ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

В 2005 г. на территории Республики Саха (Якутия), как и в 2004 г. [1], функционировала сеть из 17 сейсмических станций Якутского филиала ГС СО РАН. Лишь в декабре 2005 г. в связи с крупным Чаруодинским роем землетрясений [2], возникшим на юге региона, была дополнительно организована регистрация его афтершоков на железнодорожной станции БАМ в пос. Хани (станция № 18). Перечень сейсмических станций и параметры используемой аппаратуры приведены в табл. 1 и 2. Две из перечисленных станций – «Якутск» и «Тикси» – являлись опорными и, как в предыдущие годы, входили в мировую систему наблюдений IRIS (Incorporated Research Institutions for Seismology), объединяющую исследования научных институтов США в области сейсмологии; все другие пункты наблюдений имели статус региональных.

N⁰	Ста	Дата	ŀ	Соординат	Тип АЦП			
	Название	Код		открытия	φ°, N	λ°, Ε	$h_{\rm v}$,	
		межд. рег.			•		м	
1	Тикси	TIXI	Ткс	02.03.1956	71.65	128.87	100	
				13.08.1995				IRIS
2	Якутск	YAK	Як	04.10.1957	62.03	129.68	91	
				01.09.1993				IRIS
				01.09.1999				SDAS
3	Чульман	CLNS	\mathbf{q}_{JH}	05.08.1962	56.84	124.89	747	
				25.03.2000				SDAS
4	Усть-Нера	UNR	Унр	21.11.1962	64.57	143.23	485	
				20.04.2002				PAR-24B
5	Чагда	CGD	$\mathbf{q}_{\Gamma\mathcal{A}}$	04.10.1968	58.75	130.61	195	
				25.07.2004				SDAS
6	Батагай	BTGS	Бтг	12.03.1975	67.65	134.63	127	
				12.12.2002				SDAS
7	Мома	MOMR	Мом	05.03.1983	66.47	143.22	192	
				01.11.2002				PAR-4CH
8	Артык	ATKR	Атк	04.07.1988	64.18	145.13	700	
				25.04.2002				PAR-24B
9	Алдан	ALDR	Алд	01.09.1999	58.61	125.41	658	SDAS
10	Усть-Мая		Усм	01.09.2000	60.42	134.54	170	SDAS
11	Тында	TNDR	Тыд	20.06.2001	55.15	124.72	530	SDAS
12	Витим		Втм	25.06.2003	59.44	112.58	190	SDAS
13	Табага		Тбг	26.06.2003	61.82	129.64	98	Байкал-11
14	Кангалассы		Кнг	07.07.2003	62.21	129.58	100	Байкал-11
15	Депутатский		Деп	01.09.2003	69.39	139.90	320	PAR-4CH
16	Юктали		Юкл	04.07.2004	56.59	121.65	420	SDAS
17	Иенгра		Иен	10.07.2004	56.22	124.86	860	Байкал
18	Хани		Хн	11.12.2005	56.92	119.98	690	Байкал

Таблица 1. Цифровые сейсмические станции Якутии (в хронологии их открытия), работавшие в 2005 г.

Примечание. Двойные даты открытия станций № 1–№ 8 указывают начало регистрации землетрясений аналоговой и цифровой аппаратурой соответственно.

Название станции	ие Тип АЦП и Перечень ии сейсмометра каналов		Частотный диапазон, Гц	Частота Разряд- опроса ность данных, АЦП Ги		Чувствительность, велосиграф –отсчет/(<i>м/c</i>), акселерограф – отсчет/(<i>м/c</i> ²)		
Тикси	IRIS+STS-1	BH(N, E, Z) v	0.0028-5	20	24	$1.00.10^{9}$		
		LH(N, E, Z) v	0.0028-0.25	1	24	$3.98 \cdot 10^9$		
		VH(N. E. Z) v	0.0028-0.025	0.1	24	$1.59 \cdot 10^{10}$		
		VM(N.E.Z)a	0-0.0028	0.01	24	$1.21 \cdot 10^{10}$		
	IRIS+GS-13	EH(N, E, Z) v	1-25	80	24	$4.08 \cdot 10^9$		
		SH(N. E. Z) v	1-10	40	24	$4.08 \cdot 10^9$		
Якутск	IRIS+STS-1	BH(N, E, Z) v	0.0028-5	20	24	$1.00 \cdot 10^9$		
		LH(N, E, Z) v	0.0028-0.25	1	24	$4.00 \cdot 10^9$		
		VH(N, E, Z) v	0.0028-0.025	0.1	24	$1.60 \cdot 10^{10}$		
		VM(N, E, Z) a	0-0.0028	0.01	24	1.0010 $1.20.10^{10}$		
	IRIS+GS-13	EH(N, E, Z) v	1-25	80	24	$2.08 \cdot 10^9$		
		$SH(N \in Z)v$	1-10	40	24	2.0010^{9}		
	SDAS+CM-3-OC	$BH(N \in Z)v$	0.02-6.7	20	16	8 70.10 ⁸		
		$BL(N \in Z)v$	0.02-6.7	20	16	$2.18 \cdot 10^8$		
Чульман	SDAS+CM-3-OC	$BH(N \in Z)v$	0.02-6.7	20	16	$5.29.10^{8}$		
- y vi binan		$BL(N \in Z)v$	0.02-6.7	20	16	$1.32 \cdot 10^{8}$		
Усть-Нера	PAR-24B+CKM-3	$SH(N \in Z) v$	0.8-5.0	30	24	$2.47.10^{10}$		
Чагла	SDAS+CM-3-OC	$BH(N \in Z)v$	0.02-6.7	20	24	$\frac{2.1710}{3.83\cdot10^9}$		
- du		$BL(N \in Z)v$	0.02-6.7	20	24	$1.20 \cdot 10^8$		
Батагай	SDAS+CM-3-OC	$BH(N \in Z)v$	0.02-6.7	20	24	1.2010^{9}		
Dururun		BL(N, E, Z) v	0.02-6.7	20	24	258.10^{8}		
Мома	PAR-4CH+KS-2000	SH(N, E, Z) v	0.01-50	50	24	$9.01 \cdot 10^8$		
Артык	PAR-24B+CM-3-KB	SH(N, E, Z) v	0.8–10	30	24	$4.03 \cdot 10^{10}$		
Аплан	SDAS+CM-3-OC	$BH(N \in Z)v$	0.02-6.7	20	16	$5.32 \cdot 10^8$		
1 101,4411		BL(N, E, Z) v	0.02-6.7	20	16	$1.36 \cdot 10^8$		
Усть-Мая	SDAS+CM-3-OC	BH(N, E, Z) y	0.02-6.7	20	16	5 26.10 ⁸		
• • • • • • • • • • • • • • • • • • • •		BL(N. E. Z) v	0.02-6.7	20	16	$1.32 \cdot 10^{8}$		
Тынла	SDAS+CM-3-OC	BH(N E Z) v	0.02-6.7	20	16	$9.01 \cdot 10^{8}$		
1 2111/24		BL(N, E, Z) v	0.02-6.7	20	16	$2.25 \cdot 10^8$		
Витим	SDAS+CM-3-OC	BH(N, E, Z) y	0.02-6.7	20	24	$7.35 \cdot 10^9$		
		BL(N. E. Z) v	0.02-6.7	20	24	$2.29 \cdot 10^{8}$		
Табага	Байкал-11+СМ-3-КВ	SH(N, E, Z) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$		
Кангалассы	Байкал-11+СМ-3-КВ	SH(N, E, Z) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$		
Лепутатский	PAR-4CH+KS-2000	SH(N, E, Z) v	0.01-50	20	24	$\frac{2.0110}{8.93 \cdot 10^8}$		
Юктали	SDAS+CM3-OC	BH(N, E, Z)v	0.02-6.7	20	24	3 65·10 ⁹		
		BL(N. E. Z) v	0.02-6.7	20	24	$1.14 \cdot 10^8$		
Иенгра	Байкал-11+СМ-3-КВ	SH(N, E, Z) v	0.05-2.0	50	20	$2.86 \cdot 10^9$		
Хани	Байкал-11+СМ-3-КВ	SH(N, E, Z) v	0.5–2.0	100	20	$2.04 \cdot 10^{10}$		

Таблица 2. Данные об аппаратуре цифровых станций в 2005 г.

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

Открытие станции «Хани» позволило в совокупности с данными якутских станций «Юктали», «Тында», «Иенгра», «Чульман» и «Алдан», а также станций «Чара», «Неляты», «Тупик» и «Бодайбо», принадлежащих БФ ГС СО РАН, снизить порог представительности для землетрясений Чаруодинского роя 2005 г. [2] на Олекмо-Чарском нагорье до уровня K_{min} =6. На остальной территории региона энергетический уровень регистрации землетрясений без пропусков соответствовал таковым в 2004 г. [1].

Цифровые записи Якутских землетрясений в пограничной зоне обрабатывались совместно с данными наблюдений отдельных станций и материалами сводной обработки БФ ГС СО РАН (Иркутск) и МФ ГС РАН (Магадан), а также использовался бюллетень землетрясений станции «Кировский» СФ ГС РАН (Южно-Сахалинск). Координаты эпицентров зем-

летрясений рассчитывались на основе компьютерной программы, составленной в отделе геологии и геофизики Университета штата Мичиган (США) (разработчик – К.Д. Маккей) с использованием времен пробега прямых и преломленных *P* и *S*-волн.

По результатам совместной обработки инструментальных данных был составлен каталог землетрясений, включающий сведения о 3087 местных землетрясениях в 2005 г. в Якутском регионе и пограничных районах. Их распределение по районам и энергетическим классам приведено в табл. 3, а география их территориального размещения приведена на карте эпицентров землетрясений (рис. 1). Данные каталога землетрясений сопоставлялись также со сведениями из базы данных землетрясений Геологической службы США (NEIC, National Earthquake Information Centre) [3] и ISC (International Seismological Centre) [4], оттуда же заимствовались определения фокальных механизмов ($Ms \ge 4.5$) землетрясений по методу момента тензора центроида, представленные в [5].

Рис. 1. Карта эпицентров землетрясений Якутии за 2005 г.

Суммарная сейсмическая энергия ΣE , выделившаяся в 2005 г., составила 5.68·10¹⁵ Дж, что на три порядка превышает таковую в 2004 г. (ΣE =6.4·10¹² Дж) [1]. Анализ данных из табл. 3

^{1 –} энергетический класс *K*_P; 2, 3 – сейсмическая станция, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [15], установленный и предполагаемый; 6, 7 – граница района и региона соответственно.

свидетельствует, что самым активным в 2005 г. был Олекминский район, где высвободилось 99.82% всей сейсмической энергии за год. Из остальных сейсмоактивных районов можно выделить лишь два: хр. Черского и Алданское нагорье, на которые приходится 0.06 и 0.01% годовой сейсмической энергии соответственно.

№	Название района	Kp									N_{Σ}	ΣE ,		
		≤6.5	7	8	9	10	11	12	13	14	15	16		Дж
1	Олекминский	815	1122	506	144	54	43	14	2		1	1	2702	$5.67 \cdot 10^{15}$
2	Становой хр.	37	62	26	7	1							133	$3.45 \cdot 10^{10}$
3	Алданское нагорье	10	56	12	9		1						88	$5.58 \cdot 10^{11}$
4	Учурский	1	9	15	5	1							31	$1.40 \cdot 10^{10}$
5	Охотский			1									1	$6.31 \cdot 10^7$
6	Хр.Сетте-Дабан			1	2								3	$3.78 \cdot 10^9$
7	Верхоянский хребет		2	3	1								4	$1.71 \cdot 10^{9}$
8	Яно-Оймяконское нагорье		5	7	3	1							16	$1.91 \cdot 10^{10}$
9	Хр. Черского	23	18	12	13	6		1					73	$3.25 \cdot 10^{12}$
10	Приморская низменность	1											1	$1.00 \cdot 10^{6}$
11	Лаптевский	9	3	2	2		1						17	$1.62 \cdot 10^{11}$
12	Восточная часть	9	3	2									14	$1.40 \cdot 10^8$
	Сибирской платформы													
	Всего	905	1280	587	188	63	45	15	2	1	0	1	3087	$5.68 \cdot 10^{15}$

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по районам за 2005 г.

Основной всплеск сейсмической активности пришелся в 2005 г. на Олекминский район (\mathbb{N} 1), где на северо-восточном окончании хр. Удокан при переходе к Олекмо-Чарскому нагорью произошел крупнейший (N>2.5 тыс. событий) за последние 50 лет Чаруодинский рой землетрясений, включающий в том числе одно событие с K_P =15.7, одно – с K_P =14.8, два – с K_P =13, четырнадцать – с K_P =12 и т.д.

Эпицентры землетрясений названного роя локализованы вблизи предыдущего Олдонгсинского роя [6], возникшего здесь же в 1997 г. и действовавшего затем в течение последующих четырех лет [7–10]. Обе роевые последовательности (Олдонгсинская и Чаруодинская) расположены в переходной области между северо-восточным окончанием Байкальского рифта, структурами Становой складчатой области и Алданского щита Сибирской платформы [11–13]. Современная сейсмичность на западе этой области представлена несколькими высокоактивными эпицентральными полями Байкальского рифта, тяготеющими к Чарской и Верхнетоккинской рифтовым впадинам и их горному обрамлению (хребты Кодар и Удокан). Они имеют субширотное продолжение к востоку в районы Олекмо-Чарского нагорья (Алданский щит) и бассейна среднего течения р. Олёкмы (Становая складчатая система), где трассируется Олекмо-Становая сейсмотектоническая зона в Южной Якутии.

В пределах переходной области развито несколько систем активных разломов: сбросы и сбросо-сдвиги субширотного и северо-восточного простирания на северо-восточном фланге Байкальского рифта, ограничивающие рифтовые впадины; разломы, развитые на западном фланге Олекмо-Становой сейсмотектонической зоны (Токкинский, Ханийский, Имангрский и др.) [14], а также ортогональная к последним система взбросов и взбросо-сдвигов близдолготного и северо-западного простирания (Темулякитский, Чаруодинский, Олекмо-Нюкжинский и др.) [15, 16]. Указанные тектонические нарушения образуют здесь крупный дизъюнктивный узел, к которому и тяготеют проявления Чаруодинского роя. Самым крупным событием в рое явилось 8-балльное Чаруодинское-I землетрясение, которое произошло 10 ноября в $19^{h}29^{m}$ с $K_{P}=15.7$ на глубине $12 \kappa m$ [17]. Непосредственно перед ним было отмечено пять землетрясений с $K_{P}=11-13$, одно из которых с $K_{P}=12.8$ было зафиксировано за две с половиной минуты до возникновения главного сейсмического удара. После него возникла продолжительная (около 1.5 тысяч) серия афтершоков.

Схематические развертки процесса во времени на площадке 0.5°х0.5° по широте и долготе (рис. 2 а, б) достаточно наглядно демонстрируют указанную выше высокую активность роя.

Рис. 2. Развертка во времени параметров ϕ° и λ° землетрясений Олекминского района за 2005 г.

В дальнейшем на фоне затухания его афтершоковой деятельности 11 декабря в $15^{h}54^{m}$ возникло 7-балльное Чаруодинское-II землетрясение с $K_{\rm P}$ =14.8 на глубине 18 км с возможным значением I_0 =7 баллов. Детально Чароудинский рой землетрясений описан в статье наст. сб. [2].

Таким образом, следует отметить, что пространственно-временные характеристики сейсмичности переходной области на территории Олекмо-Чарском нагорья свидетельствуют о присутствии здесь крупного роя землетрясений, в пределах которого отмечено два сильных события, вызвавших в свою очередь длительные серии повторных толчков, т.е. наблюдалось сочетание роевой и афтершоковой деятельности одновременно.

К другим активным участкам Олекминского района относится среднее течение р. Олёкмы вблизи сейсмической станции в пос. Юктали, где зарегистрирована группа из 25 слабых землетрясений с K_P =6–9. Пространственно она тяготеет к эпицентральной области 9-балльного Тас-Юряхского землетрясения 1967 г. с M=7.0 [18].

Вторым по величине выделившейся сейсмической энергии в 2005 г. был район Хребта Черского ($\mathbb{N}_2 9$) на северо-востоке Якутии (табл. 3). Здесь более активным был его северозападный фланг, который занимает кряж Полоусный. Последний протягивается в субширотном направлении в междуречье нижних течений рек Яны и Индигирки и отделяет горные сооружения системы Черского от Приморской низменности. Большая часть его территории располагается в пределах складчатых сооружений мезозоид Верхояно-Колымской области. На тектоническую зональность и структурный план позднемезозойских образований кряжа Полоусный наложены поперечные к нему кайнозойские впадины (Иргичанская, Нэмкучэнская, Ыганньинская и др.), ограниченные молодыми северо-западными взбросами и взбросо-сдвигами с вертикальной амплитудой 100–150 *м*. Эти нарушения частично прослеживаются среди позднетриасово-юрских отложений и смещают более ранние северо-восточные и субширотные тектонические нарушения левосдвиговой кинематики [16]. Впадины разделены хребтами (Иргичанский, Селенняхский, Нэмкучэнский, Нюн-Тас), вытянутыми с юго-востока на северозапад и секущими древний мезозойский план кряжа Полоусный. Именно к северо-западному окончанию одного из них – Селенняхскому хребту и граничащей с ним на юго-западе Нэмкучэнской впадиной и тяготеет очаг ощутимого Селенняхского землетрясения с I_0 =6 баллов, которое произошло 25 января в 22^h21^m с K_P =12.5 и описано в отдельной статье наст. сб. [19].

Юго-восточное окончание системы хр. Черского было более подвижно вблизи группы станций «Мома», «Усть-Нера» и «Артык». Здесь цепочки очагов слабых землетрясений следились вдоль трасс разрывных нарушений Улахан, Чай-Юреинский, Эльгинский и др., относящихся к Индигиро-Колымской системе разломов [15, 16].

Следующим по уровню активности являлся **район Алданского нагорья** (\mathbb{N} 3), где скопление очагов землетрясений имело место в центре нагорья на правобережье р. Тимптон. Самое сильное ($K_{\rm P}$ =11.4) землетрясение произошло здесь 13 февраля в 13^h42^m.

Менее активной была территория Станового хребта (\mathbb{N} 2). Наибольшая плотность главным образом слабых (K_P =6–11) землетрясений наблюдалась на его западном фланге, продолжая «облако» эпицентров Олёкминского района в широтном направлении. В целом уровень сейсмичности в данном районе снижался по мере движения с запада на восток. Как и раньше, большая часть отмеченных здесь событий произошла в зоне влияния субширотного Станового структурного шва [16].

В арктической части территории Якутии повышенный уровень сейсмичности наблюдался в Лаптевском районе (№ 11). При этом одним из оживленных участков была губа Буор-Хая моря Лаптевых вблизи сейсмической станции в пос. Тикси, где выявлено около 10 слабых толчков. В восточной части шельфа моря Лаптевых постоянно активна Лаптевоморская окраинно-континентальная рифтовая система [16], мобильность которой подтверждена землетрясением 15 августа в 21^h24^m с K_P=11.2, отмеченным севернее о. Столбовой.

Из других сейсмоактивных районов следует отметить **Учурский район** (№ 4). Местные события зафиксированы здесь в хр. Лурикан (среднее и верхнее течение р. Учур).

Район **Хребта Сете-Дабан** (\mathbb{N} 6), где господствует Южно-Верхоянская система разломов [20], характеризовался проявлениями двух сейсмических событий 19 февраля в $06^{h}43^{m}$ и 3 декабря в $10^{h}11^{m}$ с K_{P} =9.

Слабо сейсмична в 2005 г. была восточная часть Сибирской платформы (\mathbb{N} 12) в междуречье Алдана и Лены, а также на левобережье р. Лены, где зарегистрированы единичные слабые подземные точки с $K_P \leq 8$. Слабоактивной и асейсмичной в 2005 г. была территория районов Верхоянского хребта (\mathbb{N} 7), Яно-Оймяконского нагорья (\mathbb{N} 8), Приморской низменности (\mathbb{N} 10) и Охотского (\mathbb{N} 5).

В целом пространственная картина распределения сейсмичности в 2005 г. подтверждает приуроченность ее проявлений к ранее выявленным сейсмическим поясам (Арктико-Азиатскому и Байкало-Становому), служащим границами крупных литосферных плит (Евразиатской, Североамериканской и Амурской) на северо-востоке Азиатского континента [16].

Литература

- 1. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 207–215.
- 2. Шибаев С.В., Петров А.Ф., Козьмин Б.М., Имаева Л.П., Мельникова В.И., Радзиминович Н.А., Тимиршин К.В., Петрова В.Е., Гилева Н.А., Персыпкин Д.М. Чаруодинский рой землетрясений 2005 года и его ощутимые землетрясения Чаруодинское-I 10 ноября в 19^h29^m с K_P=15.7, Mw=5.8, I₀=8 и Чаруодинское-II 11 декабря в 15^h54^m с K_P=14.8, Mw=5.7, I₀=7 (Южная Якутия). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 3. Internet: // http://neic.usgs.gov/neis/epic/epic rect.html
- 4. Internet: // http:// www.isc.ac.uk/Bulletin/html
- 5. Мельникова В.И., Радзиминович Н.А., Козьмин Б.М. (отв. сост.) Каталог механизмов очагов землетрясений Якутии за 2005 год (*N*=6). (На CD).

- 6. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 151–155.
- 7. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 173–177.
- 8. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 181–189.
- 9. **Козьмин Б.М.** Якутия // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 187–192.
- 10. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 233–239.
- 11. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 151–155.
- 12. Шибаев С.В., Петров А.Ф., Козьмин Б.М., Имаева Л.П., Мельникова В.И., Радзиминович Н.А., Тимиршин К.В., Петрова В.Е., Гилёва Н.А., Пересыпкин Д.М. Сейсмотектоническая характеристика зоны роевых событий в 1997–2006 гг. на границе Байкальского рифта и Становой складчатой области // Современные методы обработки и интерпретации сейсмологических данных. Материалы 4-ой Международной сейсмологической школы, Листвянка, 10–14 августа 2009 г. – Обнинск: ГС РАН, 2009.– С. 230–235.
- 13. Радзиминович Н.А.. Мельникова В.И.. Козьмин Б.М.. Татомир Н.В. Олдонгсинский рой землетрясений 1997–2002 гг. на северо-восточном фланге Байкальской рифтовой зоны // Материалы Всероссийской конференции с международным участием «Геодинамика и геологические изменения в окружающей среде северных регионов». – Архангельск: ИЭПС АНЦ УрО РАН, 2004. – С. 193–196.
- 14. Сейсмотектоника, глубинное строение и сейсмичность северо-востока Байкальской рифтовой зоны / Отв. ред. В.П. Солоненко. Новосибирск: Наука, 1974. 104 с.
- 15. Разломная тектоника территории Якутской АССР. Якутск: ЯФ СО АН СССР, 1976. 173 с.
- 16. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 17. Козьмин Б.М., Шибаев С.В., Гилёва Н.А. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Хлебников А.В. Каталог землетрясений Якутии за 2005 год (*N*=904). (На CD).
- 18. **Козьмин Б.М.** Сейсмические пояса Якутии и механизм очагов их землетрясений. М.: Наука, 1984. 127 с.
- 19. Козьмин Б.М., Михайлова Р.С. Селенняхское землетрясение 25 января 2005 г. с *К*_P=12.5, *MS*=4.5, *I*₀=6 (Якутия). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 20. Гусев Г.С. Складчатые структуры и разломы Верхояно-Колымской системы мезозоид. М.: Наука, 1979. 207 с.