САХАЛИН

Т.А. Фокина¹, И.П. Кислицына¹, Т.В. Нагорных², Д.А. Сафонов^{1,2}

¹Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, safonov@imgg.ru

Параметры землетрясений региона, включающего территорию о. Сахалин с шельфом и восточную часть Приамурья, определены на основе материалов наблюдений, полученных на четырех стационарных сейсмических станциях Сахалина: «Южно-Сахалинск»-YSS, «Тымовское»-TYV, «Углегорск»-UGL и «Оха»-ОКН (рис. 1). В обработке использовались дополнительно данные сейсмических сетей Приамурья и Приморья [1], Курильских островов [2], бюллетени ГС РАН [3], JMA, ISC [4]. Методы обработки данных [5–13], параметры аппаратуры сейсмических станций (табл. 1), схема деления региона на отдельные сейсмоактивные районы, по сравнению с [14], не изменились. На юге Сахалина работала локальная сеть из девяти полевых станций DAT Японского производства, данные о которых приведены в табл. 2.

N⁰	Ста	анция		Дата	Кос	ординат	ъ	Аппаратура						
	Название	К	юд	открытия	φ°, N	λ°, E	h, м	Тип	Компо-	V _{max} /	$\Delta T_{\rm max}$			
		межд.	регион.	_		<i>,</i>		прибора	нента	чувствит-сть	С			
1	Углегорск	UGL	УГЛ	01.12.1939	49.08	142.05	25	СКМ-3	N. E. Z	10000	0.36-0.65			
							-		N, E, Z	5000	0.36-0.65			
									N, E, Z	2500	0.36-0.65			
								СКД	N, E, Z	1000	0.20-20.0			
								, ,	N, E, Z	500	0.20-17.0			
									N, E, Z	200	0.20-15.0			
								Вел. С-5-С	N, E, Z	25.0 c	0.045-4.6			
									N, E, Z	1.0 c	0.045-4.6			
								ОСП-2М	N, E, Z	$0.05 c^2$	0.02-1.1			
								СМ	N, E, Z	200	0.36-0.7			
									N, E, Z	5.0	0.36-0.7			
2	Южно-	YSS	ЮСХ	01.03.1957	46.97	142.75	100	СКМ-3	N, E, Z	40000	0.33-0.83			
	Сахалинск								N, Z	20000	0.29-0.83			
									E	20000	0.30-0.83			
									N, Z	10000	0.29-0.83			
									E	10000	0.30-0.83			
								СКД	Ν	1000	0.20-19.0			
									E, Z	1000	0.19–19.0			
									N, E	500	0.16-17.0			
									Z	500	0.17–16.0			
									N	200	0.19–16.0			
									E, Z	200	0.16–15.0			
								СКД-КПЧ	N	100	0.15-15.0			
									E, Z	100	0.17–15.0			
								Вел. С-5-С	N	25.0 c	0.015-4.4			
									E 7	25.3 c	0.015-4.4			
									L N	25.0 c	0.015-4.6			
										1.0	0.015 - 4.6			
								$0 C \Pi 2 M$	E, L NE 7	1.0	0.010-4.0			
								ОСП-2М	N E, Z N, E, Z	1.0 1.0 $0.04 c^2$	0.015-4 0.010-4 0.020-1			

Таблица 1. Сейсмические станции Сахалина (в хронологии их открытия), работавшие в 2005 г., и их параметры

N⁰	Ста	анция		Дата	Кос	ординал	гы		А		
	Название	K	юд	открытия	φ°, N	λ°, E	h, м	Тип	Компо-	V _{max} /	$\Delta T_{\rm max}$,
		межд.	регион.			-		прибора	нента	чувствит-сть	С
								CCP3-M	Ν	$0.00209 c^2$	0.058-11.0
									Е	$0.0021 c^2$	0.054-11.0
									Ζ	$0.00209 c^2$	0.054-11.0
3	Oxa	OKH	OXA	01.12.1958	53.60	142.96	36	СКМ-3	N, E, Z	6000	0.35-0.73
									N, E, Z	3000	0.35-0.73
								СКД	N, E, Z	1000	0.20-20.0
									N, E, Z	500	0.20-18.0
									N, E, Z	200	0.20–16.0
								Вел. С-5-С	N, E, Z	25.0 c	0.046-4.58
									N, E, Z	2.5 c	0.046-4.58
								ОСП-2М	N, E, Z	$0.045 c^2$	0.02-1.7
								C-5-C	N, E, Z	50.0	0.006–2.3
									E, Z	5.0	0.006-2.3
4	Тымовское	TYV	TMC	01.04.1969	50.87	142.67	160	СКМ-3	N, E	50000	0.3–0.7
									N, E	25000	0.3–0.7
									Z	110000	0.3–0.8
									Z	50000	0.3–0.8
								СКД	N, E, Z	1000	0.20–19.7
									N, E, Z	500	0.15-17.0
									N, E, Z	200	0.15-17.0
								Вел. С-5-С	N, E, Z	25.0 c	0.045–4.6
									N, E, Z	1.0 c	0.045–4.6
								ОСП-2М	Ν	$0.04 c^2$	0.03-1.0
									E, Z	$0.04 c^2$	0.03-2.0
								C-5-C	N, E, Z	50.0	2.0-4.8
									N, E, Z	5.0	2.0-4.8

Примечание. Вел. – велосиграф; сейсмографы С-5-С, велосиграфы С-5-С, акселерографы ОСП-2М и ССРЗ-М работают в ждущем режиме регистрации.

1 μ

N⁰	Название станции	Код	К	оординаты		Период		
		станции	φ°, N	λ°, Ε	h,	наблюдений		
					м			
1	Белые скалы	BSK	46°50.3680′	142°19.1050′	50	14.07.2005 - 26.10.2005		
2	Остромысовка	OSM	47°14.7101′	143°00.5879′	30	10.11.2004 - 31.12.2005		
3	Яблочное	YBL	47°09.5006′	142°05.5708′		02.06.2005 - 03.11.2005		
4	Загорское	ZGR	47°18.1766′	142°29.5786′	120	06.12.2004 - 04.12.2005		
5	Ожидаево	OJD	47°01.7163′	142°23.9311′	230	07.12.2004 - 14.12.2005		
6	Калинино	KLN	46°50.8780′	142°00.6260′	20	27.05.2005 - 25.10.2005		
7	маяк «Корсаковский»	KRS	46°36.5794′	142°48.0659′	100	08.12.2004 - 09.12.2005		
8	Лесное	LSN	46°57.4797′	143°01.8682′	30	03.06.2005 - 01.11.2005		
9	Мальково	MLK	46°46.1692′	143°21.2681′	0	08.12.2004 - 09.12.2005		

Описанная сеть сейсмических станций обеспечила регистрацию без пропусков землетрясений разных классов в соответствии с картой K_{\min} на рис. 1. Как видим, на большей части территории региона представительными являются землетрясения с K_{\min} =8, а в его северовосточной части без пропусков могут регистрироваться лишь события с K_{\min} =9. И лишь на довольно небольшом участке северной и северо-западной части региона (районы № 1 и № 7), и на еще меньшем участке в центре Западно-Сахалинского района № 4, находящихся в окружении станций «Тымовское», «Николаевск-на-Амуре», «Оха» и «Южно-Сахалинск», «Углегорск» и «Тымовское», соответственно, представительными являются землетрясения с K_{\min} =7.

Рис. 1. Карта энергетической представительности землетрясений *К*_{min} и сеть сейсмических станций Сахалина в 2005 г.

1 – изолиния *K*_{min}; 2 – сейсмическая станция; 3 – граница и номер района.

В региональный каталог Сахалина за 2005 г. [15] включены параметры 177 землетрясений: 164 – мелкофокусных с *h*≤30 км и 13 – глубокофокусных с *h*≥300 км. Карта их эпицентров приведена на рис. 2. По 14 землетрясениям имеются макросейсмические сведения, для одного землетрясения (9 на рис. 2) определен механизм очага [16].

Рис. 2. Карта эпицентров и механизмов очагов землетрясений Сахалина в 2005 г.

1 – расчетная магнитуда *M*; 2 – глубина *h* гипоцентра, *км*; 3 – диаграмма механизма очага в проекции на нижнюю полусферу, зачернена область сжатия; 4 – сейсмическая станция, 5 – граница и номер района.

На рис. 3 представлено распределение мелкофокусных землетрясений Сахалина по часам суток. Диаграмма, построенная для всех сейсмических событий (рис. 3 а), демонстрирует пик в 4^h, что соответствует 14^h местного времени зимой и 15^h летом, на который пришлось 14 событий (8.5 % общего числа). Их эпицентры находились в Северном (№ 1) и ЗападноСахалинском (\mathbb{N} 4) районах. На диаграмме, построенной для событий с $K_C \ge 6.9$ (рис. 3 б), максимум (8 событий) пришелся на 12^h и 13^h , что соответствует 23^h местного времени зимой и 24^h – летом. Из-за небольшого числа данных вывод о естественном или техногенном происхождении землетрясений сделать пока невозможно. Сбор материалов для исследования проблемы распознавания промышленных взрывов продолжается.

Рис. 3. Распределение числа сейсмических событий Сахалина по часам суток

а – все зарегистрированные сейсмические события с $h \le 30 \ \kappa m \ (N=164)$, б – сейсмические события с $h \le 30 \ \kappa m \ m m \ K_C \ge 6.9 \ (N=110)$.

Коровая сейсмическая активность Сахалина была в 2005 г. довольно высока (табл. 3), хотя мелкофокусных землетрясений зарегистрировано в 1.4 раза меньше среднего значения за период 2001–2004 гг., но суммарная сейсмическая энергия (табл. 4, рис. 4) в 3.6 раза выше среднегодового значения энергии за данный период. Самое сильное (K_C =11.0, MLH=5.5) землетрясение (9 на рис. 2), названное Астохским, произошло 12 июня в 04^h17^m на глубине h=14±4 км на северо-западном шельфе Сахалина возле Пильтун-Астохского месторождения нефти и газа. Оно ощущалось с интенсивностью *I*=4–5 баллов в пос. Пильтун, Чайво, Сабо, Вал (Δ =76 км, 87 км, 88 км, 95 км соответственно) и 3–4 балла в – г. Оха (Δ =115 км).

Таблица 3. Распределение мелкофокусных землетрясений по энергетическому классу *K*_C, а глубокофокусных – по магнитуде *MSH*, и суммарная сейсмическая энергия Σ*E* по районам Сахалина в 2005 г.

	h ≤ 30 км													
N⁰	Районы			k	ί _c			N_{Σ}	ΣΕ,					
		≤6	7	8	9	10	11	_	10 ¹² Дж					
1	Северный	16	27	28	6	4	1	82	4.099					
2	Охотоморский шельф	1	3	6	1		1	12	11.393					
3	Восточно-Сахалинский	1	1	1				3	0.006					
4	Западно-Сахалинский	15 23 11	11	1	1	2	53	1.763						
5	Юго-Восточный		2					2	0.003					
6	Восточная часть Южного Сахалина	3						3	4.10^{-5}					
7	Хабаровский приграничный	1	7	1				9	0.015					
	Всего	37	63	47	8	5	4	164	17.279					
	<i>h</i> ≥320 км													
N⁰	Районы	MSHA					N_{Σ}	ΣE ,						
			4.0			5.0		_	10 ¹² Дж					
5	Юго-Восточный		7			6		13	4.660					

Примечание. Энергия оценивалась по формуле Гуттенберга–Рихтера: lg *E*=11.8+1.5 *MLH* [17], для чего величина всех землетрясений приводилась к магнитуде *MLH* путем пересчета из классов *K*_C для землетрясений с глубиной *h*≤80 км и из магнитуд *MSH* с *h*≥81 км по следующим соотношениям: *MLH*= (*K*_C-1.2)/2; *MLH*=(*MSH*-1.71)/0.75. В случае отсутствия класса *K*_C энергия рассчитывалась по магнитуде, вычисленной по классу *K*_P: (*M*=(*K*_P-4)/1.8) [18].

Таблица 4. Распределение мелкофокусных (*h*≤30 *км*) землетрясений по энергетическому классу *K*_C и суммарная сейсмическая энергия Σ*E* в Сахалинском регионе за 2001–2005 гг.

Год			N_{Σ}	ΣΕ,					
	≤6.5	7	8	9	10	11	12		10 ¹² Дж
2001	57	198	103	21	10	1		390	9.61
2002	32	95	77	15	1			220	1.73
2003	37	67	57	13	4		1	179	4.74
2004	35	60	36	10	3			144	2.89
Всего	161	420	273	59	18	1	1	933	18.97
Среднее	40.25	105	68.2	14.8	4.5	0.25	0.25	233.25	4.74
2005	37	63	47	8	5	4		164	17.28

Рис. 4. Годовые числа *N* и величина Σ*E* высвобожденной в Сахалинском регионе сейсмической энергии поверхностными (а) и глубокими (б) землетрясениями за период 2001–2005 гг.

 $1 - N; 2 - \Sigma E.$

Глубокофокусная сейсмическая активность находилась на среднем уровне: зарегистрировано 13 событий (табл. 5), что на три землетрясения меньше среднего значения за период 2001 – 2004 гг. Суммарная сейсмическая энергия в 33 раза меньше среднего значения за указанный период.

Год		k		N_{Σ}	ΣE ,		
	≤ 4.0	5	6	7	_	10^{12} Дж	
2001	7	7			14	1.09	
2002	11	9	1		21	15.36	
2003	7	7			14	4.08	
2004	8	5		1	14	603.52	
Всего	33	28	1	1	63	624.06	
Среднее	8.25	7.00	0.25	0.25	15.75	156.15	
2005	7	6			13	4.66	

Таблица 5. Распределение глубокофокусных (*h*>300 *км*) землетрясений по магнитуде *MSH* и суммарная сейсмическая энергия Σ*E* в Сахалинском регионе в 2001–2005 гг.

На о. Сахалин зарегистрировано 14 ощутимых землетрясений (табл. 6): восемь из них произошли на севере Сахалина (районы № 1 и № 2), шесть – в Западно-Сахалинском районе (№ 4). Максимальная интенсивность сотрясений с I=5 баллов отмечена при двух землетрясениях, произошедших 8 марта в $23^{h}58^{m}$ ($h=13\pm4$ км, MLH=5.1, $K_{C}=11.4$) на мысе Лазарева ($\Delta=20$ км) и 13 октября в $19^{h}22^{m}$ (h=10 км, MLH=4.3, $K_{C}=10.5$) – на севере Сахалина, в пос. Ныврово ($\Delta=14$ км).

N⁰	Район	Число ощутимых землетрясений	$K_{ m Cmax}$ ($MSH_{ m max}$)	I _{max} , балл
1	Северный	6	11.4	5
2	Охотоморский шельф	2	11.0	4–5
3	Восточно-Сахалинский		7.7	
4	Западно-Сахалинский	6	11.0	4
5	Юго-Восточный		(5.5)	
6	Восточная часть Южного Сахалина		5.1*	
7	Хабаровский приграничный		7.7	
	Всего	14		

Таблица 6. Распределение ощутимых землетрясений по районам Сахалина, максимальная величина класса $K_{\text{Стах}}$ или магнитуды MSH_{max} и максимальная интенсивность сотрясений I_{max}

Примечание. Класс *К_{Стах} пересчитан из К_{Ртах} по формуле: К_С=К_Р-1.7 [12].

Далее описана более подробно сейсмичность Сахалина по районам. В табл. 7 представлено распределение коровых землетрясений, произошедших в регионе в 2001–2005 гг.

Таблица 7.	Ежегодное	число	мелкофокусных	землетрясений	И	суммарная	сейсмическая
	энергия, вы	свобож	денная в их очага	ах в 2001–2005 г	Г. І	з районах №	1–№ 7

Год		Район												
		1		2		3	4		5		6		7	
	N_{Σ}	ΣΕ,												
		10 ¹² Дж												
2001	96	0.51	2	0.17	1	$2 \cdot 10^{-3}$	220	6.52	1	$8 \cdot 10^{-3}$	60	2.39	10	0.01
2002	65	0.38	6	0.06	1	$7 \cdot 10^{-4}$	130	0.92	4	0.06	8	0.15	6	0.15
2003	82	0.86	2	0.10	2	$3 \cdot 10^{-3}$	86	3.74	3	0.03			4	$4 \cdot 10^{-3}$
2004	56	0.37	3	0.01	6	0.01	67	2.48	4	0.01			8	0.01
Всего	299	2.12	13	0.34	10	0.016	503	13.66	12	0.11	67	2.54	28	0.17
Среднее	74.75	0.53	3.25	0.08	2.5	$3.9 \cdot 10^{-3}$	125.75	3.41	3	0.027	17	0.64	9.5	0.04
2005	82	4.10	12	11.39	3	0.01	53	1.76	2	$3 \cdot 10^{-3}$	3	$4 \cdot 10^{-5}$	9	0.015

Рассмотрим сейсмичность каждого района в отдельности.

В Северном районе (№ 1) наблюдалось некоторое повышение сейсмической активности. Здесь зарегистрировано 82 мелкофокусных землетрясения, что несколько выше среднего значения \bar{N}_{Σ} =74.75 за 2001–2004 гг., а суммарная сейсмическая энергия, равная 4·10¹² Дж, максимальна за этот период (табл. 7).

Рис. 5. Распределение по районам числа N и суммарной сейсмической энергии ΣE мелкофокусных землетрясений Сахалина в 2005 г.

Самое сильное ($K_{\rm C}$ =11.4, *MLH*=5.1) землетрясение (3) произошло 8 марта в 23^h58^m на глубине h=13±4 км. Оно ощущалось с интенсивностью *I*=5 баллов на мысе Лазарева (Δ =20 км).

На Охотоморском шельфе (№ 2) зарегистрировано 12 землетрясений, что в 3.7 раза больше среднего значения за период 2001–2004 гг., суммарная сейсмическая энергия (табл. 7) имела самое большое значение за указанный период и превысила среднее значение в 142 раза.

Как описано выше, самым сильным в районе и в регионе оказалось Астохское землетрясение (9). Его очаг характеризуется близгоризонтальным ($PL_T=14^\circ$) напряжением растяжения и крутым ($PL_P=75^\circ$) напряжением сжатия. Ось промежуточного напряжения близгоризонтальна ($PL_N=7^\circ$). Одна из возможных плоскостей разрыва NP1 имела север-северо-восточное простирание ($AZM_1=23^\circ$) и под небольшим углом падала на восток-юго-восток, при этом северо-восточное крыло опустилось и сдвинулось на северо-восток. Вторая возможная плоскость разрыва NP2 имела субмеридиональное простирание ($AZM_2=188^\circ$) и круто падала на запад, при этом западное крыло разрыва опустилось и сдвинулось на северо-восток. Обе возможные плоскости разрыва характеризовались подвижкой типа сброс с незначительными компонентами левостороннего сдвига по NP1 и правостороннего –по NP2 (рис. 6).

Рис. 6. Результаты определения механизма очага землетрясения 12 июня 2005 г. (верхняя полусфера)

1-3 – нодальные линии *P*=0, *SV*=0, *SH*=0 соответственно; 4–5 – знаки первых смещений в *P*-, *SV*-, *SH*-волнах: 4 – наблюденные (пустой кружок соответствует волне, распространяющейся от очага вниз, зачерненный – волне, распространяющейся от очага вверх); 5 – теоретические; 6 – оси *P*, *T*, X, Y, Z; 7, 8 – знаки первых движений в *P*-волне.

В Восточно-Сахалинском районе (№ 3) зарегистрировано всего три землетрясения, что близко к среднему значению за период 2001 – 2004 гг., суммарная сейсмическая энергия незначительно превысила среднее значение за указанный период (табл. 7). Максимальное (*K*_C=7.7) землетрясение реализовалось 22 февраля в 11^h50^m, ощутимых землетрясений не было.

В Западно-Сахалинском районе (№ 4), на территории которого в 2000 г. произошло Углегорско-Айнское землетрясение с *MLH*=7.0 [19], а в 2001 г. – рой землетрясений с *MLH*_{max}=5.2 [20], сейсмическая активность в 2005 г. была невысокая: зарегистрировано 53 коровых землетрясений, что в 2.4 раза меньше среднего значения за 2001–2004 гг., а суммарная сейсмическая энергия меньше в 1.9 раз (табл. 7).

Самое сильное (*MLH*=4.7, $K_{\rm C}$ =11.0) землетрясение (1) в районе произошло 2 марта в 13^h35^m на глубине *h*=13±5 км (1 на рис. 2). Оно ощущалось с интенсивностью сотрясений *I*=3–4 балла в пос. Тымовское, Зональное и Онор на расстояниях Δ =63 км, 21 км и 46 км соответственно.

Всего в районе было зарегистрировано шесть ощутимых землетрясений (табл. 6). Максимальная интенсивность сотрясений *I*=4 балла отмечена в пос. Поречье (Δ =3 км) Углегорского района при землетрясении (10) 3 сентября в 00^h26^m с K_C=10.6, *h*=10 км.

Юго-Восточный район (№ 5) представлен двумя коровыми и 13 глубокофокусными землетрясениями, суммарная сейсмическая энергия первых в 9 раз меньше среднего значения энергии за 2001–2004 гг. (табл. 7).

Глубокофокусные землетрясения зарегистрированы в интервале $h=310-360 \ \kappa m$, их эпицентры локализованы в заливе Анива. Число глубокофокусных землетрясений лишь на единицу меньше среднего значения за 2001–2004 гг., а суммарная сейсмическая энергия меньше в 33 раза (табл. 3, 5). Самое сильное (*MSH*=5.4) глубокофокусное землетрясение произошло 17 июня в 20^h23^m на глубине $h=360\pm18 \ \kappa m$.

В Восточной части Южного Сахалина (\mathbb{N} 6) в 2005 г. сейсмическая активность была незначительна – зарегистрировано три землетрясения на глубине 10 км, два из которых с одинаковым уровнем энергии (K_C =6.8) отмечены 7 октября в 07^h27^m и 20 октября в 03^h22^m [15].

В Хабаровском Приграничном районе (\mathbb{N} 7) зарегистрировано восемь землетрясений с $h=10 \ \kappa m$ с $K_{\rm C}=6.2-7.7$ и одно с $h=10 \ \kappa m$, $K_{\rm C}=7.0$. Максимальное ($K_{\rm C}=7.7$) из них возникло 3 апреля в $03^{\rm h}50^{\rm m}$ [15]. Суммарная сейсмическая энергия в районе близка к ее среднегодовому значению за 2001–2005 гг. (табл. 7).

Литература

- 1. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Фокина Т.А., Дорошкевич Е.Н., Нагорных Т.В., Сафонов Д.А. Курило-Охотский регион. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за 2005 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 2005–2006.
- 4. Bulletin of the International Seismological Centre (for 2005). Berkshire: ISC, 2007.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 6. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI. Проблемы сейсмической опасности Дальневосточного региона. – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 7. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- 9. Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- 10. Волкова Л. Ф., Поплавская Л.Н., Соловьёва О.Н. Шкалы MPVA, MSHA для определения магнитуд близких глубокофокусных землетрясений Дальнего Востока // Сейсмологические наблюдения на Дальнем Востоке СССР Методические работы ЕССН. М.: Наука, 1989. С. 81–85.
- Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 12. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 13. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 14. Фокина Т.А., Поплавская Л.Н., Паршина И.А., Рудик М.И., Коваленко Н.С., Сафонов Д.А. Сахалин // Землетрясения Северной Евразии в 2004 году. – Обнинск: ГС РАН, 2010. – С. 173–179.
- 15. Кислицына И.П. (отв. сост.) Паршина И.А., Малашенко Ю.А. Каталог землетрясений Сахалина за 2005 год (*N*=177). (См. Приложение к наст. сб. на CD).

- 16. Нагорных Т.В. (отв. сост.), Рудик М.И., Паршина И.А. Каталог механизмов очагов землетрясений Сахалина за 2005 год (*N*=1). (См. Приложение к наст. сб. на CD).
- 17. Гутенберг Б., Рихтер Ч. Магнитуда, интенсивность, энергия и ускорение как параметры землетрясений (II) // Слабые землетрясения. М.: ИЛ, 1961. С. 72–119.
- 18. Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; № 32(199)). – М.: Наука, 1964. – С. 88–93.
- 19. Поплавская Л.Н., Нагорных Т.В., Фокина Т.А., Поплавский А.А., Пермикин Ю.Ю., Стрельцов М.И., Ким Чун Ун, Сафонов Д.А., Мельников О.А., Рудик М.И., Оскорбин Л.С. Углегорско-Айнское землетрясение 4 (5) августа 2000 года на Сахалине // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 265–284.
- 20. Поплавская Л.Н., Фокина Т.А., Сафонов Д.А., Нагорных Т.В., Ким Чун Ун, Сен Рак Се, Урбан Н.А. Такойское землетрясение 1 сентября 2001 года с *M*=5.2, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – С. 331–344.