ПРИАМУРЬЕ И ПРИМОРЬЕ

Н.С. Коваленко, Т.А. Фокина, Д.А. Сафонов

Сахалинский филиал Геофизической службы РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

В течение 2005 г. непрерывная регистрация землетрясений на территории Приамурья и Приморья осуществлялась сетью из восьми аналоговых станций: «Николаевск-на-Амуре», «Бомнак», «Кировский», «Ясный», «Зея», «Горный», «Экимчан», «Терней». Параметры их аппаратуры приведены в табл. 1. В сводной обработке также были использованы данные сейсмических сетей Сахалина [1], Курильских островов [2], бюллетени Прибайкалья, Якутии, ГС РАН [3], JMA, NEIC, ISC [4]. Методика обработки данных [5–11], границы региона и сейсмоактивных районов [12], по сравнению с таковыми в 2004 г. [13], не изменились.

Таблица 1. Сейсмические станции Приамурья и Приморья (в хронологии их открытия), работавшие в 2005 г., и их параметры

	Ста	анция		Дата	Кос	ординать	ы		Аг	паратура	
	Название	Ко	д	открытия	φ°, N	λ° , Ε	<i>h</i> ,	Тип	Компо-	V _{max} /	$\Delta T_{\rm max}$
		межд.	рег.	_	1 /	,	м	прибора	нента	чувствит-сть	С
1	Николаевск-	NKL	НКЛ	01.07.1970	53.15	140.68	15	CKM-3	N, E, Z	60000	0.27-0.65
	на-Амуре								N, E, Z	29000	0.28-0.64
									N, E, Z	11500	0.27-0.63
								СКД	N, E, Z	1043	0.2–20
									N, E, Z	500	0.15–17
									N, E, Z	200	0.15–15
								C-5-C	N, E, Z	100	0.016-4.58
								Велосиграф	N, E, Z	27.2 c	0.047–4.58
								C-5-C			
								CCP3-M	Ν	$0.00215 c^2$	0.06-1.0
									E	$0.00201 c^2$	0.06–1.0
									Z	$0.00220 c^2$	0.06–1.0
								ОСП-2М	N, E, Z	$0.04 c^2$	0.02–2.1
2	Бомнак	BMKR	БМН	01.11.1974	54.71	128.85	342	CKM-3	E, Z	281000	0.50-0.66
									E, Z	98940	0.40-0.67
									Ν	67670	0.37–0.67
									Ν	26140	0.35-0.66
								Велосиграф	N, E, Z	27.2 c	0.014-4.6
								C-5-C			
									N, E, Z	2.72 c	0.014-4.6
								OCII-2M	N, Z	$0.03 c^2$	0.02–3.0
									E	$0.03 c^2$	0.02-2.0
								ССРЗ-М	N	$0.00208 c^2$	0.06/-11.0
									E 7	$0.00203 c^{2}$	0.064-11.0
2		VDOC	UDC	01 04 1074	54 422	10(071	455			0.00209 <i>C</i>	0.052-10.9
3	Кировскии	KROS	крс	01.04.1974	54.433	126.9/1	455	CKM-3	N, E, Z	158200	0.45-0.72
								D 1	N, E, Z	67450	0.3/-0.72
								Велосиграф	N, E, Z	27.2 C	0.014-4.6
								C-3-C	NE 7	2.72 ~	0.014 46
									$\mathbf{N}, \mathbf{E}, \mathbf{Z}$	2.72 C	0.014 - 4.0 0.010 2.2
								UC11-21VI	1 N	0.05 C	0.019-3.3

	Ста	анция		Дата	Ко	ординать	Ы		Аг	паратура	
	Название	Ко	Л	открытия	ω° N	λ° E	h.	Тип	Компо-	Vmw/	ΔT_{max}
	1100000000	межд.	рег.	• - · P	ψ , ψ	л, 1	м	прибора	нента	чувствит-сть	C
									Е	$0.03 c^2$	0.019-2.9
									Ζ	$0.03 c^2$	0.019-3.5
4	Ясный	YASR	ЯСН	01.12.1974	53.29	127.98	330	СКМ-3	N, E, Z	160000	0.45-0.67
									N, E, Z	67920	0.37-0.67
5	Зея*	ZEA	ЗЕЯ	01.06.1976	53.76	127.30	273	СКМ-3	Ζ	20700	0.3-0.8
									N, E, Z	10300	0.3-0.7
									N, E	5150	0.3-0.7
								СКД	N, E, Z	1040	0.2–18
									N, E, Z	500	0.2–18
								Велосиграф С-5-С	N, E, Z	27.2 с	0.014-4.6
								0000	N. E. Z	2.72 c	0.014-4.6
									N	$0.05 c^2$	0.02-2.3
								ОСП-2М	E	$0.05 c^2$	0.02-2.1
									Z	$0.05 c^2$	0.02 - 3/4
								P33	– N. E. Z	50.1	0.2–18.0
								СБМ	, _, _	1.1	0.25
6	Горный	GRNR	ГРН	01.12.1978	50.769	136.422	450	СКМ-3	N, E, Z	87360	0.28-0.64
	1								N, E, Z	52940	0.25-0.63
									N, E, Z	26135	0.24-0.61
								Велосиграф	N, E, Z	27.5 с	0.05-4.59
								C-5-C			
									N, E, Z	2.75 c	0.05-4.59
								ОСП-2М	N	$0.04 c^2$	0.02-1.92
									E	$0.04 c^2$	0.02-1.84
									Z	$0.04 c^2$	0.019–2.6
								CCP3-M	Ν	$0.0029 c^2$	0.067–11.0
									E	$0.0029 c^2$	0.066-11.0
									Z	$0.0029 c^2$	0.061-11.0
7	Экимчан	EKMR	ЭКМ	01.12.1979	53.072	132.95	543	CKM-3	N, E, Z	131600	0.37–0.67
									N, E, Z	59025	0.29-0.65
								Велосиграф С-5-С	N, E, Z	27.2 c	0.085–4.6
									N, E, Z	2.72 c	0.014-4.6
								ОСП-2М	N, E	$0.04 c^2$	0.02-1.1
									Z	$0.04 c^2$	0.02-2.0
8	Терней	TEY	TPH	01.02.1982	45.036	136.603	50	СКМ-3	N, E, Z	60700	0.3-0.6
	_								N, E, Z	28900	0.28-0.6
									N, E, Z	11500	0.27-0.6
								СКД	N, E, Z	1043	0.2-20
									N, E, Z	501	0.15-17
									N, E, Z	200	0.15-15
								Велосиграф	N, E, Z	27.2 с	0.045-4.5
								C-5-C			
									N, E, Z	2.72 c	0.045-4.5
								ОСП-2М	N, E, Z	$0.04 c^2$	0.02 - 2.6

Примечание. Знаком * помечена опорная станция; сейсмографы С-5-С и РЗЗ, велосиграфы С-5-С и акселерографы ОСП-2М и ССРЗ-М, а также сейсмометры балльности СБМ работают в ждущем режиме регистрации.

Карта энергетической представительности K_{\min} , рассчитанная с учетом конфигурации сети сейсмических станций, изображена на рис. 1.

Как следует из рис. 1, на значительной территории Приморья и Приамурья представительными являются землетрясения с $K_{\min}=9$, но в южной его части без пропусков могут регистрироваться лишь события с $K_{\min}=11$.

Рис. 1. Карта энергетической представительности землетрясений *K*_{min} Приморья и Приамурья в 2005 г.

1, 2 – сейсмическая станция региональная и ГС РАН соответственно; 3 – изолиния K_{\min} ; 4 – номер района и его граница; 5 – государственная граница.

В рамках научного сотрудничества по проекту «Исследование сейсмотектоники Охотоморской плиты» между сообшеством университетов Японии и ГС РАН на сейсмических станциях «Терней», «Горный» и «Хабаровск» в августе 2005 г. дополнительно были установлены временные цифровые станции на базе регистраторов Datamark LS-7000XT с короткопериодными сейсмометрами L4C-3D и длиннопериодными – STS-2, которые работали в экспериментальном режиме. Данные о них и параметры аппаратуры приведены в табл. 2, 3. В начале декабря цифровая запись была остановлена.

Цифровые станции работали в режиме опытной эксплуатации и их данные в сводной обработке землетрясений по некоторым техническим причинам не участвовали.

В региональный каталог [14] включены основные параметры 627 сейсмических событий, из них 416 коровых землетрясений ($h \le 40 \ \kappa m$), семь – глубокофокусных ($h = 320 - 507 \ \kappa m$), 204 события были отнесены к категории «возможно, взрыв». Карта эпицентров землетрясений дана на рис. 2. Для пяти землетрясений имеются макросейсмические данные. Все ощути-

мые землетрясения произошли в начале года. Максимальная интенсивность сотрясений I=4-5 баллов отмечена при землетрясении (7) с $K_P=12.4$, произошедшем в Турано-Буреинском районе 23 марта в $02^{h}13^{m}$.

№	Ста	анция		Дата	Дата	Координаты			Тип АЦП
	Название	Код		открытия	закрытия	φ°, N	λ°, Ε	<i>h</i> ,	
		межд. рег.						м	
1	Хабаровск	KHBR		10.08.2005	06.12.2005	48.474	135.056	81	Datamark LS-7000XT
2	Горный	GRNR	ГРН	12.08.2005	06.12.2005	50.769	136.422	450	Datamark LS-7000XT
3	Терней	TEY TPH		30.09.2005	29.11.2005	45.036	136.603	50	Datamark LS-7000XT

Таблица 2. Временные цифровые сейсмические станции Приморья и Приамурья в 2005 г.

Название станции	Код	Тип сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Эффективная разрядность АЦП	Чувствительность, велосиграф – отсчет/(<i>м</i> / <i>c</i>)
Хабаровск	KHBR	L4C-3D	LH (N, E, Z) v	1.0-20	100	24	$2.57 \cdot 10^7$
		STS-2	$BH\left(N,E,Z\right)v$	0.00833-50	100	24	$1.96 \cdot 10^8$
Горный	GRNR	L4C-3D	LH (N, E, Z) v	1.0-20	100	24	$2.57 \cdot 10^7$
		STS-2	BH(N, E, Z) v	0.00833-250	100	24	$1.96 \cdot 10^8$
Терней	TEY	L4C-3D	LH (N, E, Z) v	1.0-20	100	24	$2.57 \cdot 10^7$
		STS-2	BH(N, E, Z) v	0.00833-250	100	24	$1.96 \cdot 10^8$

Таблиц 3. Данные об аппаратуре цифровых станций

Рис. 2. Карта эпицентров землетрясений Приамурья и Приморья в 2005 г.

1 – энергетический класс K_P ; 2 – магнитуда *MPVA*; 3 – глубина *h* гипоцентра, *км*; 4, 5 – сейсмическая станция региональная и ГС РАН соответственно; 6 – номер и граница условного района; 7 – диаграмма механизма очага, нижняя полусфера, зачернена область волн сжатия; 8 – район промышленных взрывов; 9 – государственная граница.

Наибольшее число (N=56) землетрясений зарегистрировано в апреле, наименьшее (N=20) – в июне (рис. 3). Самое сильное ($K_P=12.5$) коровое землетрясение (2) произошло в Приграничном районе 2 января в $12^{h}22^{m}$ на глубине $h=23 \ \kappa m$. Вторым значительным событием 2005 г. явилось глубокое ($h=351 \ \kappa m$) землетрясение (8) с Mw=5.0, произошедшее 14 апреля в $09^{h}56^{m}$ в Сихотэ-Алиньском районе. Для него определен механизм очага (рис. 1, [15]).

В течение 2005 г. продолжалась работа по распознаванию записей промышленных взрывов, методика которой подробно описана в [16]. Местоположение основных площадок проведе-

ния взрывных работ (рис. 2), по сравнению с таковым в 2004 г. [13], не изменилось. Как указано выше, суммарное число взрывов 204, их энергетический диапазон соответствует K_P =5.4–9.5. Наибольшее их число (N=36) отмечено в марте, наименьшее (N=10) – в июле (рис. 3). Суммарная сейсмическая энергия всех событий в каталоге [14] с индексом «возможно, взрыв» равна $\Sigma E_{\rm взp}$ =0.02·10¹² Дж, что менее 1% годовой суммарной сейсмической энергии коровых землетрясений. Детальный анализ параметров взрывов, производимых на территории Приморья и Приамурья, был проведен в работе [17].

Рис. 3. Распределение ежемесячных чисел взрывов, землетрясений и всех сейсмических событий Приморья и Приамурья в совокупности за 2005 г.

Сейсмичность в регионе сосредоточена главным образом в земной коре ($h \le 40 \ \kappa m$) и только в Сихотэ-Алиньском и Приграничном районах наблюдаются единичные землетрясения на глубине $h \ge 300 \ \kappa m$, обусловленные движением Тихоокеанской плиты под Охотоморскую. Анализ коровой и глубокофокусной сейсмичности проводится отдельно.

В табл. 4 приводится распределение годовых чисел коровых землетрясений по энергетическому классу *К*_Р и количество выделенной суммарной сейсмической энергии ΣE по данным каталога Приморья и 1992–2005 гг. Приамурья за Ha рис. 4 показано изменение этих же параметров во времени. Сравнение значений N_{Σ} и ΣE за 1992–2005 гг. проводится для землетрясений с

 $K_{\rm P} \ge 7.6$ (табл. 4, рис. 4), поскольку область представительной регистрации $K_{\rm min} = 8$ на протяжении 14 лет практически не менялась и охватывает основной сейсмоактивный объем региона.

Год			K	P			N_{Σ}	ΣΕ,	
	8	9	10	11	12	13	_	10 ¹² Дж	
1992	131	28	15	6	1		181	1.61	
1993	77	41	11	3	2	1	135	12.44	
1994	144	31	13	12	2	1	203	12.30	
1995	136	20	13	4			173	0.01	
1996	123	45	11	5			184	0.75	
1997	109	29	22	3	3		166	2.69	
1998	116	49	10	7		2	184	20.41	
1999	102	102 46		5	5		169	5.99	
2000	142	48	13	3	3		209	1.68	
2001	183	37	10	3	2		235	0.92	
2002	190	36	7	4	1		238	1.01	
2003	193	44	17	1	6		261	2.58	
2004	185	46	16	8	2	1	258	6.55	
Сумма	1831	500	169	64	27	5	2596	73.02	
Среднее	140.85	38.46	13.00	4.92	2.08	0.38	199.69	5.62	
2005	138	53	15	5	5		216	2.54	

Таблица 4. Число землетрясений разных классов *N*(*K*_P) и суммарная сейсмическая энергия *ΣЕ* Приамурья и Приморья с 1992 по 2005 г.

Как видно из рис. 4 и табл. 4, ежегодное число землетрясений, регистрируемых в регионе, начиная с 2000 г., несколько увеличилось, что может быть связано с восстановлением в 2001 г. станции «Терней», позволившей вместе с другими станциями регистрировать слабые землетрясения. Уровень сейсмической активности в 2005 г., по сравнению с таковым в 2004 г. [13], снизился как по суммарному числу землетрясений (с N_{Σ} =258 до 216), так и по суммарной энергии (с $\Sigma E = 6.55 \cdot 10^{12} \ Дж$ до $2.54 \cdot 10^{12} \ Дж$). Если же сравнить с долговременными средними, то из табл. 4 видно, что суммарная сейсмическая энергия, высвобожденная коровыми землетрясениями в 2005 г., в два раза меньше среднего значения по региону за последние 13 лет, а число зафиксированных в регионе землетрясений – чуть выше среднего.

Распределение ежегодного числа коровых землетрясений и суммарной сейсмической энергии

землетрясений Приамурья и Приморья с *K*_P≥7.6 и количества Σ*E* высвобожденной ими сейсмической энергии за 1992–2005 гг.

по районам региона за 1992–2005 гг. представлено в табл. 5. В табл. 6 дано распределение числа коровых землетрясений по энергетическому классу *К*_P, а глубокофокусных – по магнитуде *MPVA*, а также рассчитана суммарная сейсмическая энергия по районам региона за 2005 г.

Год	Район											
	N⁰	1	<u>№</u> 2		Ng	<u>№</u> 3		Nº 4		2 5	N	2 6
	N_{Σ} ΣE		N_{Σ}	ΣE								
1992	43	0.34	59	0.14	5	0	61	0.18	3	0.01	10	1.12
1993	35	1.15	54	0.12	4	0.01	38	1.13	1	0.01	3	10.02
1994	34	1.14	70	0.32	5	0.01	84	10.71	0	0	10	0.12
1995	30	0	60	0	7	0	70	0	0	0	6	0
1996	26	0.02	69	0.43	10	0	68	0.19	2	0	9	0.1
1997	25	0.16	56	2.01	6	0.01	67	0.51	5	0	7	0
1998	33	0.02	60	0.16	7	0	87	20.2	0	0	10	0.03
1999	33	1.3	50	0.41	1	0	63	1.6	1	0	21	2.67
2000	38	0.09	43	0.15	7	0.06	101	0.42	3	0.32	16	0.64
2001	48	0.74	49	0.06	11	0	111	0.1	3	0	13	0.01
2002	24	0.01	71	0.04	17	0	113	0.19	2	0	10	0.77
2003	37	0.16	85	0.05	15	0	104	1.69	4	0.65	16	0.02
2004	34	0.18	70	0.79	52	5.35	82	0.17	3	0.04	17	0.03
Сумма	440	5.32	796	4.69	147	5.45	1049	37.11	27	1.04	148	15.52
Среднее	33.85	0.41	61.23	0.36	11.31	0.42	80.69	2.85	2.08	0.08	11.38	1.19
2005	30	0.06	62	0.40	10	0.02	92	1.27	1	0.01	19	0.79

Таблица 5. Число коровых землетрясений Приамурья и Приморья с *К*_Р≥7.6 и их суммарная сейсмическая энергия в шести районах региона с 1992 по 2005 г.

Примечание. Суммарная энергия представлена в единицах *E*, 10¹² Дж.

Таблица 6. Распределение числа коровых землетрясений по энергетическому классу *K*_P, глубокофокусных – по магнитуде *MPVA* и суммарной сейсмической энергии Σ*E* по районам Приамурья и Приморья в 2005 г.

	h≤40 км													
№	Район				$K_{\rm P}$				N_{Σ}	ΣΕ,				
		≤6	7	8	9	10	11	12		10 ¹² Дж				
1	Становой	5	42	18	9	1	1		83	0.06				
2	Янкан-Тукурингра-Джагдинский	38	72	44	14	3		1	167	0.40				
3	Зейско-Селемджинский	5	6	7	2	1			20	0.03				
4	Турано-Буреинский	5	20	56	22	7	4	3	124	1.27				
5	Сихотэ-Алиньский					1			8	0.01				
6	Приграничный		2	13	3	2		1	21	0.78				
	Всего	53	139	139	50	15	5	5	423	2.54				
			<i>h</i> ≥300	км										
N₂	Район			Λ	<i>APVA</i>				N_{Σ}	ΣΕ,				
		3			4		5			10 ¹² Дж				
5	Сихотэ-Алиньский		1		4		2		7	0.04				

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде *M* путем пересчета из классов *K*_P для коровых землетрясений и из магнитуд *MPVA* – для глубокофокусных по следующим соотношениям: *M*=(*K*_P-4)/1.8; *M*=1.77·*MPVA*-5.2 (70 км<*h*≤390 км); *M*=1.85·*MPVA*-4.9 (*h*>390 км).

За последние 14 лет самым активным был Турано-Буреинский район (№ 4), где в 1994 и 1998 гг. происходили наиболее сильные землетрясения. Практически асейсмична земная кора в Сихотэ-Алиньском районе (№ 5). Не стал исключением и 2005 г. (рис. 5): максимальное количество высвобожденной сейсмической энергии зафиксировано в Турано-Буреинском районе (50% энергии региона), минимальное (<1%) – в Сихотэ-Алиньском. Максимальное число землетрясений было зарегистрировано в Янкан-Тукурингра-Джагдинском районе (№ 2). Этот район находится в зоне K_{\min} =6 и здесь зафиксировано наибольшее число слабых землетрясений.

Puc. 5. Распределение числа коровых землетрясений и суммарной сейсмической энергии Σ*E* по шести районам Приамурья и Приморья за 2005 г.

Глубокофокусных землетрясений было зарегистрировано семь, их магнитуда *МРVA* не превысила *M*=5.0, суммарная сейсмическая энергия составила ΣE =0.04·10¹² Дж, что в 46 раз меньше энергии глубокофокусных землетрясений в 2004 г. [13].

Далее проведен обзор сейсмичности по районам.

В Становом районе (\mathbb{N} 1) в 2005 г. зарегистрировано 76 коровых землетрясений, что на 28 % меньше, чем в 2004 г. [13]. Суммарная сейсмическая энергия, равная $\Sigma E=0.06 \cdot 10^{12} \ \square \ \square \ \square \ \square \ \square$, в три раза меньше соответствующей величины в 2004 г. и в 6.3 раза ниже среднего для района значения за последние 14 лет (табл. 5, 6).

Умеренный уровень сейсмической активности зарегистрирован в западной и цен-

тральной частях района, где энергетический класс землетрясений $K_P \le 9.5$. Как и в 2004 г. [13], в верховье р. Зея, в районе хр. Токинский Становик, продолжали регулярно происходить землетрясения с $K_P = 6.2 - 9.3$ с периодичностью одно-два землетрясения в месяц (рис. 2). Возможный техногенный характер этих землетрясений пока не подтвержден.

Несколько активизировалась юго-восточная часть района. Здесь 7 февраля в $03^{h}01^{m}$ произошло самое сильное (K_{P} =10.9, *MLH*=3.3) в этом районе землетрясение (3) с h=8±1 км. Несколько восточнее его, на границе с Турано-Буреинским районом, 10 марта в $09^{h}01^{m}$ произошло землетрясение (6) с K_P =10.4, которое предварялось двумя форшоками, зарегистрированными 7 марта в 12^h39^m с K_P =8.5 и 10 марта в 08^h59^m с K_P =9.2. В непосредственной близости от северной части Зейского водохранилища наблюдалась крайне слабая сейсмическая активность. Северо-восточная окраина района также находилась в спокойном состоянии.

В Янкан-Тукурингра-Джагдинском районе (№ 2) зарегистрировано максимальное в 2005 г. число (N=172) коровых землетрясений, что, однако, на 14% меньше, чем в 2004 г. [13]. Суммарная сейсмическая энергия ($\Sigma E=0.04 \cdot 10^{12} \ Дж$) снизилась в два раза. по сравнению с таковой в 2004 г., и незначительно превысила среднюю для района величину за 1992–2005 гг. (табл. 5, 6). Наиболее сильное ($K_P=12.1$) в районе землетрясение (4) произошло на его северозападной окраине 12 февраля в $17^h 19^m$ с $h=21\pm 2 \kappa M$. Землетрясение ощущалось в г. Тында ($\Delta=107 \kappa M$) с интенсивностью сотрясений I=3-4 балла. После основного события до конца года было зарегистрировано семь афтершоков с $K_P=7.3-9.6$ (табл. 7).

Таблица 7. Основные параметры главного толчка и афтершоков землетрясения 12 февраля в 17^h19^m с *K*_P=12.1, *MLH*=4.3

№	Дата, д м	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	MLH	K _P	N⁰	Дата, ∂ м	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	MLH	$K_{ m P}$
		Осно	овной т	олчок			3	04.04	18 38 54.4	54.86	123.30	12		7.5	
	12.02	17 19 02.0	55.13	123.01	21	4.3	12.1	4	22.04	15 31 34.7	55.36	123.0	13		8.5
	1	٨	dranu		1	1		5	02.09	05 24 46.1	55.19	123.16	10		7.9
		A	фтерш	Эки				6	21.10	14 27 46.1	55.08	123.27	10		8.1
1	18.02	06 47 04.0	55.12	123.45	10		7.3	7	28.12	07 03 29.6	54.82	122.90	10		7.6
2	17.03	06 07 20 1	55 24	122.89	23		96						Ĩ		

Наибольшее число землетрясений было сконцентрировано в районе хр. Тукурингра, их эпицентры располагались в широтном направлении к западу от Зейского водохранилища. Здесь вызывает интерес землетрясение (16), которое произошло 20 сентября в $23^{h}01^{m}51.3^{s}$ с $K_{P}=10.3$, $h=9 \ \kappa M$. Его предварял форшок с $K_{P}=9.4$ ($h=8 \ \kappa M$), произошедший за полминуты до главного толчка (в $23^{h}01^{m}17.4^{s}$). Затем последовало несколько афтершоков с $K_{P}\leq7.5$.

Немного повысился уровень сейсмической активности южной части Зейского водохранилища и территории к востоку от него. Здесь эпицентры землетрясений с $K_P \leq 9.0$ простираются в широтном направлении вдоль хр. Соктахан.

Необходимо отметить, что на территории этого района производятся промышленные взрывы. В течение 2005 г. к юго-западу от Зейского водохранилища зарегистрировано 27 сейсмических событий с K_P =5.1–8.4, идентифицированных как «возможно, взрыв» (рис. 2).

В Зейско-Селемджинском районе (№ 3) в 2005 г. наблюдалось резкое снижение сейсмической активности после ее всплеска в 2004 г. (табл. 5, 6). Суммарная сейсмическая энергия района, равная $\Sigma E=0.02 \cdot 10^{12} \ \square m$, снизилась в 281 раз, по сравнению с таковой в 2004 г. [13], и составила менее 0.05 средней для района величины за период 1992–2005 гг. Снизилось и число землетрясений в шесть раз, со 128 [13] до 21. Наиболее сильное ($K_P=10.5$) в районе землетрясение (19) произошло 20 ноября в 14^h44^m с $h=10\pm 2 \ \kappa m$ юго-западнее пос. Экимчан.

В течение 2005 г. продолжалась афтершоковая активность в эпицентральной зоне землетрясения 16.01.2004 г. с *MLH*=5.0 [13]. В очаговой области этого землетрясения с января по но-ябрь 2005 г. произошло 12 афтершоков с K_P =6.2–8.7 и *h*=6–10 км (рис. 2).

Вся южная часть района практически являлась зоной затишья.

Турано-Буреинский район (№ 4) по-прежнему остается наиболее активным в регионе. Здесь зарегистрировано 117 землетрясений, из них десять (1, 5, 7, 9–13, 15, 17) – с $K_P=10.4-12.4$. Суммарная сейсмическая энергия района достигла уровня $\Sigma E=1.27 \cdot 10^{12} \ \square m$, что в 7.4 раза больше такового в 2004 г. [13], но почти в два раза меньше среднегодового значения, определенного по данным за 1992–2005 гг. (табл. 5). Эпицентры сильных землетрясений расположились в субмеридиональном направлении в полосе $\lambda=132^\circ-134^\circ E$. Одно из наиболее сильных ($K_P=11.7$) землетрясений (13) с $h=18 \ m$ было зарегистрировано 13 августа в 05^h48^m в северной части района, юго-восточнее пос. Экимчан. Восточнее того же поселка 30 сентября произошло еще одно землетрясение (17) в 06^h20^m с $K_P=11.2$, $h=11 \ m$ с последующими четырьмя афтершоками с K_P =7.2–9.2 в течение октября. В южной части, на территории Еврейской автономной области, было зафиксировано три ощутимых землетрясения, первое из которых произошло 15 января в 02^h54^m с K_P =11.2, *h*=6 км. Оно ощущалось в г. Облучье (Δ =27 км) с интенсивностью *I*=3 балла. Его афтершок с K_P =9.9 зарегистрирован 1 февраля, также с *I*=3 балла в г. Облучье. Третье, самое сильное (K_P =12.4) в данном районе землетрясение (7) произошло 23 марта в 02^h13^m на глубине *h*=17±1 км западнее г. Биробиджан. Землетрясение ощущалось в пос. Желтый Яр (Δ =37 км) с интенсивностью *I*=4–5 баллов, в г. Биробиджан (Δ = 44 км) – 3– 4 балла, в пос. Кульдур (Δ =107 км) – 2–3 балла, в г. Хабаровск (Δ =181 км) – 2 балла.

Немного западнее, в предгорье Помпеевского хребта, 5–6 июля зарегистрирован небольшой рой землетрясений с K_P =8.9–11.8. Два наиболее сильных толчка (11) с K_P =10.5 и (12) с K_P =11.8 находились на глубине h=21 и h=22 км соответственно. Сведения о макросейсмическом эффекте этих землетрясений не поступали. По сравнению с уровнем сейсмичности в 2004 г. [13], несколько активизировалась область вдоль р. Амур, от г. Биробиджан до г. Николаевск-на-Амуре. Наиболее сильное (K_P =10.4) землетрясение (10) возникло 3 июня в 15^h01^m юго-западнее г. Комсомольск-на-Амуре. Коровое землетрясение с K_P =9.7 было отмечено 26 сентября в 06^h49^m в акватории Охотского моря, восточнее Шантарских островов. Необходимо отметить, что на этой территории, в окрестностях пос. Кульдур и пос. Чегдомын, также регистрируются промышленные взрывы (рис. 2), число которых в 2005 г. составило N=63 с K_P =7.0–9.5.

В Сихотэ-Алиньском районе (\mathbb{N} 5) из-за слабой его оснащенности зарегистрировано лишь одно коровое землетрясение с $K_{\rm P}$ =9.9, которое произошло 8 декабря в 09^h56^m южнее г. Комсомольск-на-Амуре.

Активность Приморского участка Курило-Камчатской зоны субдукции в 2005 г. была достаточно низкой. Число зарегистрированных глубокофокусных землетрясений с $h=320-507 \ \kappa m$ составило N=7, а суммарная сейсмическая энергия – $\Sigma E=0.04 \cdot 10^{12} \ Дж$. Их эпицентры располагались в акватории Японского моря (рис. 2). Распределение глубокофокусных землетрясений во времени представлено на рис. 6. Наибольшее число глубоких землетрясений пришлось на вторую половину года.

Самое сильное (MPVA=5.0) глубокофокусное землетрясение (8) произошло в Японском море, близ бухты Евстафия 14 апреля в $09^{h}56^{m}$ на глубине $h=351\pm7\kappa M$. Система напряжений в его очаге типична для глубоких областей зон

Рис. 6. Пространственно-временное распределение глубокофокусных землетрясений Приамурья и Приморья в 2005 г.

субдукции: близгоризонтальное ($PL_T=7^\circ$) растяжение и более крутое ($PL_P=27^\circ$) сжатие. Одна из возможных плоскостей разрыва имела северо-восточное простирание с крутым падением ($DP=84^\circ$) на юго-восток, другая – с южным простиранием и пологим ($DP=8^\circ$) падением на запад. Тип подвижки в очаге – подвиг по плоскости NP2.

Самое глубокое ($h=507 \ \kappa m$) в 2005 г. землетрясение (18) зарегистрировано юго-восточнее г. Владивосток 14 октября в 06^h03^m с *MPVA*=4.6. Небольшая группа из трех землетрясений зарегистрирована северо-восточнее пос. Терней во втором полугодии 2005 г. на глубине $h=320-330 \ \kappa m$. Одно глубокофокусное ($h=381 \ \kappa m$) землетрясение локализовано под центральной частью хр. Сихотэ-Алинь 6 апреля в $13^{h}45^{m}$ с *MPVA*=3.8.

В Приграничном районе (№ 6) общий уровень сейсмической активности несколько повысился, по сравнению с таковым в 2004 г. [13]. Число землетрясений на глубинах $h \le 40 \ \kappa m$ составило N=21, а суммарная сейсмическая энергия ($\Sigma E=0.78 \cdot 10^{12} \ Дж$) не превысила многолетнего среднего значения (табл. 5). Самое сильное ($K_P=12.5$, MLH=4.6) коровое землетрясение (2) региона отмечено 24 января в $12^{h}22^{m}$ с $h=23\pm3 \ \kappa m$ на границе Монголии и Китая (рис. 2). Землетрясение ощущалось в г. Благовещенск ($\Delta=385 \ \kappa m$) с интенсивностью I=2 балла. Оно сопровождалось несколькими афтершоками, наиболее сильный ($K_P=10.3$) из которых возник 14 августа в $09^{h}59^{m}$ с $h=14 \ \kappa m$. Эпицентры более слабых землетрясений с K_P =7.0–9.8 группировались к югу от Еврейской автономной области. Глубокофокусных землетрясений на территории района № 6 в 2005 г. не зарегистрировано.

Необходимо заметить, что определение параметров землетрясений в этом районе осложняется редкой сетью сейсмических станций и их односторонним расположением.

Литература

- 1. Фокина Т.А., Кислицына И.П., Сафонов Д.А. Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Фокина Т.А., Дорошкевич Е.Н., Сафонов Д.А. Курило-Охотский регион. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за 2005 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2005–2006.
- 4. Bulletin of the International Seismological Centre for 2005. Berkshire: ISC, 2007.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 6. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 7. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 8. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 9. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология. Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- 11. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 12. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 13. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии 2004 год. Обнинск: ГС РАН, 2010. С. 164–172.
- 14. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я. Каталог землетрясений (*N*=423) и взрывов (*N*=204) Приамурья и Приморья за 2005 год. (См. Приложение к наст. сб. на CD).
- 15. Рудик М.И. (отв. сост.), Коваленко Н.С. Каталог механизмов очагов землетрясений Приамурья и Приморья за 2005 год (*N*=1). (См. Приложение к наст. сб. на CD).
- 16. Годзиковская А.А. Местные взрывы и землетрясения. Личный архив, 2000. 108 с.
- 17. Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии в 2003 году. Обнинск: ГС РАН, 2009. С. 159–165.