<u> V. МЕТОДИЧЕСКИЕ ВОПРОСЫ</u>

УДК.550.348.(477.75)

СРАВНЕНИЕ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ КРЫМА ПО ДАННЫМ ЦИФРОВЫХ И АНАЛОГОВЫХ ЗАПИСЕЙ Б.Г. Пустовитенко, И.В. Калинюк, Е.А. Мержей, А.А. Пустовитенко

Отдел сейсмологии Института геофизики НАНУ, г. Симферополь, bella@seismoexpert.crimea.ua

Оценка динамических параметров очагов землетрясений является одной из главных составляющих в комплексе изучения физических процессов в очаговых зонах, в построении геодинамических моделей регионов, в моделировании сильных сейсмических воздействий и в других научных и прикладных задачах. От достоверности экспериментальных оценок очаговых параметров в широком энергетическом и временном диапазонах зависит корректность научнопрактических построений и выводов.

В Крыму с середины 70-х гг. ведется массовое определение динамических параметров очагов слабых и умеренных местных землетрясений с применением экспресс-метода расчета спектров [1] по записям аналоговых региональных сейсмических станций. К настоящему времени база данных по спектральным и динамическим параметрам очагов содержит сведения для 524 землетрясений Крыма в диапазоне энергетических классов K_{Π} =5.5–13.3 за длительный период (1955–2006 гг.) практически по всем представительным сейсмическим событиям, восстановленным по аналоговым записям (с гальванометрической регистрацией). С использованием материалов этой базы получены корреляционные соотношения между значениями спектральных и динамических параметров очагов и энергетическим уровнем землетрясений; изучены пространственно-временные свойства очагов; унифицированы каталоги землетрясений по моментной магнитуде Mw, рассчитанной по экспериментальному сейсмическому моменту [1–3]. Полученная региональная зависимость сейсмического момента M_0 и размера разрыва r_0 от энергетического уровня (K_{Π} , Mw, MLH) землетрясений используется при расчете синтезированных акселерограмм прогнозных сильных местных землетрясений [4].

В настоящее время все сейсмические станции Крыма перешли на цифровой способ записи сейсмических колебаний почвы. Соответственно, была прекращена оцифровка записей по «характерным» точкам и расчет спектров экспресс-методом [1] с использованием аналоговых записей.

Впервые цифровые сертифицированные сейсмоприемники SDAS [5] были установлены в Крыму в 2000 г. на стационарных сейсмических станциях «Симферополь» (SIM) и «Ялта» (YAL) параллельно со стандартными приборами с гальванометрической регистрацией. На этих цифровых станциях запись землетрясений реализуется группами каналов: короткопериодным (EH) и длиннопериодным (BH), которые регистрируют сейсмический сигнал, пропорциональный скорости колебания почвы, в рабочем диапазоне от 0.1 до 20 Г μ (EH) и от 0.01 до 4 Г μ (BH), с частотой опроса 100 и 20 Г μ соответственно.

В период с 2006 по 2007 г. другие станции Крыма также перешли на цифровой способ регистрации сейсмических колебаний короткопериодной аппаратурой MSP-Ш, изготовленной на базе микропроцессорного модуля MSH430F149 в Симферополе, в отделе сейсмологии ИГ НАН Украины [6]. Для проведения методических работ и корректировки параметров станций MSP-Ш параллельно с цифровой продолжалась аналоговая регистрация на станциях «Симферополь» (SIM) и «Алушта» (ALU) до 2008 г. В 2009 г. аналоговая регистрация прекращена на всех сейсмических станциях Крымской сети.

На рис. 1 для сравнения приведены относительные амплитудно-частотные характеристики (АЧХ) сейсмических каналов с цифровой (SDAS, канал EH(N)-SIM) и гальванометрической (прибор CX, составляющая N) регистрацией по сейсмической станции «Симферополь» (Смф). Обе характеристики нормированы на максимальное значение. С целью выделения рабочего диапазона частот с минимальным влиянием прибора каждая АЧХ представлена в своей размерности: для сейсмографа CX с аналоговым способом регистрации АЧХ дана по смещению, для ЦСС – по скорости.

Рис. 1. Амплитудно-частотные характеристики сейсмических каналов с цифровой (SIM) и гальванометрической (СМФ) регистрацией по сейсмической станции «Симферополь»

Цифровые и аналоговые станции имеют разные полосы регистрации частот, в частности, у цифровых – более широкополосная частотная характеристика (рис. 1).

Цифровой способ регистрации сейсмических колебаний отличается от аналогового также тем, что аналоговые станции записывают колебания, пропорциональные смещению почвы, а цифровые – скорости. Кроме того, цифровые станции обладают высокой разрешающей способностью дискретизации сейсмической записи. Вместе с тем, при обработке и интерпретации цифровых записей для четкого выделения сейсмических волн используются различные полосовые фильтры, от корректности выбора которых часто зависит пра-

вильность (чистота) результатов. В связи с этим актуально и необходимо провести сравнительный анализ спектральных особенностей записей по разным типам аппаратуры, идентичности восстановления по ним динамических параметров очагов и преемственности полученных ранее результатов и долговременных зависимостей по аналоговым записям [1].

Исходными данными для сравнительного анализа послужили 26 записей шести наиболее сильных ощутимых землетрясений (1–6) юга Украины (табл. 1), полученные параллельно цифровыми и аналоговыми станциями. Основные параметры землетрясений даны по результатам обработки в Крыму [7].

N⁰	Дата,	$t_0,$	Эпиг	центр	h,	Ν	K_{Π}		
	д м год	ч мин с	φ°, N	λ°, Ε	КМ	Мс	Mw	MLH	
1	03.04.2001	23 31 01.2	43.06	35.37	20	4.0	4.5	3.9	11.6
2	09.11.2002	02 18 15.1	46.12	37.84	34	5.3	5.5	4.8	13.3
3	15.03.2005	01 31 22.6	44.72	37.14	6	4.2	4.4	4.1	11.7
4	25.12.2007	04 09 34.8	47.99	33.54	10		3.7	3.1	9.7
5	07.05.2008	08 00 21.1	45.34	30.95	11	5.1	4.8	4.2	12.7
6	12.04.2009	16 31 40.2	44.06	34.14	32	4.0	4.3	4.0	11.2

Таблица 1. Основные параметры изученных ощутимых землетрясений за 2001-2009 гг.

Эти землетрясения произошли на расстояниях $\Delta \leq 350 \ \kappa m$ в разных сейсмотектонических условиях: в восточной части Черноморской впадины (1), в районе Нижней Кубани (2), вблизи Кавказского побережья (3), на Украинском кристаллическом щите (4), в западной части шельфа Черного моря (5), у подножья континентального склона Черного моря в центральной части Крымско-Черноморского региона (6). Кроме того, для сравнения привлечены результаты оценки очаговых параметров 12 более слабых (K_{Π} =8.5–11.1) местных толчков Крыма за 2009 г. с по записям только цифровых сейсмических станций [7, 8].

Ранее [9–11] для землетрясений (1–3) (табл. 1) были рассчитаны спектры и оценены динамические параметры очагов только по аналоговым станциям. К настоящему времени дополнительно восстановлены очаговые параметры этих землетрясений также по записям цифровых станций для прямого сопоставления спектров. При этом цифровые волновые формы колебаний скорости с учетом амплитудно-частотных характеристик пересчитаны в функции смещения грунта.

В работе использованы амплитудные спектры записей продольных *P*-волн (компонента *Z*) и поперечных *S*-волн (E, N) на станциях «Судак»-SUD, «Севастополь»-SEV, «Алушта»-ALU, «Симферополь»-SIM, «Ялта»-YAL. Расчет амплитудных спектров с использованием цифровых записей выполнен методом быстрого преобразования Фурье (БПФ). Для аналоговых станций спектры записей получены экспресс-методом, описанным в работе [1].

Спектральные и динамические параметры очагов землетрясений определяются с помощью уравнений связей, установленных между теоретическими моделями источников и основными эмпирическими характеристиками амплитудных спектров объемных волн. Для этого была использована модель Брюна [12]. Методика интерпретации спектров в рамках данной модели и расчета динамических параметров очага по низкочастотному уровню спектра Ω_0 и угловой частоте f_0 описана в [1, 13]. Переход от станционного спектра к очаговому осуществлялся с учетом методических рекомендаций, изложенных в [13].

На рис. 2 приведены примеры амплитудных спектров смещений поперечных *S*-волн землетрясений 03.04.2001 г., 09.11.2002 г. и 25.12.2007 г. (табл. 1). Видно, что полученные спектры по цифровым станциям также надежно аппроксимируются в рамках модели Брюна со спадом уровня спектральной плотности по квадратичному закону.

Рис. 2. Амплитудные спектры по записям аналоговых (а, в, д) и цифровых (б, г, е) приборов для землетрясений 03.04.2001 г. в 23^h31^m с K_{Π} =11.6 (а, б), 09.11.2002 г. в 02^h18^m с K_{Π} =13.3 (в, г), 25.12.2007 г. в 04^h09^m с K_{Π} =9.7 (д, е)

Отметим, что значения Ω_0 и f_0 в пределах погрешностей аппроксимации спектров по аналоговой и цифровой записи близки между собой или полностью совпадают.

Для всех рассмотренных землетрясений (табл. 1) получены решения механизма очага [14–19], что позволило вводить в расчет сейсмического момента вычисленную направленность излучения $R_{\theta\phi}$ (табл. 2).

Дата, д <i>м год</i>	Дата, «Симферополь»- д м год SIM		«Алушта»- ALU		«Севастополь»- SEV		«Ялта»- YAL		«Судак»- SDK	
	Р	S	P	S	Р	S	Р	S	Р	S
03.04.2001	0.036	0.59								
09.11.2002	0.14	0.66								
15.03.2005	0.66	0.45	0.74		0.75		0.77	0.27		
07.12.2007				0.58	0.57	0.67			0.72	0.46
07.05.2008	0.37	0.79					0.27	0.83		
12.04.2009	0.13	0.3	0.2	0.41		0.37			0.36	0.45

Таблица 2. Значения поправок за направленность излучения R₀₀ для P- и S-волн

Значения Ω_0 , найденные по спектрам записей двух горизонтальных составляющих, при расчете очаговых параметров пересчитывались в полный вектор колебаний.

Основные очаговые параметры – сейсмический момент M_0 и радиус круговой дислокации r_0 – вычисляются непосредственно по спектральной плотности Ω_0 и угловой частоте f_0 , поэтому дальнейшее сравнение проведем только по этим динамическим параметрам.

Прежде всего, нужно отметить хорошее внутреннее согласие станционных определений M_0 и r_0 и сходимость результатов при прямом сопоставлении определений по аналоговым и цифровым станциям для землетрясений (1, 2, 4) (табл. 3). Помимо прямого сравнения динамических параметров, восстановленных по параллельным записям двумя видами аппаратуры, проведена проверка соответствия средних значений M_0 и r_0 по цифровым станциям к таковым по долговременным зависимостям $M_0=f(K_n)$ и $r_0=f(K_n)$ вида:

$$lg \ M_0 = 0.645(\pm 0.027) \ \overline{K}_{\Pi} + 15.142(\pm 0.271) \qquad r = 0.99 \ [3]; \tag{1}$$

$$lg \bar{r}_0 = 0.112(\pm 0.011) \bar{K}_{\Pi} - 1.293(\pm 0.107)$$
 $r = 0.93$ [3]. (2)

Как видно из рис. 3, восстановленные по цифровым станциям значения M_0 и r_0 находятся в пределах доверительного интервала долговременных зависимостей этих параметров от энергетического уровня землетрясений [2, 3], установленных по аналоговым записям (рис. 3). При этом значения M_0 рассмотренных наиболее сильных землетрясений (кроме события 09.11.2002 г. в 02^h18 ^m с K_{Π} =13.3) лежат вблизи регрессионной прямой, а значения r_0 – преимущественно в верхней части доверительной области.

Рис. 3. Сравнение динамических параметров изученных очагов землетрясений – сейсмического момента M₀ (а) и радиуса круговой дислокации r₀ (б) – с долговременными зависимостями (прямая линия) исследуемых параметров от энергетического класса K_Π из [3] (пунктиром обозначены пределы погрешностей)

1, 2 – землетрясения за 2009 г. и из табл. 1 соответственно.

Для большинства слабых землетрясений 2009 г. значения отклонений δM_0 относительно зависимости $M_0(K_{\Pi})$ имеют отрицательное значение (рис. 3 а). В то же время значения радиусов

круговой дислокации r_0 за 2009 г. (рис. 3 б) оказались выше долговременной зависимости $r_0(K_{\Pi})$. Наибольшее отклонение δr_0 получено для землетрясения 11 апреля в 05^h18^m [8] с глубиной очага h=45 км на границе кора-мантия, где скорость распространения волн наибольшая. В целом же преобладание завышенных значении r_0 в очагах землетрясений 2009 г. предварительно может быть объяснено использованием более широкополосных цифровых сейсмических каналов, по сравнению с прежними, аналоговыми. Не исключены также и особенности очагов землетрясений за 2009 г., произошедших преимущественно в нижней части земной коры региона [8, 21]. Исследования в этом направлении должны быть продолжены.

Сравнение динамических параметров очагов изученных землетрясений по данным цифровых и аналоговых записей проведено также по разностям магнитуд по сейсмическому моменту Mw, поверхностным волнам MLH и энергетическим классам $\overline{K}_{\Pi,*}$ (ΔMw , ΔMLH , ΔK), оцененным независимо экспериментально и по долговременным корреляционным зависимостям (1–3) с использованием найденных значений M_0 (в табл. 3 вычисленные значения даны в скобках). Для расчетов взяты формулы (1, 2) и (3, 4):

$$lg M_0 = (1.05 \pm 0.023) MLH + (18.572 \pm 0.048)$$
[2]; (3)

$$Mw=2/3 lg M_0 - 10.7$$
, где M_0 измеряется в $\partial H \cdot cM$ [20]. (4)

С использованием среднего сейсмического момента M_0 по формулам (1, 3) получены расчетные значения энергетического класса K_{Π} и магнитуды *MLH* по поверхностным волнам, которые близки к таковым по определениям в центрах обработки ISC и в Крыму. Наименьшие расхождения получены по оценкам *Mw* (табл. 3).

Для землетрясений (5, 6) в графе M_0 даются среднегеометрические значения по группе станций, по которым сделаны прямые и рассчитанные по зависимостям определения энергетических оценок только по цифровым станциям.

№	Дата д <i>м год</i>	Станция	Волна	$M_0,$ $10^{13} H \cdot M$	r ₀ , км	MLH (MLH)	Mw (Mw)	К _П (К)	ΔMLH	$\Delta M w$	ΔΚ
1	04.03.01	Смф	S	486	1.03	3.9	4.4	11.6	0.1	0.1	0.2
		SIM	S	563	1.34	(4.0)	4.5	(11.8)			
2	09.11.02	Смф	S	29377	1.33	4.8	5.6	13.3	0.7	0.1	0.9
		SIM	S	20700	1.57	(5.5)	5.5	(14.2)			
3	23.03.05	SIM	S	950	1.4	4.1	4.6	11.7	0.1	0.2	0.5
		ALU	S	992	1.55	(4.2)	4.4	(12.2)			
4	25.12.07	Алш	S	34.9	0.91	3.1	3.7	9.7	0.2	0	0.2
		AIU	S	39.9	1.04	(2.9)	3.7	(9.9)			
5	07.05.08	SIM,	<i>P</i> , <i>S</i>	1453	1.08	4.2	4.75	12.7	0.2	0.05	0
		YAL			(1.27)	(4.4)	(4.8)	(12.7)			
6	12.04.09	SUD, ALU,	<i>P</i> , <i>S</i>	281	1.16	4.0	4.25	11.2	0.3	0.05	0.1
		SIM, SEV			(0.87)	(3.7)	(4.2)	(11.3)			

Таблица 3. Сравнительные характеристики динамических параметров очагов землетрясений по данным цифровых и аналоговых записей

Примечание. В скобках даны расчетные значения магнитуд и энергетических классов, вычисленные по региональным зависимостям (1–4) с использованием полученных средних M_0 для каждого землетрясения. Коды станций на русском языке соответствуют аналоговым записям, на английском – цифровым.

Первые результаты сравнения динамических параметров очагов землетрясений Крыма, восстановленных по записям аналоговой и цифровой аппаратуры, позволяют сделать предварительное заключение о преемственности ранее полученных [1-3] долговременных статистических закономерностей и зависимостей сейсмического момента от энергии землетрясений. Что же касается полученных завышенных значений r_0 от энергии землетрясений, то этот факт должен быть проверен на более длительном экспериментальном материале для исключения пространственно-временных флуктуаций особенностей очагов. Прямое сопоставление данных по цифровым и аналоговым станциям позволяет предположить, что более высокие значения r_0 по цифровым записям могут быть связаны с более широким частотным диапазоном приборов, по-

зволяющим без искажения определять угловую частоту f_0 . Исследования необходимо продолжить с использованием представительного экспериментального сейсмологического материала по землетрясениям в широком энергетическом и временном диапазонах.

Литература

- 1. **Пустовитенко Б.Г., Пантелеева Т.А.** Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 249 с.
- 2. Пустовитенко Б.Г. Сейсмические процессы в Черноморском регионе и сейсмическая опасность Крыма. Диссертация на соискание ученой степени доктора физ.-мат. наук. Киев, 2003. 387 с.
- 3. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Поречнова Е.И. Пространственные особенности очаговых параметров землетрясений Крыма // Сейсмичность Северной Евразии. Материалы Международной конференции, посвященной 10-летию выпуска сборника научных трудов «Землетрясения Северной Евразии», Обнинск, 28–31 июля 2008 г. Обнинск: ГС РАН, 2008. С. 238–242.
- 4. Пустовитенко Б.Г., Кульчицкий В.Е., Калинюк И.В., Мержей Е.А., Пустовитенко А.А. Методология и методические основы моделирования сейсмических воздействий на высотные здания в Крыму // Будівельні конструкції (збірник науковых праць). – Київ: ДП НДІБК, 2010. – Вип. 73. – С. 31– 323.
- 5. Результаты проведения комплексных сейсмологических и геофизических наблюдений и обработки данных на базе стационарных и мобильных сейсмических сетей (Отчет ЦОМЭ ГС РАН за 1999 год под общей ред. Д.Ю. Мехрюшева). – Обнинск: Фонды ГС РАН, 2000. – 87 с.
- 6. Пустовитенко А.Н., Свидлова В.А., Пасынков Г.Д., Сафонов И.П., Шаторный Б.И. Сейсмичность Крыма в 2006 году // Сейсмологический бюллетень Украины за 2006 год. Симферополь: ИГ НАНУ, КЭС, 2008. С. 6–12.
- 7. Сейсмологический бюллетень Украины за 2001–2009 гг. Симферополь: ИГ НАНУ, КЭС, 2003–2011 гг.
- 8. Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А. Спектральные и динамические параметры очагов землетрясений Крыма 2009 года // Сейсмологический бюллетень Украины за 2009 год. Симферополь: ИГ НАНУ, КЭС, 2011 г. С. 11–23.
- 9. Поречнова Е.И., Сыкчина З.Н. Очаговые параметры землетрясений Крыма // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 287–290.
- Пустовитенко Б.Г., Поречнова Е.И., Сыкчина З.Н. Очаговые параметры землетрясений Крыма // Землетрясения Северной Евразии, 2002 год. – Обнинск: ГС РАН, 2008. – С. 296–299.
- Поречнова Е.И., Сыкчина З.Н. Спектры и динамические параметры очагов землетрясений Крыма за 2005 г. // Сейсмологический бюллетень Украины за 2005 год. – Симферополь: ИГ НАНУ, КЭС, 2007 г. – С. 28–23.
- Brune J.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. – 75, N 26. – P. 4997–5009.
- 13. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. – 1989. – № 2. – С. 66–79.
- 14. **Пустовитенко А.А.** Каталог механизмов очагов землетрясений Крыма за 2001 год (*N*=1). Обнинск: ГС РАН, 2007. (На CD).
- 15. Старовойт О.Е., Габсатарова И.П., Чепкунас Л.С. Землетрясение 9 ноября 2002 года на Нижней Кубани: параметры очага и его механизм // Сейсмологический бюллетень Украины за 2002 год. – Симферополь: ИГ НАНУ, КЭС, 2004. – С. 75–84.
- 16. Пустовитенко А.А. Каталог механизмов очагов землетрясений Крыма за 2005 год (*N*=1) // Землетрясения Северной Евразии в 2005 году. Обнинск: ГС РАН, 2011. (На CD).
- 17. Пустовитенко Б.Г., Кульчицкий В.Е., Пустовитенко А.А., Скляр А.М. Инструментальные и макросейсмические данные о процессах в очаговой зоне Криворожского землетрясения 25 декабря 2007 г. // Геофизический журнал. **32.** № 2. 2010. С. 75–97.

- 18. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Калинюк И.В. Очаговые параметры землетрясения 7 мая 2008 г. в районе о. Змеиный (западная часть шельфа Черного моря) // Сейсмоло-гический бюллетень Украины за 2009 год. Симферополь: ИГ НАНУ, КЭС, 2010. С. 20–27.
- 19. Пустовитенко А.А., Капитанова С.А. Механизм очага землетрясения 12 апреля 2009 г. и параметры разрывов в очаговой зоне // Сейсмологический бюллетень Украины за 2009 год. Симферополь: ИГ НАНУ, КЭС, 2011. С. 35–39.
- 20. Hanks T.S., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. N 135. P. 2348-2350.
- 21. Пустовитенко Б.Г., Поречнова Е.И. Пространственно-временные свойства сейсмического процесса в очаговой зоне ощутимого землетрясения в Крыму 12 апреля 2009 г. // Сейсмологический бюллетень Украины за 2009 год. Симферополь: ИГ НАНУ, КЭС, 2011. С. 24–34.