δ =51 км) с интенсивностью I=2–3 балла. Максимальный макросейсмический эффект (I=5 баллов) на территории района, а также и всего региона зафиксирован в пос. Малокурильское (о. Шикотан, Δ =27 км) при землетрясении, произошедшем 22 ноября в 11^h15^m, h=89±3 км, MLH=4.9. Два землетрясения ощущались в Японии с интенсивностью сотрясений I=III (JMA) или I=5 баллов (MSK-64), хотя на территории России их макросейсмический эффект отмечен не был. Первое зарегистрировано 10 января в 15^h07^m на глубине h=118±4 км с магнитудой MSH=5.2; второе – 30 августа в 18^h38^m на глубине h=111±5 км с магнитудой MSH=5.5.

Макросейсмический эффект остальных землетрясений района не превышал *I*=3–4 баллов на территории Курило-Охотского региона и III (5) баллов в Японии.

Большая часть территории **района о. Хоккайдо** (\mathbb{N} 6) была в 2004 г. исключена из зоны ответственности СФ ГС РАН, осталась лишь небольшая часть восточнее λ =144°E (рис. 1, 2). В связи с этим сопоставления параметров сейсмического режима с данными 2001–2005 гг. не производится. Здесь в верхнем интервале глубины $h \leq 80 \ \kappa m$ было зарегистрировано 5 землетрясений с магнитудой $M^P > 4$, в интервале глубины $h = 81-131 \ \kappa m$ – также пять землетрясений.

Для 16 землетрясений наблюдался макросейсмический эффект в населенных пунктах Японии, который достигал *I*=III по шкале JMA [17] или *I*=5 баллов по шкале MSK-64 [18]. На территории России ощущались лишь два землетрясения, максимальная интенсивность сотрясений которых составила *I*=2 балла в пос. Южно-Курильск (Δ =102 и 133 км).

В Охотском море (№ 8) мелкофокусных землетрясений зарегистрировано не было, в глубоком слое (*h*>80 км) произошло 12 землетрясений. Параметры сейсмического режима района были ниже средних значений, рассчитанных по данным за 2001–2005 гг. (табл. 5, рис. 5).

Самое сильное (*MSH*=6.4) землетрясение района (2) произошло под акваторией Охотского моря 18 января в $11^{h}10^{m}$ на глубине *h*=205±13 *км*.

Для землетрясения (35), произошедшего 9 декабря в $14^{h}48^{m}$ на глубине $h=384\pm18 \ \kappa m$ с *MSH=*6.3, наблюдался макросейсмический эффект на Японских островах. Интенсивность сотрясений на востоке о. Хоккайдо, на о. Хонсю достигала *I*=II (JMA) или *I*=3–4 балла (MSK-64). Эпицентр землетрясения находился в Курильской котловине, тип сейсмодислокации – пологий сброс. Ось нейтрального напряжения ориентирована на север и субгоризонтальна (*PL*_N=13°). Одна из нодальных плоскостей круто падает на восток, другая – очень полого – на северо-запад.

Макросейсмический эффект на территории Японии проявили еще два землетрясения, он также не превышал II (3–4) баллов, на территории России ни одно глубокофокусное землетрясение не ощущалось.

В целом 2006 г. был для Курило-Охотского региона годом очень высокой сейсмической активности: на Средних Курилах произошло землетрясение с магнитудой MLH=8.0, Mw=8.3, сопровождавшееся мощным афтершоковым процессом. Активность очага Симуширского землетрясения не завершилась в 2006 г. Через два месяца – 13 января 2007 г. – в том же районе произошло еще одно сильное землетрясение с Mw=8.1. Анализ сейсмичности очагов этих двух взаимосвязанных событий, их макросейсмических проявлений и сопровождающих их явлений следует проводить в совокупности, в связи с чем отдельную о них статью целесообразно поместить в следующем сборнике.

Никаких сведений о землетрясениях, происходивших ранее на Средних Курилах с магнитудой *MLH*≥8.0, нет, возможно, из-за отсутствия постоянного населения на о. Симушир.

Литература

- 1. Фокина Т.А., Кислицына И.П., Сафонов Д.А., Михайлов В.И. Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за 2006 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2006–2007. – [Электронный ресурс]. – *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2006*.
- 4. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008. [Электронный ресурс]. Режим доступа: *http://www.isc.ac.uk/search/index.html/2006*.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 6. Миталёва Н.А., Бойчук А.Н. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 7. Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- 9. Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. М.: Наука, 1977. С. 67–75.
- 10. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 11. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 12. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 13. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 14. Габсатарова И.П. Границы сейсмоактивных регионов с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 15. Фокина Т.А., Дорошкевич Е.Н., Нагорных Т.В., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии в 2005 год. – Обнинск: ГС РАН, 2011. – С. 200–212.
- 16. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Гладырь Ж.В., Швидская С.В. Каталог землетрясений Курило-Охотского региона за 2006 г. (*N*=1009). (См. Приложение к наст. сб. на CD).
- 17. Hisada T., Nakagawa K. Present Japanese Development in Engineering Seismology and their Application to Building. Japan, 1958.
- 18. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 19. Сафонов Д.А. (отв. сост.) Каталог механизмов очагов землетрясений Курило-Охотского региона за 2006 г. (*N*=13). (См. Приложение к наст. сб. на CD).