## КОПЕТДАГ

## Н.В. Петрова<sup>1</sup>, Т.А. Аннаоразова<sup>2</sup>, Л.В. Безменова<sup>2</sup>, Г.Ч. Сарыева<sup>3</sup>, М.М. Чарыев<sup>2</sup>

<sup>1</sup>Геофизическая служба РАН, г. Обнинск, **npetrova@gsras.ru** <sup>2</sup>Институт сейсмологии АН Туркменистана, г. Ашхабад, **tm.seismology@online.tm** <sup>3</sup>Государственная сейсмологическая служба АН Туркменистана, г. Ашхабад, **gssturkm2010@mail.ru** 

В 2006 г. сеть стационарных сейсмических наблюдений на территории Туркменистана состояла из 22 станций, из них 20 аналоговых и 2 цифровых: «Геокча» системы IRIS и «Гермаб» типа «Дельта-Геон». На лучшей из аналоговых станций – «Ванновской» – увеличение комплекта СКМ-3 еще во второй половине 2005 г. было понижено с 70000 до 50000, т.к. из-за близкого строительства возрос уровень помех (табл. 1). Этот факт не учитывался при оценке представительности землетрясений Копетдага в 2005 г. Кроме того, в пунктах Ховдан, Бахарлы и Касамлы в начале 2006 г. были установлены три автономные цифровые станции типа «Дельта-Геон» («Гаудан», «Бахарлы», «Маныш» (табл. 1, 2). В качестве датчиков на этих станциях использовались сейсмоприемники СК-1П, имеющие столообразную характеристику коэффициента чувствительности в интервале 0.3–0.8 с. Регистрация с частотой дискретизации 31.25  $\Gamma y$  велась на сменную флэш-карту с объемом недельной записи 220 *Mбm*.

| N⁰ | Станция          |       |      | Дата       | Коорд | инаты | $h_{\rm v},$ | Аппаратура |         |                             |                        |  |
|----|------------------|-------|------|------------|-------|-------|--------------|------------|---------|-----------------------------|------------------------|--|
|    | Название,        | Ко    | д    | открытия   | φ°, N | λ°, Ε | м            | Тип        | Компо-  | V <sub>max</sub>            | $\Delta T_{\rm max}$ , |  |
|    | (нас. пункт)     | межд. | рег. |            |       |       |              | прибора    | нента   |                             | С                      |  |
| 1  | Ашхабад          | ASH   | Ашх  | 16.02.1947 | 37.96 | 58.37 | 305          | CKM-3      | Ν       | 6000                        | 0.19–1.36              |  |
|    | (г. Ашгабат)     |       |      |            |       |       |              |            | Е       | 6000                        | 0.14–1.35              |  |
|    |                  |       |      |            |       |       |              |            | Ζ       | 6000                        | 0.23-1.22              |  |
|    |                  |       |      |            |       |       |              | СК         | Ν       | 1000                        | 0.30–9.45              |  |
|    |                  |       |      |            |       |       |              |            | Е       | 1000                        | 0.28–9.6               |  |
|    |                  |       |      |            |       |       |              |            | Ζ       | 1000                        | 0.33-8.2               |  |
|    |                  |       |      |            |       |       |              | C-5-C      | N, E, Z | 100                         | 0.20–3.2               |  |
|    |                  |       |      |            |       |       |              | ИСО+С-5-С  | N, E    | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5               |  |
|    |                  |       |      |            |       |       |              |            | Ζ       | 0.1 <i>c</i>                | 0.01-4.5               |  |
|    |                  |       |      |            |       |       |              | CCP3-M     | N, E, Z | $0.0019 c^2$                | 0.05                   |  |
| 2  | Кизыл-Арват      | КАТ   | Кат  | 01.01.1950 | 38.97 | 56.28 | 110          | ИСО+С-5-С  | N, E    | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01–4.5               |  |
|    | (г. Сердар)      |       |      |            |       |       |              |            | Ζ       | 0.1 <i>c</i>                | 0.01-4.5               |  |
|    |                  |       |      |            |       |       |              | CCP3-M     | N, E, Z | $0.0021 c^2$                | 0.05                   |  |
| 3  | Ванновская       | VAN   | Ван  | 07.07.1952 | 37.95 | 58.11 | 580          | СКМ-3      | Ν       | 50000                       | 0.24–1.39              |  |
|    | (г. Арчабил)     |       |      |            |       |       |              |            | E       | 50000                       | 0.18–1.61              |  |
|    |                  |       |      |            |       |       |              |            | Ζ       | 50000                       | 0.20–1.63              |  |
|    |                  |       |      |            |       |       |              | C-5-C      | Ν       | 1000                        | 0.18–3.12              |  |
|    |                  |       |      |            |       |       |              |            | Ζ       | 950                         | 0.16–3.81              |  |
|    |                  |       |      |            |       |       |              |            | E       | 1000                        | 0.20-2.1               |  |
|    |                  |       |      |            |       |       |              | ИСО+С-5-С  | N, E    | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5               |  |
|    |                  |       |      |            |       |       |              |            | Z       | 0.1 c                       | 0.01-4.5               |  |
|    |                  |       |      |            |       |       |              | CCP3-M     | N, E, Z | $0.0021 c^2$                | 0.05                   |  |
| 4  | Красноводск      | KRF   | Крс  | 31.03.1966 | 40.04 | 53.00 | 10           | CKM-3      | N, E    | 30000                       | 0.14-0.81              |  |
|    | (г. Туркменбаши) |       |      |            |       |       |              |            | Ζ       | 30000                       | 0.17–0.81              |  |
|    |                  |       |      |            |       |       |              | СК         | N, Z    | 1000                        | 0.20–9.8               |  |
|    |                  |       |      |            |       |       |              |            | E       | 100                         | 0.24–10.37             |  |
|    |                  |       |      |            |       |       |              | ИСО+С-5-С  | N, E    | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5               |  |

*Таблица 1.* Сейсмические станции Туркменистана (в хронологии их открытия), действовавшие в 2006 г., и параметры аппаратуры

| N⁰ | <u>•</u> Станция  |       |      | Дата Координаты |       |       | $h_{\rm v}$ , |           | Аппаратура    |                             |                           |  |
|----|-------------------|-------|------|-----------------|-------|-------|---------------|-----------|---------------|-----------------------------|---------------------------|--|
|    | Название,         | Ко    | Д    | открытия        | φ°, N | λ°, Ε | м             | Тип       | Компо-        | $V_{\rm max}$               | $\Delta T_{\rm max}$ ,    |  |
|    | (нас. пункт)      | межд. | рег. |                 |       | ,     |               | прибора   | нента         |                             | C                         |  |
|    | × 2 /             |       | 1    |                 |       |       |               | 1 1       | Z             | 0.1 c                       | 0.01-4.5                  |  |
|    |                   |       |      |                 |       |       |               | CCP3-M    |               | $0.0019 c^2$                | 0.05                      |  |
| 5  | Небит-Даг         | NBD   | Нбд  | 12.02.1966      | 39.51 | 54.39 | 15            | СКМ-3     | N             | 5070                        | 0.13-1.2                  |  |
|    | (г. Балканабат)   |       | , ,  |                 |       |       |               |           | Е             | 4610                        | 0.14–1.3                  |  |
|    |                   |       |      |                 |       |       |               |           | Ζ             | 5880                        | 0.13-1.22                 |  |
|    |                   |       |      |                 |       |       |               | СКД       | Ν             | 1000                        | 0.3–9.45                  |  |
|    |                   |       |      |                 |       |       |               | , ,       | Е             | 1000                        | 0.28–9.6                  |  |
|    |                   |       |      |                 |       |       |               |           | Ζ             | 1000                        | 0.33-8.2                  |  |
|    |                   |       |      |                 |       |       |               | ИСО+С-5-С | N, E          | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5                  |  |
|    |                   |       |      |                 |       |       |               |           | Ζ             | 0.1 <i>c</i>                | 0.01-4.5                  |  |
|    |                   |       |      |                 |       |       |               | CCP3-M    | N, E, Z       | $0.002 c^2$                 | 0.05                      |  |
| 6  | Кизыл-Атрек       | GZLA  | Ктр  | 10.10.1968      | 37.68 | 54.77 | 55            | CM-3      | Ν             | 5000                        | 0.25-1.25                 |  |
|    | (пос. Этрек)      |       |      |                 |       |       |               |           | E,Z           | 5000                        | 0.2–1.2                   |  |
|    |                   |       |      |                 |       |       |               | СКД       | Ν             | 1000                        | 0.28–18.3                 |  |
|    |                   |       |      |                 |       |       |               |           | Е             | 1000                        | 0.61–18.61                |  |
|    |                   |       |      |                 |       |       |               |           | Ζ             | 1000                        | 0.35–17.6                 |  |
|    |                   |       |      |                 |       |       |               | ИСО+С-5-С | N, E          | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5                  |  |
|    |                   |       |      |                 |       |       |               |           | Z             | 0.1 <i>c</i>                | 0.01-4.5                  |  |
| 7  | Кара-Кала         | GARG  | Крк  | 26.03.1971      | 38.44 | 56.27 | 315           | CKM-3     | Ν             | 4770                        | 0.25–1.3                  |  |
|    | (пос. Магтымгулы) |       |      |                 |       |       |               |           | E             | 5000                        | 0.25–1.2                  |  |
|    |                   |       |      |                 |       |       |               |           | Z             | 5450                        | 0.25–1.2                  |  |
|    |                   |       |      |                 |       |       |               | CMIP      |               | 8.0                         | 0.01.4.5                  |  |
|    |                   |       |      |                 |       |       |               | исо+с-5-с | N, E          | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5                  |  |
|    | 11                | CLOT. | 11   | 11 11 1070      | 40.70 | 55.20 | 1 4 4         |           | Z             | 0.1 <i>c</i>                | 0.01-4.5                  |  |
| 8  | Чагыл             | CAGI  | ЧГЛ  | 11.11.19/2      | 40.78 | 55.38 | 144           | CKM-3     | N<br>E        | 40000                       | 0.13 - 0.79               |  |
|    | (с. чагыл)        |       |      |                 |       |       |               |           | Е<br>7        | 40000                       | 0.22 - 0.04<br>0.18 0.72  |  |
|    |                   |       |      |                 |       |       |               | ИСО+С-5-С | L<br>N F      | 01c25c                      | 0.13 - 0.72<br>0.01 - 4.5 |  |
|    |                   |       |      |                 |       |       |               | neo+e-5-e | 7, L          | 0.1 c, 2.5 c                | 0.01 - 4.5                |  |
| 9  | Каушут            | КАН   | Кшт  | 24 06 1977      | 37.46 | 59 49 | 257           | вэгик     | N             | 9850                        | 0.01 4.5                  |  |
|    | (с. Говшут)       |       |      |                 | 27.10 | 07117 |               | Dorrint   | E             | 9910                        | 0.23–1.35                 |  |
|    | ())               |       |      |                 |       |       |               |           | Z             | 10000                       | 0.20-1.30                 |  |
|    |                   |       |      |                 |       |       |               | ИСО+С-5-С | N, E          | 0.1 c, 2.5 c                | 0.01-4.5                  |  |
|    |                   |       |      |                 |       |       |               |           | Z             | 0.1 c                       | 0.01-4.5                  |  |
| 10 | Маныш             | MNYS  | Мнш  | 04.01.1978      | 37.72 | 58.61 | 680           | СКМ-3     | N             | 5870                        | 0.14-1.3                  |  |
|    | (с. Касамлы)      |       |      |                 |       |       |               |           | Е             | 30000                       | 0.17-1.32                 |  |
|    |                   |       |      |                 |       |       |               |           | Ζ             | 30000                       | 0.22–1.29                 |  |
|    |                   |       |      |                 |       |       |               | ИСО+С-5-С | N, E          | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01–4.5                  |  |
|    |                   |       |      |                 |       |       |               |           | Ζ             | 0.1 <i>c</i>                | 0.01-4.5                  |  |
|    |                   |       | Мн2  | 01.01.2006      |       |       |               | цифр      | овая ста      | нция Дельта-Г               | еон                       |  |
| 11 | Овадан-Тепе       |       | Овд  | 12.04.1978      | 38.11 | 58.36 | 160           | CM-3      | Ν             | 4700                        | 0.26–1.4                  |  |
|    | (с. Овадандепе)   |       |      |                 |       |       |               |           | E             | 5000                        | 0.19–1.35                 |  |
|    |                   |       |      |                 |       |       |               |           | Z             | 5000                        | 0.27–1.43                 |  |
|    |                   |       |      |                 |       |       |               | ИСО+С-5-С | N, E          | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5                  |  |
| 10 | <u> </u>          |       | 9    | 01.10.1000      | 20.00 |       | 100           | <u> </u>  | Z             | 0.1 c                       | 0.01-4.5                  |  |
| 12 | Серный            |       | Срн  | 01.12.1980      | 39.99 | 58.83 | 120           | CKM-3     | N             | 50000                       | 0.19-0.82                 |  |
|    | (с. Серный        |       |      |                 |       |       |               |           | E             | 50000                       | 0.20-0.98                 |  |
| 10 | завод)            |       | г    | 24.05.1000      | 20.01 | 57.75 | 775           |           | Z             | 54000                       | 0.18-0.76                 |  |
| 13 |                   |       | 1 рм | 24.05.1980      | 38.01 | 57.75 | 115           | исо+с-5-с | N, E          | 0.1 c, 2.5 c                | 0.01-4.5                  |  |
|    | (с. 1 ермап)      |       |      | 10 11 2004      |       |       |               | 1         | L             | U.I C                       | 0.01-4.5                  |  |
| 14 | Copovo            |       | Crrv | 19.11.2004      | 26 52 | 61 21 |               | цифр      | овая ста      | анция дельта-I              | 0 20 1 5 4                |  |
| 14 | (Top Consul)      |       | Срх  | 01.01.1982      | 30.33 | 01.21 |               | UNI-3     |               | 12200                       | 0.20 - 1.54               |  |
|    | (not. Cepaxe)     |       |      |                 |       |       |               |           | <u>г</u><br>7 | 9800                        | 0.11_1.17                 |  |
|    |                   |       |      |                 |       |       |               | CCP3      | L<br>NF7      | $0.0021 c^2$                | 0.05                      |  |
|    |                   |       |      |                 |       |       |               | UL J      | IN, E, L      | 0.0021 C                    | 0.05                      |  |

| №   | Станция         |       |      | Дата        | Дата Координаты / |         |     |            | паратура |                             |                        |
|-----|-----------------|-------|------|-------------|-------------------|---------|-----|------------|----------|-----------------------------|------------------------|
|     | Название,       | Ко    | д    | открытия    | φ°. N             | λ°. Ε   | м   | Тип Компо- |          | $V_{\rm max}$               | $\Delta T_{\rm max}$ , |
|     | (нас. пункт)    | межд. | рег. |             |                   | ,       |     | прибора    | нента    |                             | C                      |
| 15  | Гаурдак         |       | Грд  | 01.12.1985  | 37.80             | 66.05   | 460 | CM-3       | N        | 12000                       | 0.10-1.3               |
|     | (г. Магданлы)   |       |      |             |                   |         |     |            | Е        | 10000                       | 0.16-1.3               |
|     |                 |       |      |             |                   |         |     |            | Ζ        | 10000                       | 0.20-1.3               |
|     |                 |       |      |             |                   |         |     | ИСО+С-5-С  | N, E     | 0.1 c, 2.5 c                | 0.01-4.5               |
|     |                 |       |      |             |                   |         |     |            | Ζ        | 0.1 c                       | 0.01-4.5               |
| 16  | Кушка           | -     | Кшк  | 01.01.1986  | 35.27             | 62.31   | 650 | CM-3       | Ν        | 10000                       | 0.23-0.88              |
|     | (г. Серхетабат) |       |      |             |                   |         |     |            | Ζ        | 10000                       | 0.22-0.88              |
|     |                 |       |      |             |                   |         |     |            | Е        | 10000                       | 0.24-0.87              |
|     |                 |       |      |             |                   |         |     | ИСО+С-5-С  | N, E     | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5               |
| _   |                 |       |      |             |                   |         |     |            | Ζ        | 0.1 c                       | 0.01-4.5               |
| 17  | Даната          |       | Днт  | 24.04.1988  | 39.07             | 55.17   |     | CKM-3      | Ν        | 31000                       | 0.18-0.87              |
|     | (с. Дянеата)    |       |      |             |                   |         |     | CM-3       | E        | 27000                       | 0.19-0.89              |
|     |                 |       |      |             |                   |         |     |            | Ζ        | 28000                       | 0.14-0.88              |
| _   |                 |       |      |             |                   |         |     | CCP3-M     | N, E, Z  | $0.0021 c^2$                | 0.05                   |
| 18  | Сунча           |       | Сун  | 01.10.1990  | 38.50             | 57.30   |     | СМ-3 КВ    | Ν        | 8880                        | 0.58–1.43              |
|     | (с. Сунче)      |       |      |             |                   |         |     | PB3        | E        | 9420                        | 0.76–1.54              |
|     |                 |       |      |             |                   |         |     |            | Ζ        | 10000                       | 0.60–1.34              |
| 19  | Карлюк          |       | Кар  | 20.07.1992  | 37.56             | 66.43   |     | CM-3       | Ν        | 19000                       | 0.25–1.27              |
|     | (с. Кюнджек)    |       |      |             |                   |         |     |            | E        | 20000                       | 0.20–1.3               |
|     |                 |       |      |             |                   |         |     |            | Ζ        | 20000                       | 0.39–1.21              |
|     |                 |       |      |             |                   |         |     | ИСО+С-5-С  | N, E     | 0.1 <i>c</i> , 2.5 <i>c</i> | 0.01-4.5               |
|     | -               |       |      |             |                   |         |     |            | Z        | 0.1 c                       | 0.01-4.5               |
| 20  | Кугитанг        |       | Куг  | 05.10.1992  | 37.91             | 66.48   |     | CM-3       | N        | 2000                        | 0.17–1.31              |
|     | (пос. Койтен)   |       |      |             |                   |         |     |            | E        | 10000                       | 0.19–1.3               |
|     |                 |       |      |             |                   |         |     |            | Z        | 10000                       | 0.18–1.33              |
|     |                 |       |      |             |                   |         |     | исо+с-5-с  | N, E     | 0.1 c, 2.5 c                | 0.01-4.5               |
| 0.1 | T.C.,-          |       | 7.6  | 04.00.1005  | 20.20             | -       |     |            | Z        | 0.1 c                       | 0.10-4.5               |
| 21  | Кёнекесир       |       | Кнк  | 04.09.1995  | 38.20             | 56.90   |     | CM-3+PB3   | N        | 40000                       | 0.20-1.5               |
|     | (с. Кенекесир)  |       |      |             |                   |         |     |            | E<br>7   | 40000                       | 0.50-1.4               |
|     |                 |       |      |             |                   |         |     | COPAN      | L        | 40000                       | 0.30-1.2               |
|     | Г               | ADIZT | г    | 20.11.2000  | 27.02             | 50.10   |     | ССРЗ-М     | N, E, Z  | 0.002 C                     | 0.05                   |
| 22  | Геокча          | ABKI  | 1 КЧ | 20.11.2000  | 37.93             | 58.12   |     | ц          | ифровая  | я станция ІКІЗ              |                        |
| 22  | (г. Арчаоил)    |       | г    | 07.0000     | 27 (7             | 50.25   |     | 1          |          |                             |                        |
| 23  | I аудан         |       | I дн | 07.2006     | 37.67             | 58.35   |     | цифр       | овая ста | нция Дельта-І               | еон                    |
| 24  | (с. ховдан)     |       | Г    | 01.01.2007  | 20.21             | 57.00   |     |            |          | "                           |                        |
| 24  | <b>BAXADILI</b> | 1     | БУН  | 101.01.2006 | 138 21            | 13/23   |     |            |          |                             |                        |
|     |                 |       | DAII | 01.01.2000  | 20.21             | 0 / .=0 |     |            |          |                             |                        |
| 25  | (пос. Бахарлы)  |       | Mar  | 01.01.2000  | 27.72             | 50 (1   |     |            |          |                             |                        |

Таблица 2. Данные об аппаратуре цифровых станций в 2006 г.

| Название<br>станции | Тип<br>датчика | Перечень<br>каналов | Частотный<br>диапазон,<br>Гц | Частота опроса<br>данных,<br>Гц | Разряд-<br>ность<br>АЦП | Чувствительность,<br>велосиграф – от-<br>счет/(м/с) |
|---------------------|----------------|---------------------|------------------------------|---------------------------------|-------------------------|-----------------------------------------------------|
| Геокча              | STS-1          | BH(N, Z, E) v       | 0.002–5                      | 20                              | 24                      | 6.28·10 <sup>8</sup>                                |
|                     | GS-13          | SH(N, Z, E) v       | 0.5–10                       | 40                              | 24                      | $6.25 \cdot 10^8$                                   |
| Гермаб              | СК-1П          | SH(N, Z, E) v       | 0.3–0.8                      | 31                              | 24                      | $1.00 \cdot 10^7$                                   |
| Гаудан              | СК-1П          | SH(N, Z, E) v       | 0.3-0.8                      | 31                              | 24                      | $1.00 \cdot 10^7$                                   |
| Бахарлы             | СК-1П          | SH(N, Z, E) v       | 0.3-0.8                      | 31                              | 24                      | $1.00 \cdot 10^7$                                   |
| Маныш               | СК-1П          | SH(N, Z, E) v       | 0.3–0.8                      | 31                              | 24                      | 1.00.107                                            |

Для оценки энергетической представительности  $K_{\min}$  землетрясений Копетдага были проведены специальные исследования дальности регистрации сейсмических станций. Выяснилось, что на предельных расстояниях R регистрации, на которых значения  $K_P(R)$  близки к предельному контуру  $K_{\min}(R)$ , локация землетрясений и определение их энергетических классов осуществляется только по временам пробега и амплитудам S-волн, т.к. амплитуды P-волн не различимы на фоне помех. С учетом этого факта разработаны методика и программа расчета  $K_{\min}$  по дальности регистрации *n*-м числом станций при условии, что, по крайней мере, одна из них регистрирует P- и S-волны, а остальные – S-волны, амплитуды которых различимы на фоне помех [1]. Рассчитанная с помощью данного подхода карта  $K_{3,\min}$  (рис. 1) лучше согласуется с реальным энергетическим уровнем представительных в 2006 г. землетрясений Копетдага, определенным для отдельных сейсмоактивных районов по «левому загибу» графика повторяемости  $K_{\gamma,\min}$ (табл. 3), чем карта  $K_{3,\min}$ , построенная по методике З.И. Арановича и др. [2, 3], с более жесткими условиями регистрации – все станции должны регистрировать P-волну, различимую на фоне помех. Карта эпицентров землетрясений Копетдага за 2006 г. дана на рис. 2.

| N⁰ | Район                  | $\phi_1^{\circ}-\phi_2^{\circ}, N$ | $\lambda_1^{\circ} - \lambda_2^{\circ}, E$ | <i>S</i> ,<br>10 <sup>3</sup> км <sup>2</sup> | K <sub>3,min</sub> | $K_{\gamma,\min}$ |
|----|------------------------|------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------|-------------------|
| 1  | Балхано-Каспийский     | 38.5-42.0                          | 51.0-55.5                                  | 149                                           | 8–9                | 8                 |
| 2  | Эльбурский             | 35.0-38.5                          | 51.0-55.5                                  | 156                                           | 9–10               | 9                 |
| 3  | Туркмено-Хорасанский   | 35.0-39.5                          | 55.5-61.0                                  | 243                                           | 8                  | 8                 |
| 4  | Восточный Туркменистан | 35.0-42.0                          | 61.0-67.0                                  | 406                                           | 9–10               | 9                 |
| 5  | Центрально-Каракумский | 39.5-42.0                          | 55.5-61.0                                  | 130                                           | 8–9                |                   |
|    | Копетдаг               | 35.0-42.0                          | 51.0-67.0                                  | 1082                                          | 9–10               | 9                 |

*Таблица 3.* Координаты и площади пяти районов и региона в целом, а также значения в них  $K_{3,\min}$  и  $K_{\gamma,\min}$ 



*Рис.* 1. Карта энергетической представительности  $K_{3,\min}$  землетрясений Копетдага в 2006 г., рассчитанная по дальности регистрации минимум тремя станциями, из которых одна регистрирует *P*-и *S*-волны, а остальные – *S*-волны, амплитуды которых превышают фон помех

1 – изолиния  $K_{3,\min}$ ; 2 – сейсмическая станция, аналоговая (а) и цифровая (б); 3 – государственная граница; 4 – граница и номер сейсмоактивного района; 5 – город.





Методика обработки землетрясений Копетдага не изменилась: кинематические параметры определялись на основе региональных блочных годографов [4], энергетический класс  $K_P$  – по палетке Т.Г. Раутиан [5], магнитуды *MPVA* – согласно [6], макросейсмические характеристики ощутимых землетрясений – на основе регионального уравнения макросейсмического поля [7]:

$$I_{\rm i} = 1.5M - 3.8 \, \lg r + 3.5. \tag{1}$$

Правильность и полнота обработки частично контролировались путем сопоставления кинематических и динамических параметров общих землетрясений из регионального каталога [8] и бюллетеней Международного сейсмологического центра ISC [9]. Для перевода в энергетические классы  $K_P$  значений магнитуд *MS*, *MPSP* (MOS), *Ms*,  $m_b$  (ISC) и  $M_n$  (TEH), публикуемых в [9], использовались соотношения из [10, 11]:

$$K_{\rm P} = 1.47 \, MS^{\rm MOS} + 5.96, \tag{2}$$

$$K_{\rm P} = 2.0 \ MPSP^{\rm MOS} + 2.15, \tag{3}$$

$$K_{\rm P} = 1.46 \, M_{\rm S}^{\rm ISC} + 5.8,\tag{4}$$

$$K_{\rm P} = 2.0 \ m_{\rm b}^{\rm ISC} + 2.8,$$
 (5)

$$K_{\rm P} = 1.915 \, M_{\rm p}^{\rm TEH} + 2.68.$$
 (6)

В каталоге [8] и на карте эпицентров землетрясений Копетдага (рис. 2) приведены землетрясения ( $N_{\Sigma}$ =178) с  $K_{P}$ ≥8.6, зарегистрированные сейсмическими станциями Туркменистана в 2006 г., включая пять землетрясений из бюллетеня ISC [9], записи которых станциями Туркменистана нельзя было обработать. Расчетные энергетические классы  $K_{\text{расч}}$  для этих землетрясений получены с помощью переходных соотношений (2)–(6).

Механизмы очагов землетрясений Копетдага за 2006 г., определенные по знакам первых вступлений *P*-волн на сейсмических станциях Государственной сейсмологической службы АН Туркменистана (ГСС АНТ) и ISC [9], представлены в [12] и на рис. 3.



Рис. 3. Стереограммы механизмов очагов землетрясений Копетдага в 2006 г.

1 – стереограмма механизма очага в проекции нижней полусферы, зачернена область сжатия; 2 – решение механизма очага из [9, 12] с указанием агентства; 3 – гипоцентр; 4 – нодальные линии; 5, 6 – оси главных напряжений сжатия и растяжения соответственно; 7 – разлом; 8 – сейсмическая станция; 9 – государственная граница; 10 – город.

В 2006 г., несмотря на понижение уровня суммарной сейсмической энергии, выделившейся на территории Копетдагского региона, до  $\Sigma E=17.8 \cdot 10^{12} \ \mbox{$\mathcal{L}$} ж$  вместо 26.9 $\cdot 10^{12} \ \mbox{$\mathcal{L}$} ж$  в 2005 г., число зарегистрированных землетрясений возросло, по сравнению с показателями 2005 г. (N=3386 вместо 2707), причем исключительно за счет слабых ( $K_P \leq 7$ ) толчков (табл. 4). Подобная тенденция, наблюдавшаяся и в 2005 г. [13], связана, по-видимому, с начавшимся в конце 2004 г. внедрением цифровых сейсмических станций типа «Дельта-Геон», понизивших энергетический уровень представительных землетрясений в центральной части региона (рис. 1). Максимальные землетрясения, произошедшие 16 сентября в  $10^{\rm h}42^{\rm m}$  с  $K_P=12.6$  и 12 октября в  $17^{\rm h}08^{\rm m}$  с  $K_P=13.0$ , приурочены к очаговым зонам двух самых крупных землетрясений за два последних десятилетия – Боджнурдского 04.02.1997 г. с MS=6.6 [14] и Балханского 06.12.2000 г. с Mw=7.3 [15].

| Год  |       |      |     | $K_{\mathrm{P}}$ |    |    |    | $N_{\Sigma}$ | $\Sigma E$ , |       |                     |
|------|-------|------|-----|------------------|----|----|----|--------------|--------------|-------|---------------------|
|      | 2-7   | 8    | 9   | 10               | 11 | 12 | 13 | 14           | 16           | -     | 10 <sup>12</sup> Дж |
| 1992 | 2048  | 343  | 150 | 42               | 17 | 2  | 4  | 1            |              | 2607  | 82.8                |
| 1993 | 1922  | 325  | 157 | 55               | 23 | 12 | 1  |              |              | 2495  | 20.4                |
| 1994 | 1737  | 333  | 176 | 77               | 16 | 3  | 4  | 1            |              | 2348  | 156.2               |
| 1995 | 1595  | 228  | 95  | 39               | 11 | 1  | 2  |              |              | 1971  | 12.2                |
| 1996 | 1070  | 210  | 98  | 52               | 20 | 3  | 1  |              |              | 1454  | 13.4                |
| 1997 | 10050 | 1170 | 482 | 139              | 57 | 9  | 2  | 1            | 1            | 11911 | 4102.4              |
| 1998 | 1685  | 363  | 173 | 49               | 10 | 2  | 1  |              |              | 2283  | 15.1                |
| 1999 | 1196  | 278  | 161 | 65               | 19 | 11 | 3  | 1            |              | 1734  | 73.5                |
| 2000 | 4531  | 763  | 304 | 94               | 31 | 6  | 4  | 2            | 1            | 5739  | 31796.7             |
| 2001 | 1982  | 383  | 158 | 54               | 19 | 2  | 1  | 2            |              | 2601  | 408.32              |
| 2002 | 3070  | 279  | 143 | 42               | 21 | 5  |    |              |              | 3560  | 6.6                 |
| 2003 | 1563  | 297  | 150 | 52               | 22 | 3  | 1  |              |              | 2088  | 18.0                |
| 2004 | 1189  | 357  | 159 | 64               | 24 | 6  | 2  | 1            |              | 1802  | 132.35              |
| 2005 | 2110  | 362  | 169 | 44               | 12 | 5  | 3  |              |              | 2707  | 26.9                |
| 2006 | 2893  | 320  | 117 | 40               | 12 | 2  | 2  |              |              | 3386  | 17.8                |

**Таблица 4.** Распределение по годам и энергетическим классам K<sub>P</sub> числа землетрясений N<sub>Σ</sub> и суммарной сейсмической энергии ΣE за 1992–2006 гг. в границах Копетдагского региона

В отличие от предыдущих лет, значительная часть выделившейся на территории Копетдагского региона сейсмической энергии приходится на Балхано-Каспийский район (№ 1), где величина высвобожденной сейсмической энергии в 2006 г. составляет  $\Sigma E=10.74 \cdot 10^{12} \ \mathcal{Д} \mathcal{ж}$ (табл. 5) вместо 3.33 $\cdot 10^{12} \ \mathcal{Д} \mathcal{ж}$  в 2005 г. [13]. Однако число землетрясений с  $K_P \ge 8$  уменьшилось ( $N_{\Sigma}=157$  вместо 187), т.е. сохранилась тенденция снижения сейсмической активности  $A_{10}$  района ( $A_{10}=0.066$  вместо 0.075).

**Таблица 5.** Распределение числа землетрясений по энергетическим классам  $K_{\rm P}$ , суммарная сейсмическая энергия  $\Sigma E$  и параметры сейсмического режима  $A_{10}$  и  $\gamma$  в сейсмоактивных районах

| № | Район                  | Kp  |     |    |    |    | $N_{\Sigma}$ | ΣΕ, | γ                   | $A_{10}$ | $\Delta K$ |      |
|---|------------------------|-----|-----|----|----|----|--------------|-----|---------------------|----------|------------|------|
|   |                        | 8   | 9   | 10 | 11 | 12 | 13           |     | 10 <sup>12</sup> Дж | -        |            |      |
| 1 | Балхано-Каспийский     | 111 | 31  | 10 | 3  | 1  | 1            | 157 | 10.74               | 0.50     | 0.066      | 9–12 |
| 2 | Эльбурский             | 30  | 23  | 6  | 2  |    |              | 61  | 0.22                | 0.53     | 0.042      | 9–13 |
| 3 | Туркмено-Хорасанский   | 169 | 53  | 20 | 6  |    | 1            | 249 | 5.06                | 0.45     | 0.081      | 8-13 |
| 4 | Восточный Туркменистан | 9   | 10  | 4  | 1  | 1  |              | 25  | 1.78                | 0.36     | 0.019      | 9–13 |
| 5 | Центрально-Каракумский | 1   |     |    |    |    |              | 1   | $10^{-4}$           |          |            |      |
|   | Копетдаг               | 320 | 117 | 40 | 12 | 2  | 2            | 493 | 17.80               | 0.48     | 0.033      | 9–13 |

Примечание.  $\Delta K$  – диапазон энергетических классов графиков повторяемости для определения параметров  $\gamma$ ,  $A_{10}$ .

На рис. 4 показано изменение во времени основных параметров сейсмического режима Балхано-Каспийского района: угла наклона графика повторяемости у и сейсмической активно-

сти  $A_{10}$  за 40 лет наблюдений. Как видим, продолжается снижение сейсмической активности в Балхано-Каспийском районе, начавшееся в 2001 г. Величина угла наклона графика повторяемости, тем не менее, остается сравнительно стабильной. Как отмечалось в [14–16], всем сильным землетрясениям в районе предшествовали периоды понижения сейсмической активности, при этом магнитуда последующего землетрясения зависела от длительности периода пониженной активности. Угол наклона графика повторяемости обнаруживает тенденцию к повышению перед сильными событиями (рис. 4).



**Рис. 4.** Среднегодовые значения сейсмической активности  $A_{10}$  (1) и наклона графика повторяемости  $\gamma$  (2) в Балхано-Каспийском районе, в сравнении с долговременными средними значениями (3) этих параметров за весь период (стрелки здесь и на рис. 5 указывают моменты возникновения землетрясений с M>5.5)

В очаговой зоне Балханского землетрясения 06.12.2000 г. с *Мw*=7.3 [15], афтершоковая деятельность которого практически прекратилась в 2005 г., в 2006 г. произошло 12 октября в  $17^{h}08^{m}$  довольно сильное ( $K_{P}=13.0, M_{S}=4.8$ ) землетрясение, которое ошушалось в пос. Джебел с интенсивностью *I*=4 балла, в г. Балканабат – 3–4 балла, в с. Дянеата – 2–3 балла. Механизм очага этого землетрясения [12] определен по знакам первых вступлений Р-волн на региональных станциях с привлечением данных международной сети из бюллетеня ISC [9]. Он незначительно отличается от решения HRVD (№ 7 на рис. 3). В результате получены две возможные плоскости разрыва субширотного простирания. По пологой плоскости NP1 в условиях преобладающего меридионального сжатия произошел надвиг северного крыла разрыва, а движение по субвертикальной плоскости (NP2) представляло собой взброс с поднятием южного крыла разрыва относительно северного. Тип движения по обеим плоскостям является характерным в условиях меридиональной ориентации сжимающих напряжений [17]. Однако последовавший через 1<sup>h</sup>43<sup>m</sup> афтершок (8 на рис. 3) имел противоположный тип подвижки – сбросо-сдвиг по крутым плоскостям юго-восточного или широтного простирания, левосторонний и правосторонний соответственно. Афтершок ощущался жителями тех же населенных пунктов, что и основной толчок: в Джебеле – 3 балла, в Балканабате – 2–3 балла, в Дянеата – 2 балла [8].

Другое относительно сильное ( $K_P$ =11.6) землетрясение (5) Балхано-Каспийского района произошло 8 июня в 23<sup>h</sup>00<sup>m</sup> на побережье Каспийского моря и ощущалось в г. Туркменбаши с I=2-3 балла. Подвижка в его очаге – сброс по плоскости субмеридионального простирания с компонентой правостороннего сдвига, или левостороннего по плоскости юго-западного простирания. Она нетипична для землетрясений данного района. В течение года в очаге этого землетрясения были зарегистрированы еще два ощутимых толчка, для которых также определены механизмы очагов. Это землетрясение (1) с  $K_P$ =10.9, зарегистрированное 19 февраля в 08<sup>h</sup>55<sup>m</sup> и имевшее те же координаты и ощущавшееся в г. Туркменбаши с интенсивностью 3 балла, и землетрясение (11) 8 декабря в 01<sup>h</sup>59<sup>m</sup> с  $K_P$ =10.8, проявившееся в Туркменбаши с интенсивностью I=2-3 балла. Подвижка в очаге первого из них представляла собой правосторонний сдвиг с надвиговой компонентой по широтной плоскости разрыва, или левосторонний сдвиг по меридиональной плоскости. Во втором очаге произошла подвижка противоположного направления: надвиг с компонентой левостороннего сдвига по широтной плоскости разрыва, или правостороннего сдвига по меридиональной.

Эпицентры землетрясений (9, 12), возникших 31 октября в  $19^{h}36^{m}$  с  $K_{P}$ =10.6 и 16 декабря в  $09^{h}20^{m}$  с  $K_{P}$ =9.9, приурочены к тому же Копетдаг-Большебалханскому разлому, что и вышеописанные землетрясения (1, 5, 7, 8, 11) (рис. 3), но расположены северо-западнее, в акватории Каспийского моря. В очагах обоих землетрясений сохраняется субширотная и юго-восточная ориентация плоскостей разрывов, но знак подвижек – противоположный. Если при первом из них произошел сброс с компонентами правостороннего сдвига по широтной плоскости, или с компонентой левостороннего сдвига по широтной плоскости, или с компонентами правостороннего сдвига по при втором – надвиг с компонентой левостороннего сдвига по плоскости, или с компонентами правостороннего сдвига по плоскости юго-восточного простирания.

На территории Эльбурского района (№ 2) в 2006 г. продолжалось снижение уровня выделившейся сейсмической энергии и сейсмической активности, по сравнению с аналогичными параметрами в 2005 г. ( $\Sigma E=0.22\cdot10^{12} \ \mathcal{A}\mathcal{K}$  вместо 6.84 $\cdot10^{12} \ \mathcal{A}\mathcal{K}$  и  $A_{10}=0.042$  вместо 0.075), и не было зарегистрировано ни одного события с  $K_P \ge 11$ . На рис. 3 представлен механизм очага приграничного землетрясения 22 февраля в 23<sup>h</sup>19<sup>m</sup> с K=9.0 (2), определенный с использованием знаков первых вступлений *P*-волн на 10 сейсмических станциях ISC и IrSC [9]. Землетрясение произошло рядом с западной границей района  $\mathbb{N} \ge 2$ , в 100  $\kappa m$  к северо-западу от столицы Ирана г. Тегеран. В очаге преобладал правосторонний сдвиг по широтной плоскости разрыва или левосторонний сдвиг с компонентами взброса по субмеридиональной плоскости.

В Туркмено-Хорасанском районе ( $\mathbb{N}$  3) величина выделившейся сейсмической энергии несколько возросла ( $\Sigma E=5.06\cdot 10^{12} \ \square \mathcal{M} \mathcal{K}$  вместо  $9.92\cdot 10^{12} \ \square \mathcal{M} \mathcal{K}$ ), в то время как сейсмическая активность осталась на прежнем уровне ( $A_{10}=0.081$ ). На рис. 5 показано изменение во времени основных параметров сейсмического режима Туркмено-Хорасанского района – угла наклона графика повторяемости  $\gamma$  и сейсмической активности  $A_{10}$  – за 40 лет наблюдений.



**Рис. 5.** Среднегодовые значения сейсмической активности  $A_{10}(1)$  и наклона графика повторяемости  $\gamma(2)$  в Туркмено-Хорасанском районе в сравнении со средними долговременными значениями (3) этих параметров за весь период

Анализ представленных графиков позволяет заметить, что понижение сейсмической активности предшествовало двум самым сильным землетрясениям района – Моравскому 30.07.1970 г. с *MLH*=6.7 [18] и Боджнурдскому 04.02.1997 г. с *MS*=6.6 [14].

На границе Эльбурского и Туркмено-Хорасанского районов 11 ноября в  $17^{h}03^{m}$  произошло землетрясение (10) с  $K_{P}$ =10.9. Обе возможные плоскости разрыва в его очаге ориентированы субширотно, а подвижка по ним была надвиго-взбросового типа.

Два землетрясения с  $K_P$ ÷11 произошли в 38 км от г. Сердар: 15 марта в 09<sup>h</sup>49<sup>m</sup> и 17 марта в 04<sup>h</sup>18<sup>m</sup>. Оба толчка ощущались с одинаковой интенсивностью: в г. Сердар – 3 балла, в пос. Магтымгулы – 2–3 балла. Механизм очага землетрясения 17 марта удалось определить ([12], 4 на рис. 3): по субвертикальной плоскости разрыва меридионального простирания наблюдался сброс, т.е. опускание восточного крыла разрыва с правосторонним сдвигом; по плоскости запад-юго-западного простирания произошел левосторонний сдвиг с опусканием северного крыла.

Землетрясение (13) с  $K_P$ =11.5 произошло 19 декабря в 08<sup>h</sup>57<sup>m</sup> на территории Северного Ирана. Согласно [12], в его очаге по горизонтальной субширотной плоскости разрыва (*NP1*) произошел сдвиг висячего крыла в северном направлении, а по вертикальной плоскости югозападного простирания (*NP2*) – взброс, т.е. поднятие северо-западного крыла.

Самое сильное ( $K_P$ =12.6) землетрясение (6) района произошло 16 сентября в 10<sup>h</sup>42<sup>m</sup> в очаговой зоне Боджнурдского землетрясения 04.02.1997 г. [14] и ощущалось в пос. Гермап ( $\Delta$ =57 км) с *I*=3–4 балла, в Ашхабаде – 3 балла. Согласно [12] и рис. 3, в его очаге преобладало субмеридиональное растяжение. Подвижки происходили по вертикальной плоскости северозападного простирания или по горизонтальной субширотной плоскости. В первом случае произошел сброс с компонентой левостороннего сдвига, во втором – сброс с компонентой правостороннего сдвига.

В Восточном Туркменистане (район № 4) суммарная сейсмическая энергия уменьшилась от  $\Sigma E=6.8 \cdot 10^{12} \ \square \ \%$  в 2005 г. до  $\Sigma E=1.78 \cdot 10^{12} \ \square \ \%$  (табл. 5) – в 2006 году. Сейсмическая активность увеличилась почти в два раза, по сравнению с таковой в 2005 г., также продолжался отмеченный ранее [13] рост угла наклона графика повторяемости.

Самое сильное ( $K_P$ =12.2) землетрясение (1) произошло в этом районе 7 марта в 22<sup>h</sup>50<sup>m</sup>. Его эпицентр, по данным ISC, находился на территории Узбекистана, к северу от пос. Газли. Землетрясение ощущалось в г. Туркменабат с интенсивностью 2–3 балла. По данным Гарварда [9], в его очаге произошла подвижка типа надвиг по плоскости северо-восточного или югозападного простирания (рис. 6).



*Рис. 6.* Стереограмма механизма очага землетрясения 7 марта в 22<sup>h</sup>50<sup>m</sup> с *K*<sub>P</sub>=12.2 [8], *Мw*=4.8 [9] в районе Газли по данным HRVD в проекции нижней полусферы

1 – гипоцентр; 2, 3 – оси главных напряжений растяжения и сжатия соответственно; 4 – нодальные линии; зачернена область волн сжатия.

Два землетрясения с  $K_P=10$  были зарегистрированы 7 февраля в  $15^h21^m$  и 11 ноября в  $17^h27^m$  на границе между Узбекистаном и Туркменистаном.

В Гаурдак-Кугитангской и Каршинской очаговых зонах происходили слабые землетрясения с *К*<sub>Р</sub>≤9.

Землетрясение с *K*<sub>P</sub>=11.1 зарегистрировано 22 апреля в 16<sup>h</sup>04<sup>m</sup> на территории Северного Афганистана.

В целом по Копетдагскому региону в 2006 г. отмечена умеренная сейсмичность в известных очаговых зонах.

## Литература

- 1. Петрова Н.В., Абасеев С.С. Методика и программа расчета дальности регистрации сейсмических станций на территории Туркменистана // Материалы Международной конференции «Наука, техника и инновационные технологии в эпоху великого возрождения». Ашхабад: ЫЛЫМ, 2011. С. 70–72.
- 2. Аранович З.И., Ахалбедашвили А.М., Гоцадзе О.Д., Деканосидзе Ц.А. Методика расчета эффективности сети сейсмических станций на примере Кавказа // Вопросы оптимизации и автоматизации сейсмологических наблюдений. Тбилиси: Мецниереба, 1977. С. 27–55.
- 3. Аранович З.И., Артиков Т.У. Расчет эффективности сети региональных сейсмических станций Средней Азии // Методика и результаты оценки эффективности региональных систем сейсмических наблюдений. Тбилиси: Мецниереба, 1980. С. 78–96.
- 4. Рахимов А.Р., Славина Л.Б. Региональный годограф Копетдагской сейсмической зоны // Изв. АН ТССР. – Сер. ФТХиГН. – 1984. – № 3. – С. 31–38.

- 5. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Труды ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 6. Рахимов А.Р., Соловьёва О.Н., Арбузова Г.Н. Определение магнитуды землетрясений Туркмении на эпицентральных расстояниях до 400 км // Изв. АН ТССР. Сер. ФТХиГН. 1983. № 5. С. 61–65.
- 7. Голинский Г.Л. Уравнения макросейсмического поля землетрясений Туркмении // Изв. АН ТССР. Сер. ФТХиГН. 1977. № 1. С. 69–74.
- 8. Сарыева Г.Ч. (отв. сост.), Тачов Б., Халлаева А.Т., Клочков А.В., Дурасова И.А., Клычева Э.Р., Эсенова А., Петрова Н.В., Мустафаев Н.С. Каталог землетрясений Копетдага за 2006 г. (*N*=177). (См. Приложение к наст. сб. на CD).
- Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008. [Электронный ресурс]. http://www.isc.ac.uk/search/index.html/2006.
- Петрова Н.В. Соотношения между оценками величины землетрясений Копетдага по данным различных сейсмологических центров // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 409–417.
- Петрова Н.В. Магнитуды в международной сейсмологической практике и их связь с энергетическим классом по сети сейсмических станций Туркменистана // Материалы Международной конференции «Наука, техника и инновационные технологии в эпоху великого возрождения». – Ашхабад: ЫЛЫМ, 2010. – С. 83–86.
- 12. Безменова Л.В., Петрова Н.В., Петров В.А. (отв. сост.). Каталог механизмов очагов землетрясений Копетдага за 2006 г. (*N*=13). (См. Приложение к наст. сб. на CD).
- 13. **Петрова Н.В., Безменова Л.В., Сарыева Г.Ч., Чарыев М.М.** Копетдаг // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 112–127.
- 14. Гаипов Б.Н., Голинский Г.Л., Петрова Н.В., Ильясов Б., Мурадов Ч.М., Рахимов А.Р., Безменова Л.В., Гарагозов Д., Ходжаев А., Баймурадов К., Рахманова М.С. Боджнурдское землетрясение 4 февраля 1997 г. (*m*<sub>b</sub>=5.9; *MS*=6.6 ) // Землетрясения Северной Евразии в 1997 году. М.: ГС РАН, 2003. С. 199–218.
- 15. Гаипов Б.Н., Петрова Н.В., Голинский Г.Л., Безменова Л.В., Рахимов А.Р. Балханское землетрясение 6 декабря 2000 г. с *MS*=7.3, *I*<sub>0</sub>=8–9 (Копетдаг) // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 306–320.
- 16. Гаипов Б.Н., Петрова Н.В. Особенности сейсмического режима и сильные землетрясения Копетдага в период 1992–2001 гг. // Материалы Международной конференции «Сейсмичность Северной Евразии». – Обнинск: ГС РАН, 2008. – С. 41–46.
- Расцветаев Л.М. О роли горизонтальных напряжений в формировании новейшей структуры Копетдага // Новейшие тектонические движения и структура альпийского геосинклинального пояса Юго-Запада Евразии. – Баку: Элм, 1970. – С. 138–144.
- 18. Голинский Г.Л. (отв. сост.), Голинский Г.Л., Кондорская Н.В., Рахимов А.Р., Рустанович Д.Н., Шебалин Н.В. (сост.) при участии Непесова Р.Д., Смирновой В.А. II в. Западная Туркмения [2000 до н.э. – 1974 гг., M≥4.5, I₀≥6] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 171–197.