Беларусь

А.Г. Аронов, Р.Р. Сероглазов, Т.И. Аронова, О.Н. Ацута, В.А. Аронов

Центр геофизического мониторинга Национальной академии наук Беларуси, г. Минск, centr@cgm.org.by

Сейсмологические наблюдения на территории Беларуси в 2006 г. проводились на станциях «Минск» (MIK), «Нарочь» (NAR), «Солигорск» (SOL) (рис. 1), расположение которых осталось прежним [1]. Новая станция «Полоцк» (PLTS) была открыта 6 октября 2006 г., в 216 км к северо-востоку от г. Минска, в д. Кополь Полоцкого района. Станция расположена на северном борту Полоцкого суперрегионального разлома доплатформенного заложения, который входит в Полоцко-Курземский пояс разломов субширотного простирания [2]. Район расположен в зоне сочленения структур платформенного чехла: Вилейского погребенного выступа, Латвийской седловины, Велижской седловины и Оршанской впадины [3]. Наблюдения проводятся цифровой сейсмической станцией SDAS, оборудованной комплектом короткопериодных сейсмометров СМ-3-КВ. Параметры сейсмических станций по состоянию на 2006 г. приведены в табл. 1, 2.

Таблица 1. Сейсмические станции Беларуси (в хронологии их открытия), работавшие в 2006 г., и их параметры

№	Станция		Да	Координаты			Аппаратура					
	Название	Код	открытия	закрытия	φ°, Ν	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,	
							м	прибора	нента		с	
1	Минск	MIK	03.01.1963		54.50	27.88	196	ССМ-СКМ	Ν	13800	0.87-1.48	
	(Плещеницы)								Е	13450	1.06-1.66	
									Z	22740	1.09-1.53	
								ССМ-СКД	Ν	450	1.64-15.7	
									Е	450	1.69–14.3	
									Z	550	1.27-22.7	
			05.06.2002							SDAS		
2	Нарочь	NAR	17.08.1979	30.09.1989	54.92	26.73	167					
			01.10.1989		54.90	26.78	189	ССМ-СКМ	Ν	10200	0.68-0.91	
									Е	9350	0.81-1.11	
									Ζ	11400	0.78-1.01	
								ССМ-СКД	Ν	970	1.00-14.8	
									Е	490	1.18-17.3	
									Z	570	1.26-13.4	
								ССМ-СД	Ν	60	3.91-31.2	
									Е	50	2.06-33.2	
									Z	90	3.01-46.9	
								ССМ-КПЧ	Ν	60	3.62-27.1	
									Е	60	4.20-28.0	
									Z	80	3.05-32.5	
			01.01.1998							CSD-20)	
			28.11.2002							SDAS		
3	Солигорск	SOL	01.01.1983		52.75	27.78	-436					
			00.01.1998		52.84	27.47	-436	ССМ-СКМ	Ν	32510	0.37-0.9	
									Е	8100	0.33-0.7	
									Z	25190	0.46-1.0	
4	Полоцк	PLTS	06.10.2006		55.66	28.96	187		SDAS			

Название станции	Название Тип АЦП станции и сейсмометра		Частотный диапазон, Гц	Частота опроса данных, Гц	Эффективная разрядность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>)
Нарочь	CSD-20+SL-210	BH(N,E,Z)v	0.01-10	20	22	$5.8 \cdot 10^8$
	CSD-20+SL-220	LH(N,E,Z)v	0.01-10	1	22	$5.8 \cdot 10^8$
	SDAS+CM-3-OC	BH(N,E,Z)v	0.02-10	20	16	$1.3 \cdot 10^5$
		LH(N,E,Z)v	0.02-10	20	16	$1.3 \cdot 10^4$
Минск	SDAS+CM-3-OC	BH(N,E,Z)v	0.02-10	20	16	$1.3 \cdot 10^5$
		LH(N,E,Z)v	0.02-10	20	16	$1.3 \cdot 10^4$
Полоцк	SDAS+CM-3-KB	BH(N,E,Z)v	0.1-10	100	16	$1.3 \cdot 10^5$

Таблица 2. Данные об аппаратуре цифровых станций в 2006 г.

В течение 2006 г. сейсмичность на территории Беларуси проявилась, как и ранее [1], в южной ее части, в Солигорском горно-промышленном районе, а одно событие зарегистрировано севернее его. Методика определения основных параметров регистрируемых толчков, по сравнению с таковой в [1], не изменилась. Локализация местных сейсмических событий производилась по данным станций «Солигорск» и «Полоцк». Эпицентральные расстояния определялись по разнице времен (t_{S} - t_{P}) вступлений *S*- и *P*-волн с использованием регионального годографа [4]. Расчеты по определению азимутов на эпицентры проводились на основе полярности первых вступлений [5]. Для определения энергетического класса K_P сейсмических событий использовалась номограмма Т.Г. Раутиан [6], а их магнитуды получены пересчетом из энергетических классов K_P по формуле Т.Г. Раутиан [7]:

$$K_{\rm P} = 4 + 1.8 M.$$

Общее число зарегистрированных событий составило N=54 [8], из них наименьшее имеет $K_{\rm P}=4.9$, наибольшее – $K_{\rm P}=8.0$ для толчков, зарегистрированных 5 июня в $05^{\rm h}44^{\rm m}$ и 4 апреля в $22^{\rm h}14^{\rm m}$ соответственно. Карта эпицентров всех событий показана на рис. 1.

Рис. 1. Сеть сейсмических станций Беларуси и область эпицентров сейсмических событий за 2006 г. 1 – энергетический класс *К*_P; 2 – сейсмическая станция; 3 – город; 4 – г. Минск; 5 – государственная граница.

Распределение числа сейсмических событий по энергетическим классам и суммарной выделившейся сейсмической энергии по месяцам представлено в табл. 3.

Месяц	Кр		N_{Σ}	ΣE ,	Месяц	Kp				N_{Σ}	ΣE ,		
	5	6	7	8		10 ⁹ Дж		5	6	7	8		10 ⁹ Дж
Ι	1	2	1		4	0.0092	VIII		3			3	0.0041
II	2	3	2		7	0.0195	IX	1	3		1	5	0.0436
III	2	3	2		7	0.0301	Х	1		2		3	0.0079
IV	1	1	3	1	5	0.1355	XI		2	1		3	0.0227
V					2	0.0021	XII		2	2		4	0.0563
VI VII	5	3	1	1	8	0.0047 0.0657	Всего	13	24	14	3	54	0.4015

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2006 г.

Рассматривая ход сейсмического процесса в течение года, можно отметить, что максимумы высвобождения сейсмической энергии приходятся на апрель, июль и декабрь (диапазон энергетических классов K_P =6–8), а максимумы числа событий N – на февраль-март и июнь. Минимальные значения выделившейся энергии приходятся на май-июнь и август, а для числа событий – май (рис. 2).

Рис. 2. Распределение числа сейсмических событий (а) и выделившейся энергии (б) за 2006 г.

Сопоставление данных 2006 г. с долговременными средними оценками N и ΣE за период 1983–2005 гг. (табл. 4) показало, что уровень выделившейся в 2006 г. сейсмической энергии ниже такового в 2005 г. в 3.5 раза и в 7.7 раза ниже среднего его значения за 23 года ($\Sigma E=3.07 \cdot 10^9$, $Д \mathscr{R}$). Число событий 2006 г. больше в 1.6 раза, чем 2005 г., и в 1.2 раза больше его среднего долговременного значения ($\Sigma N=46.7$). В целом по региону продолжился спад сейсмической активности, наметившийся с 2000 г. (рис. 3).

Рис. 3. Распределение числа сейсмических событий (а) и суммарной выделившейся энергии (б) по годам (1983 по 2006 г.)

Год			N_{Σ}	ΣE ,				
	4	5	6	7	8	9	-	10 ⁹ Дж
1983			8	4	10	1	23	2.2
1984		2	10	21	12		45	2.5
1985			1	9	12	1	23	5.0
1986			3	13	29		45	5.3
1987			5	10	5		20	1.0
1988		7	8	9	2		26	0.5
1989		2	1	2	7		12	1.6
1990		2	17	25	45		89	7.7
1991			6	11	13		30	3.0
1992		1	2	10			13	1.7
1993			2	10	20		32	4.8
1994		1	4	15	16		36	2.7
1995		1	6	12	25		44	4.2
1996		1	4	23	46		74	8.2
1997		17	22	31	14		84	2.6
1998		14	22	25	26		87	3.7
1999			15	25	39		79	7.3
2000			5	11	9		25	1.7
2001		6	22	20	2		50	0.6
2002	2	13	37	32	6		90	1.1
2003		8	16	26	8		58	1.1
2004		22	16	14	4		56	0.8
2005	3	9	14	5	1	1	33	1.4
Среднее за 23 года	0.22	4.61	10.7	15.78	15.26	0.13	46.7	3.07
2006		13	24	14	3		54	0.4

Таблица 4. Годовые значения числа событий разных энергетических классов *К*_Р и их суммарной сейсмической энергии на территории Беларуси за 1983–2005 и 2006 гг.

В реальном времени все 54 события за 2006 г. изображены условными масштабными прямыми по временной оси на рис. 4, на котором видны периоды затишья с третьей декады апреля по вторую мая, со второй декады сентября по первую октября, с середины и до конца декабря. Период активности наблюдался в феврале–апреле.

Распределение всех сейсмических событий за 2006 г. по часовым интервалам за сутки показано на рис. 5. На графике видны периоды повышения числа событий в ночное время – 21^{h} и 7^{h} , в дневное время – 13^{h} .

Рис. 4. Распределение во времени сейсмических событий разных классов *К*_Р в 2006 г.

Рис. 5. Распределение сейсмических событий по часам суток в 2006 г.

В тектоническом плане основная часть событий, зарегистрированных в 2006 г., приурочена к зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы

[3, 9]. Сопоставление пространственного распределения очагов землетрясений с тектонической характеристикой региона показывает, что большинство разломов здесь активны в сейсмическом отношении [10–12]: сейсмические события группируются вдоль разломов различного направления или их звеньев, а также сконцентрированы в зонах их пресечения (рис. 6).

Рис. 6. Карта проявления сейсмотектонических процессов в Припятском прогибе за 2006 г.

1 – энергетический класс K_P ; 2 – населенный пункт; 3 – реки; 4–6 – разломы, проникающие в чехол (4 – суперрегиональные, ограничивающие крупнейшие надпорядковые структуры; 5 – региональные ограничивающие крупные I, II порядка структуры; 6 – локальные); 7–9 – разломы, не проникающие в чехол (7 – суперрегиональные, разграничивающие крупнейшие области разного возраста переработки; 8 – региональные, разграничивающие крупные области разного возраста переработки; 8 – региональные, разграничивающие крупные области разного возраста переработки; 9 – локальные); 10 – разломы (цифры в кружках: 1 – Северо-Припятский, 2 – Налибокский, 3 – Ляховичский, 4 – Речицкий, 5 – Червонослободско-Малодушинский, 6 – Копаткевичский, 7 – Шестовичский, 8 – Сколодинский, 9 – Выжевско-Минский, 10 – Стоходско-Могилевский, 11 – Кричевский, 12 – Чечерский); 11 – граница шахтных полей Солигорского горно-промышленного района.

Наблюдается приуроченность землетрясений к следующим разломам: субмеридионального простирания – суперрегиональному Стоходско-Могилевскому доплатформенного заложения и субширотного простирания – суперрегиональному Северо-Припятскому; региональным: Ляховичскому, Речицкому, Червонослободско-Малодушенскому, Копаткевичскому. Отдельные землетрясения попадают в зоны пересечения субмеридиональных и субширотных разломов.

Литература

- 1. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И. Беларусь // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 245–250.
- 2. Разломы земной коры Беларуси. Минск: Красико-Принт, 2007. 372 с.
- 3. Геология Беларуси. Минск: ИГН НАН Беларуси, 2001. 815 с.
- 4. Аронов А.Г. Региональные годографы сейсмических волн запада Восточно-Европейской платформы // Сейсмологический бюллетень. – Минск: ОКЖИОП, 1996. – С. 136–149.
- 5. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 6. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.

- 7. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности (Тр. ИФЗ АН СССР, № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 8. Аронова Т.И (отв. сост.), Ацута О.Н., Аронов В.А. Каталог землетрясений Беларуси за 2006 г. (*N*=54). (См. Приложение к наст. сб. на CD).
- 9. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И. Сейсмичность территории Беларуси // Землетрясения и микросейсмичность в задачах современной геодинамики Восточно-Европейской платформы. Кн. 1. – Петрозаводск: Карельский научный центр РАН, 2007. – С. 357–364.
- 10. Аронова Т.И. Особенности проявления сейсмотектонических процессов на территории Беларуси // Літасфера. – 2006. – № 2 (25). – С. 103–110.
- 11. Аронов А.Г., Аронова Т.И. Сейсмическая активность разломов // Разломы земной коры Беларуси. Минск: Красико-Принт, 2007. С. 331–340.
- 12. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И., Колковский В.М., Кулич О.Н. Сейсмичность Беларуси // Природные ресурсы. – 2009. – № 2. – С. 90–97.