КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина¹, Е.Н. Дорошкевич¹, Т.В. Нагорных², Д.А. Сафонов¹,²

¹Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск

Сеть сейсмических станций на территории Курило-Охотского региона в 2005 г., как и в предыдущие десять лет, состояла из трех станций Сахалинского филиала ГС РАН: «Северо-Курильск», «Курильск» и «Южно-Курильск» (табл. 1). Для определения параметров землетрясений региона привлекались дополнительно инструментальные данные сейсмических станций Сахалина [1], Приамурья и Приморья [2], а также бюллетени ГС РАН [3], JMA, NEIC, ISC [4]. Методика обработки данных [5–13], границы региона [14] и отдельных сейсмоактивных районов (рис. 1), а также параметры аппаратуры на сейсмических станциях остались такими же, как в 2004 г. [15].

Таблица 1. Сейсмические станции Курило-Охотского региона, работавшие в 2005 г., и их параметры

	Ста	анция		Дата	Кос	ординат	ы		Апп		
	Название	К	ЭД	открытия	φ°. N	λ°. E	h,	Тип	Компо-	$V_{\rm max}/$	$\Delta T_{\rm max}$,
		межд.	рег.	-		,	м	прибора	нента	чувствит-сть	c
1	Северо-	SKR	СВК	03.1958	50.67	156.07	22	СКМ-3	N, E, Z	20000	0.36-0.65
	Курильск								N, E, Z	10000	0.36-0.65
	51								N, E, Z	5000	0.36-0.65
								СКД	N, E, Z	1000	0.20-20.0
									N, E, Z	500	0.20-18.0
									N, E, Z	200	0.20-16.0
								СКД-КПЧ	N, E, Z	50	0.2-19.0
								Велосиграф	N, E, Z	10.0 c	0.02-5.8
								C-5-C	N, E, Z	1.0 c	0.02-5.8
								ОСП-2М	N, Z	$0.04 c^2$	0.01-5.0
									E	$0.04 c^2$	0.01-4.0
								CCP3-M	Ν	$0.0019 c^2$	0.04-10.0
									E	$0.0022 c^2$	0.04-10.0
									Ζ	$0.0023 c^2$	0.04-10.0
								CM-3	N, E, Z	25.0	0.01-1.3
									N, E, Z	1.0	0.01-1.3
								УБОПЭ-2	N, E	33.0	0.05-3.5
								CMP-2	N, E	7.0	0.05-6.0
								CMP-0	Ν	1.0	0.05-5.0
								СБМ		1.1	0.23-0.27
2	Курильск	KUR	КУР	1950	45.23	147.87	40	CKM-3	N, E, Z	20000	0.37-0.68
									N, E, Z	10000	0.37–0.68
									N, E, Z	5000	0.37–0.68
								СКД	N, E, Z	1000	0.2–20.0
									N, E, Z	500	0.2-18.0
									N, E, Z	200	0.2-15.0
								СКД-КПЧ	N, E, Z	20	0.2–15.0
								Велосиграф	Ν	0.5 c	0.045–4.6
								C-5-C	Ν	10.0 c	0.053–4.6
									Z	0.5 c	0.044-4.6
									Ζ	10.0 <i>c</i>	0.053-4.6

	Ста	анция		Дата	Кос	рдинат	ы		Аппа	аратура	
	Название	Ко	од	открытия	φ°, N	λ°, E	<i>h</i> ,	Тип	Компо-	$V_{\rm max}/$	$\Delta T_{\rm max}$,
		межд.	рег.	-			м	прибора	нента	чувствит-сть	С
									Е	0.5 c	0.047-4.6
									Е	10.0 <i>c</i>	0.053-4.6
								ОСП-2М	Ν	$0.045 c^2$	0.015-1.1
									Е	$0.045 c^2$	0.014-1.1
									Ζ	$0.045 c^2$	0.013-2.2
								CCP3	Ν	$0.0021 \ c^2$	0.04-10.0
									Е	$0.0022 c^2$	0.04-10.0
									Ζ	$0.0024 c^2$	0.04-10.0
								СБМ		1.1	0.15-0.3
3	Южно-	YUK	ЮКР	10.1960	44.03	145.86	28	CKM-3	N, E, Z	10000	0.25-0.5
	Курильск								N, E, Z	5000	0.25-0.5
									N, E, Z	2500	0.25-0.5
								СКД	N, E, Z	1000	0.2-20.0
									N, E, Z	500	0.15-17.0
									N, E, Z	200	0.15-15.0
								CCP3-M	Ν	$0.0204 c^2$	0.06–10
									Е	0.0201 <i>c</i> ²	0.055-10
									Ζ	0.0191 c ²	0.05-10
								AC3	Ν	$0.0541 c^2$	0.06-0.15
									Е	$0.0590 c^2$	0.07-0.10
									Ζ	$0.0574 \ c^2$	0.05-0.075
								Велосиграф	N, E, Z	10.0 c	0.015-4.6
								C-5-C	N, E, Z	1.0 <i>c</i>	0.015-4.6

Примечание. Сейсмографы C-5-C, велосиграфы C-5-C, а также акселерографы ОСП-2М и ССРЗ-М работают в ждущем режиме регистрации.

В качестве оценки величины землетрясений использована расчетная магнитуда *M*, значения которой определены по формулам связи магнитуд по объемным и поверхностным волнам С.Л. Соловьёва и О.Н. Соловьёвой из [10, 11]:

$$m_{\rm P} = 2.62 + 0.63 \, M,\tag{1}$$

$$m_{\rm S} = 1.71 + 0.75 \, M. \tag{2}$$

Переход от энергетического класса К_С к М осуществлен по формуле из [12]:

$$K_{\rm C} = 1.2 + 2.0 \, M. \tag{3}$$

Карта энергетической представительности M_{\min} , рассчитанная с учетом конфигурации сети сейсмических станций, изображена на рис. 1. Как видим, в районах $\mathbb{N} 4 - \mathbb{N} 6$ территории Курило-Охотского региона представительными являются землетрясения с $M_{\min}=4$, а на территории Онекотан-Матуанского района ($\mathbb{N} 2$) и северо-восточной части Охотского моря (район $\mathbb{N} 8$) без пропусков могут регистрироваться события с $M_{\min} \ge 4.5$. И лишь на небольшом участке юго-западной части Охотского моря, находящемся в окружении станций «Южно-Сахалинск», «Курильск», и «Южно-Курильск», представительными являются землетрясения с $M_{\min} \ge 3.5$.

В региональный каталог [16], публикуемый в наст. сб., включены все обработанные землетрясения с $M \ge 3.1$, но в оценке уровня сейсмичности рассматриваются не все события, а лишь более сильные с $MLH \ge 4.0$ ($K_C \ge 9$). Общее число землетрясений в каталоге $N_{\Sigma}=332$ с M=3.1-6.4, что в 1.36 раза меньше, чем в 2004 г. [15], карта их эпицентров приведена на рис. 2.

Гипоцентры 249 землетрясений (75% общего числа) расположились в верхнем глубинном интервале $h \le 80 \ \kappa m$, 215 из них (64.8%) находились в слое $h=31-70 \ \kappa m$ (рис. 3); 70 событий (21.0%) произошло в промежуточном интервале $h=81-300 \ \kappa m$, при этом в слое $h=191-280 \ \kappa m$ не зарегистрировано ни одного землетрясения; 18 землетрясений (5.4%) отмечено в нижнем интервале глубины $h>300 \ \kappa m$. Самое глубокое землетрясение региона (13 на рис. 2) произошло 23 ноября в $19^h 33^m$ под акваторией Охотского моря на глубине $h=584\pm12 \ \kappa m$ с магнитудой MSH=6.2, M=6.0.

Рис. 1. Карта энергетической представительности землетрясений M_{\min} Курило-Охотского региона в 2005 г.

1 – изолиния M_{\min} ; 2 – сейсмическая станция; 3 – номер района и его граница; 4 – граница региона; 5 – ось глубоководного Курило-Камчатского желоба.

Рис. 2. Карта эпицентров землетрясений Курило-Охотского региона в 2005 г.

1 – расчетная магнитуда *M*; 2 – глубина гипоцентра *h*, *км*; 3 – сейсмическая станция; 4 – номер района и его граница; 5 – граница региона; 6 – ось глубоководного Курило-Камчатского желоба; 7 – диаграмма механизма очага в проекции на нижнюю полусферу; зачернены области сжатия.

Цифры около эпицентров соответствуют номерам землетрясений по каталогу [16].

Рис. 3. Гистограмма распределения землетрясений Курило-Охотского региона по глубине в 2005 г.

При исследовании сейсмичности региона представляет интерес сравнение текущих статистических параметров с таковыми за период времени, предшествующий анализируемому. В табл. 2 и 3 приведены статистики за 2001–2004 гг., а на рис. 4 дано их графическое изображение. Как видим из табл. 2–3 и рис. 4, суммарная сейсмическая энергия, выделившаяся в 2005 г. в очагах мелкофокусных землетрясений ($h \le 80 \ \kappa m$), в 11.8 раза меньше среднего для региона значения за 2001–2004 гг. (табл. 2, рис. 4), а для глубокофокусных и промежуточных ($h > 80 \ \kappa m$) – в 25.3 раза меньше среднего значения за этот же период (табл. 3, рис. 4). Уменьшилось также и число землетрясений, зафиксированных как в поверхностном, так и глубоком слое.

Год				М				N_{Σ}	N_{Σ}	ΣE ,	ΣE ,
	≤4	4.5	5	5.5	6	6.5	7		c <i>M</i> >4	10 ¹² Дж	10 ¹² Дж
											(<i>M</i> >4)
2001	239	108	26	5	4		1	383	144	4362.23	4343.75
2002	217	85	10	2	3	1		318	101	734.72	717.02
2003	256	140	33	15	9	2		455	199	1959.97	1937.82
2004	173	155	24	8	2	2	2	366	193	3887.31	3874.87
Сумма	885	488	93	30	18	5	3	1522	637	10944.23	10873.46
Среднее	221.25	122	23.25	7.5	4.5	1.25	1.75	380.5	159.25	2736.06	2718.37
2005	150	79	16	2	2			249	99	242.22	230.36

Таблица 2. Число *N*(*M*) мелкофокусных (*h*≤80 км) землетрясений разных магнитуд и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе за 2001–2005 гг.

Таблица 3. Число *N*(*M*) глубокофокусных (*h*>80 *км*) землетрясений разных магнитуд и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе за 2001–2005 гг.

Год				М						N_{Σ}	N_{Σ}	ΣE ,	ΣΕ,
	≤4	4.5	5	5.5	6	6.5	7	7.5	8		c <i>M</i> >4	10 ¹² Дж	10 ¹² Дж
													(M>4)
2001	64	53	25	8	4	3	1			158	94	6087.98	6083.70
2002	64	53	32	11	3	2	1		1	167	103	65492.03	65487.96
2003	54	55	31	19	4		1			164	110	1479.57	1476.04
2004	25	21	24	13	3		1			87	62	1852.69	1851.02
Сумма	207	182	112	51	14	5	4	0	1	576	369	74912.27	74898.72
Среднее	51.75	45.5	28	12.75	3.5	1.25	1	0	0.25	144	92.25	18728.07	18724.68
2005	24	17	20	17	3	1				82	58	741.38	739.79

Рис. 4. Годовые числа *N* и величина Σ*E* сейсмической энергии, высвобожденной в Курило-Охотском регионе мелкофокусными (а) и глубокофокусными (б) землетрясениями с *M*>4 за 2001–2005 гг.

1 – N; 2 – ΣЕ; 3 – среднее годовое число землетрясений за 2001–2004 гг.; 4 – среднее годовое значение высвобожденной энергии за 2001–2004 гг.

Наибольшее число событий (*N*=21) произошло в Кунашир-Шикотанском районе (№ 5), в районе о. Хоккайдо (№ 6) зарегистрировано 12 землетрясений, в Парамуширском (№ 1) – одно. Максимальная интенсивность сотрясений с *I*=4–5 баллов зафиксирована в пос. Малокурильское (о. Шикотан, Δ =35 км) при землетрясении (10), произошедшем 21 сентября в 02^h25^m с магнитудой *M*=6.4 (*MSH*=6.5) и *h*=113±7 км,

Землетрясение (1) с M=6.1 (MLH=6.1) и h=65 км, отмеченное 18 января в 14^h09^m, вызвало на территории о. Хоккайдо сотрясения с интенсивностью I=V по шкале JMA [17], или I=7 баллов по шкале MSK-64 [18]. Сотрясения с интенсивностью I=3 балла наблюдались в пос. Малокурильское (о. Шикотан, Δ =180 км) и в пос. Южно-Курильск (о. Кунашир, Δ =135 км), I=2–3 балла – в г. Курильск (о. Итуруп, Δ =338 км).

В табл. 4 также приведены максимальные значения магнитуд землетрясений, зарегистрированных в регионе на разных глубинах. Как видно, не для всех сильных землетрясений есть сведения о макросейсмических проявлениях. Отсутствие информации в районах № 2–№ 4 определяется главным образом малонаселенностью территории Курильских островов и, следовательно, отсутствием пунктов наблюдений, а в районе № 8 регистрируются в основном глубокие землетрясения, которые редко имеют макросейсмические проявления.

N⁰	Район	h, км	Nouvr	I _{max}	K _{C max}		M _{max}	
						MLH	MSH	М
1	Парамуширский	0–30			12.0	4.9	6.1	4.9
		31-80	1	3–4	14.0	4.8	5.8	4.8
		≥81						
2	Онекотан-Матуанский	0–30			11.5	5.0	5.7	5.0
		31-80			12.0	6.0	6.4	6.0
		81-150			9.5		5.2	4.6
3	Симушир-Урупский	0–30			10.2	4.4	5.5	4.4
		31-80			12.5	5.3	5.8	5.3
		81-156			11.5	3.9	5.9	5.9
4	Северо-Итурупский	0–30			10.3	4.7	5.6	4.7
		31-80			10.5	4.3	5.3	4.3
		81-167			10.0		6.0	5.7
5	Кунашир-Шикотанский	0–30			10.0			4.4
		31-80	14	4	11.0	5.1	5.6	5.1
		81-153	7	4–5	11.0	5.5	6.5	6.4

Таблица 4. Распределение ощутимых землетрясений по интервалам глубины *h*, максимальные значения интенсивности сотрясений *I*_{max}, энергетического класса *K*_{Cmax} и магнитуды *M*_{max} в районах № 1–№ 8

N⁰	Район	h, км	<i>N</i> ощут.	I _{max}	K _{C max}		M _{max}	1
						MLH	MSH	М
6	О. Хоккайдо	0-30						
		31-80	10	7	12.0	6.1	6.5	6.1
		81-147	2	2	11.0		5.4	4.9
8	Охотское море	0–30						
	_	31-80						
		81-584			10.0	5.1	6.2	6.0

По знакам первых смещений в продольных волнах, записанных мировой сетью сейсмических станций, определены механизмы очагов шести землетрясений [19], четыре из которых относятся к мелкофокусным ($h \le 80 \ \kappa m$), одно – с промежуточной глубиной очага ($h = 81 - 300 \ \kappa m$), одно – с промежуточной глубиной очага ($h = 81 - 300 \ \kappa m$), одно – глубокофокусное ($h > 300 \ \kappa m$). В *ред*. каталог [19] дополнен решениями механизмов очагов 224 землетрясений Курило-Охотского региона [20], выбранными из Бюллетеней ISC [4] по данным различных агентств.

Рассмотрим более детально сейсмичность Курило-Охотского региона по районам.

В табл. 5 приведено распределение чисел землетрясений, зарегистрированных в регионе в 2005 г., и величины выделенной в них сейсмической энергии по районам, а на рис. 5 дано их графическое представление.

Таблица 5. Распределение числа землетрясений по магнитуде *M* и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона в 2005 г.

N⁰	Район			М			N_{Σ}	N_{Σ}	ΣE ,	ΣΕ,				
		≤4	4.5	5	5.5	6	6.5		c <i>M</i> >4	10 ¹² Дж	10 ¹² Дж			
											(<i>M</i> >4)			
	h≤80 км													
1	Парамуширский		2	2				4	4	2.91	2.91			
2	Онекотан-Матуанский	24	6	4	1	1		36	12	89.54	87.63			
3	Симушир-Урупский	17	16	3	1			37	20	19.90	18.18			
4	Северо-Итурупский	34	17					51	17	9.1	6.89			
5	Кунашир-Шикотанский	58	21	4				83	25	18.16	13.42			
6	О. Хоккайдо	17	17	3		1		38	21	102.61	101.32			
8	Охотское море													
	Всего	150	79	16	2	2		249	99	242.22	230.36			
				h>	80 км									
1	Парамуширский													
2	Онекотан-Матуанский	5	1					6	1	1.01	0.71			
3	Симушир-Урупский	4		4	7	1		16	12	213.40	213.06			
4	Северо-Итурупский	4	3	2	3			12	8	51.08	50.73			
5	Кунашир-Шикотанский	3	5	8	3	1	1	21	18	347.01	346.75			
6	О. Хоккайдо		2	2				4	4	4.73	4.73			
8	Охотское море	8	6	4	4	1		23	15	124.13	123.81			
	Всего	24	17	20	17	3	1	82	58	741.38	739.39			

Как видим, сейсмическая активность районов Курило-Охотского региона довольно неоднородна. Наибольшая сейсмическая энергия мелкофокусных землетрясений высвобождена в районе о. Хоккайдо (\mathbb{N}_{2} 6), где 18 января в 14^h09^m зарегистрировано землетрясение (1) с магнитудой M=6.1 (Mw=6.2, несколько меньшая – в Онекотан-Матуанском районе (\mathbb{N}_{2} 2). Здесь 15 октября произошло второе сильное землетрясение с магнитудой M=6.0 (Mw=6.1). Наименьшая величина сейсмической энергии зафиксирована в Парамуширском районе (\mathbb{N}_{2} 1) (табл. 5). В Охотском море (район \mathbb{N}_{2} 8) поверхностных землетрясений не было вовсе. В Кунашир-Шикотанском районе \mathbb{N}_{2} 5, несмотря на максимальное число зарегистрированных событий, величина высвобожденной сейсмической энергии незначительна: ΣE =18.16·10¹² Дж.

Рис. 5. Распределение числа мелкофокусных (а) и глубокофокусных (б) землетрясений с *M*>4 и величины суммарной сейсмической энергии Σ*E* по районам Курило-Охотского региона за 2005 г.

В глубокофокусном слое картина несколько иная. Наибольшее число землетрясений с M>4, а также величина высвобожденной сейсмической энергии (N=18, $\Sigma E=346.75 \cdot 10^{12} \ Дж$) наблюдаются в Кунашир-Шикотанском районе, где 21 сентября в $02^{h}25^{m}$ произошло самое сильное (Mw=6.0) землетрясение региона. Следующим по количеству высвобожденной энергии был Симушир-Урупский район, а по числу землетрясений – район о. Хоккайдо (табл. 5).

Для лучшего представления о вариациях сейсмичности отдельных районов региона было произведено сопоставление ежегодных чисел землетрясений и величины сейсмической энергии в каждом из них за 2001–2005 гг. Подсчет этих параметров проведен для землетрясений с M>4 (табл. 6 и 7). Для районов № 1 и № 6 подсчет параметров не производился, поскольку их границы были сильно изменены в 2004 г.; для района № 8 (Охотское море), в котором было зарегистрировано одно поверхностное землетрясение, графики параметров сейсмического режима приводятся только для глубокофокусных. На рис. 6 и 7 показаны результаты этого сопоставления.

Рис. 6. Распределение ежегодных чисел поверхностных (*h*≤80 км) землетрясений с *M*>4 и величины сейсмической энергии по районам: Онекотан-Матуанскому (а), Симушир-Урупскому (б), Северо-Итурупскому (в), Кунашир-Шикотанскому (г)

1-N; 2-\SigmaE; 3, 4-среднее значение числа землетрясений и суммарной высвобожденной энергии за 2001-2004 гг.

В Парамуширском районе (№ 1) зарегистрировано четыре мелкофокусных землетрясения (рис. 2), три из них произошли в январе и образуют афтершоковую последовательность с главным событием 3 января в $17^{h}00^{m}$ с Mw=5.0 и $h=25\pm3$ км. Два других события произошли 3 января в 18^h51^m и 17 января в 11^h27^m, энергетический класс обоих толчков составил *К*_С=10.0. К сожалению, более слабые афтершоки не обработаны из-за низкой разрешающей способности сети, а также в связи с тем, что очаговая область выходит за границы региона. Четвертое землетрясение (9) зарегистрировано 10 августа в 12^h47^m с *Mw*=5.3 на глубине Оно ощущалось с интенсивностью *I*=3-4 балла в г. Северо-Курильск h=38±4 км. (о. Парамушир, $\Delta = 245 \ \kappa M$). Очаг данного землетрясения (рис. 2) характеризуется близгоризонтальным напряжением сжатия и более крутым напряжением растяжения [19]. Одна из возможных плоскостей разрыва имела юго-западное простирание (STK₂=231°) и крутое падение на северо-запад, при этом северо-западное крыло разрыва поднялось и сдвинулось на юго-запад. Вторая возможная плоскость разрыва имела субширотное простирание (STK₁=109°) и под небольшим углом падала на юг-юго-запад, при этом юго-западное крыло разрыва поднялось и сдвинулось на северо-запад. Из двух возможных плоскостей разрыва следует отдать предпочтение нодальной плоскости юго-западного простирания, как наиболее соответствующей направлению тектонических структур региона. В этом случае возможный механизм очага – взброс с элементами левостороннего сдвига по юго-западной плоскости разрыва.

В Онекотан-Матуанском районе (№ 2) мелкофокусная сейсмическая активность заметно снизилась после ее всплеска в 2004 г. Число землетрясений и суммарная сейсмическая энергия в 2005 г. были ниже среднегодовых значений за период 2001–2004 гг. (рис. 6 а). В интервале глубины *h*=81–150 *км* в 2005 г. наблюдалось сейсмическое затишье (рис. 7 а).

Самое сильное Mw=6.1 землетрясение района (11 на рис. 2) произошло 15 октября в $10^{h}06^{m}$ на глубине $h=33\pm5 \ \kappa m$. Очаг данного землетрясения характеризуется близгоризонтальным напряжением сжатия и субвертикальным напряжением растяжения. Обе плоскости разрыва имели субширотное простирание, подвижка в очаге носила характер взброса.

Ощутимых землетрясений с эпицентрами на территории района не было (табл. 4).

Рис. 7. Распределение ежегодных чисел глубоких (*h*>80 км) землетрясений с *M*>4 и величины сейсмической энергии по районам: Онекотан-Матуанскому (а), Симушир-Урупскому (б), Северо-Итурупскому (в), Кунашир-Шикотанскому (г), Охотскому морю (д)

1 – N; 2 – ΣЕ; 3, 4 – среднее значение числа землетрясений и высвобожденной энергии за период 2001–2004 гг.

Год					I	Район				
	N	№ 2	N	<u>ſo</u> 3	N	∲ 4	J	Nº 5	Nº 8	
	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE
2001	12	50.19	21	79.76	38	4078.94	35	69.10	1	0.25
2002	12	40.79	16	5.98	21	510.43	26	95.72		
2003	17	101.79	15	13.08	31	89.03	28	50.75		
2004	23	416.02	28	21.47	32	147.53	65	2047.56		
Сумма	64	608.79	80	120.29	122	4825.93	154	2263.13	1	0.25
Среднее	16	152.20	20	30.07	30.05	1206.48	38.5	565.78	0.25	0.06
2005	12	87.63	20	18.18	17	6.89	25	13.42		

Таблица 6. Число мелкофокусных (*h*≤80 км) землетрясений с *M*>4 и их суммарная сейсмическая энергия по районам Курило-Охотского региона за2001–2005 гг.

Примечание. Суммарная энергия в табл. 6, 7 дана в единицах *E*, 10¹² Дж.

Таблица 7. Число глубокофокусных (*h*>80 км) землетрясений с *M*>4 и их суммарная сейсмическая энергия по районам Курило-Охотского региона за2001–2005 гг.

Год						Район					
	N	<u>∲</u> 2	Nº 3		Л	[⁰ 4	N	<u>ſo</u> 5	Nº 8		
	N_{Σ}	N_{Σ} ΣE		ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE	
2001	5	710.14	17	357.56	10	12.79	13	4005.37	27	880.33	
2002	13	1426.10	10	89.16	17	19.09	17	435.59	21	63315.52	
2003	11	17.76 20		67.88	5	15.29	21	75.60	13	55.21	
2004	5	32.49	13	1508.37	10	88.04	16	66.29	13	119.44	
Сумма	34	2186.49	60	2022.97	42	135.21	67	4582.85	74	64370.5	
Среднее	8.5	546.62	15	505.74	10.5	33.80	16.75	1145.71	18.5	16092.625	
2005	1	0.7	12	213.06	8	50.72	18	346.75	15	123.81	

Симушир-Урупский район (\mathbb{N} 3) характеризовался пониженным уровнем сейсмической активности (рис. 6 б, 7 б) как в поверхностном, так и глубоком слое сейсмического объема. На глубине $h \leq 80 \ \kappa m$ зарегистрировано 37 землетрясений.

В интервале глубины *h*=81−156 *км* произошло 16 землетрясений, из них четыре имели *M*≥5.6. Ощутимых землетрясений не было (табл. 4).

Наиболее сильным землетрясением (*MPV*=6.5) района является землетрясение (7), произошедшее 31 мая в $02^{h}19^{m}$ на глубине *h*=91 км.

В Северо-Итурупском районе (№ 4) мелкофокусная сейсмическая активность резко снизилась (рис. 6 в). Общее число всех землетрясений с $h \le 80 \ \kappa m$ составило N=51, а с M>4 - N=17, что значительно ниже среднего значения за 2001–2004 гг. Аналогично количество высвобожденной в 2005 г. сейсмической энергии значительно ниже среднего значения за 2001–2004 гг. Иное поведение этих параметров наблюдается для глубокофокусных землетрясений (рис. 7 в). Хотя в 2005 г. число событий с M>4 было ниже среднего (N=8), величина сейсмической энергии ($\Sigma E=50.73 \cdot 10^{12} \ Дж$) превысила среднее значение таковой за предыдущие четыре года из-за сильного землетрясения (15) 24 декабря в 08^h09^m с MSH=6.0 и $h=101 \ \kappa m$. Сведений об ощутимых землетрясениях нет (табл. 4).

В Кунашир-Шикотанском районе (N_{2} 5), который является самым активным районом Курило-Охотского региона, сейсмическая активность на глубинах $h \le 80 \ \kappa m$ после ее всплеска в 2004 г. резко снизилась (рис. 6 г). Число зарегистрированных землетрясений с M > 4 составило N=25, это в 1.5 раза меньше среднего значения за 2001–2004 гг. Величина высвобожденной энергии в 42 раза меньше среднего значения за этот же период. В промежуточном интервале глубин активность несколько возросла, по сравнению с таковой в 2004 г.; там зарегистрировано 18 землетрясений, что близко к среднему значению (рис. 7 г). Суммарная сейсмическая энергия возросла в 5.2 раза, по сравнению со значением, зафиксированным в 2004 г., но не достигла средней величины по данным 2001–2004 гг.

Самое сильное (MLH=5.1) мелкофокусное землетрясение района (3 на рис. 2) произошло 16 марта в $13^{h}23^{m}$ на глубине $h=46\pm5 \ \kappa M$. Землетрясение ощущалось в пос. Малокурильское ($\Delta=43 \ \kappa M$) с интенсивностью I=3 балла, в пос. Южно-Курильск ($\Delta=109 \ \kappa M$) – 2 балла. На территории Японии интенсивность сотрясений достигала I=II по шкале JMA или I=3-4 балла по шкале MSK-64. Очаг этого землетрясения характеризуется близгоризонтальным напряжением сжатия и более крутым напряжением растяжения. Одна из возможных плоскостей разрыва имела север–северо-восточное простирание ($STK_2=12^{\circ}$) и круто падала на восток, при этом восточное крыло разрыва поднялось и сдвинулось на север. Вторая возможная плоскость разрыва имела юго-западное простирание ($STK_1=237^{\circ}$) и полого падала на северо-запад. Из двух возможных плоскостей разрыва предпочтение следует отдать плоскости запад–юго-западного простирания, совпадающей с направлением Курило-Камчатского глубоководного желоба. В этом случае подвижка в очаге носила характер взброса с компонентами правостороннего сдвига.

В промежуточном интервале глубин самое сильное (*MSH*=6.5) землетрясение произошло в районе 21 сентября в $02^{h}25^{m}$. Оно вызвало колебания с интенсивностью *I*=4–5 баллов в пос. Малокурильское (Δ =35 км), 4 балла – в пос. Южно-Курильск (Δ =43 км), 3 балла – в г. Курильск (Δ =173 км, а также ощущалось на территории Японии в г. Куширо (о. Хоккайдо) и г. Мисава (о. Хонсю). Очаг землетрясения характеризуется преобладающим напряжением растяжения. Одна из возможных плоскостей разрыва имела юго-западное простирание (*STK*₂=227°) и круто падала на северо-запад, вторая возможная плоскость разрыва имела субширотное простирание (*STK*₁=83°) и полого падала на юг. Подвижка в очаге носила характер поддвига. Всего в районе отмечено 21 ощутимое землетрясение (табл. 4). Наибольший макросейсмический эффект имело землетрясение, зафиксированное 16 июня в $14^{h}42^{m}$ на глубине *h*=55 км с *MLH*=4.0. В пос. Малокурильское (Δ =35 км) наблюдалась интенсивность *I*=4–5 баллов, в Южно-Курильске (Δ =43 км) – 4 балла, Курильске (Δ =173 км) – 3 балла.

Большая часть территории района **о. Хоккайдо** (\mathbb{N} 6) в 2004 г. была исключена из зоны ответственности СФ ГС РАН, осталась лишь небольшая часть восточнее λ =144°E (рис. 1). Здесь в верхнем интервале глубины $h \leq 80 \ \kappa m$ было зарегистрировано N=38 землетрясений, что в два раза меньше, чем число событий в 2004 г., величина суммарной сейсмической энергии составила ΣE =102.61·10¹² Дж (табл. 6) и уменьшилась в 12 раз, по сравнению с таковой в 2004 г. В интервале глубины h=81–147 κm зарегистрировано четыре землетрясения.

Для 12 землетрясений наблюдался макросейсмический эффект в населенных пунктах Японии и Курильских островов. Максимальная интенсивность сотрясений достигла I=V по шкале JMA [17] или I=7 баллов по шкале MSK-64 [18] на востоке о. Хоккайдо, где 18 января в 14^h09^m зарегистрировано землетрясение (1) с магнитудой MLH=6.1 и глубиной $h=65\pm8$ км. Его очаг сформировался в условиях близгоризонтального напряжения сжатия и более крутого напряжения растяжения. Ось промежуточного напряжения близгоризонтальна. Одна из возможных плоскостей разрыва имела северо-восточное простирание ($STK_2=41^\circ$) и крутое падение на юго-восток. Вторая возможная плоскость разрыва имела юго-западное простирание ($STK_1=236^\circ$) и полого падала на северо-запад. Выбор главной плоскости разрыва в этом случае сделать нельзя, т.к. обе плоскости ориентированы вдоль тектонических структур региона. Подвижка в очаге носила характер взброса.

В Охотском море (\mathbb{N} 8) мелкофокусных землетрясений зарегистрировано не было, а в глубоком слое наблюдалось значительное снижение сейсмической активности (рис. 7 д). И величина сейсмической энергии, и число землетрясений с M>4 ниже средних значений, полученных по данным за 2001–2004 гг. Ощутимых землетрясений отмечено не было (табл. 4).

Самое сильное (*MSH*=6.5) и самое глубокое (h=584±12 км) землетрясение (13 на рис. 2) произошло под акваторией Охотского моря 23 ноября в 19^h33^m. Его очаг реализовался под воздействием преобладающего напряжения сжатия, ось промежуточного напряжения близгоризонтальна. Одна из возможных плоскостей разрыва имела север–северо-западное простирание (*STK*₂=331°) и пологое падение на северо-восток, при этом восточное крыло разрыва поднялось и сдвинулось на северо-запад. Вторая возможная плоскость разрыва имела субмеридиональное простирание (*STK*₁=166°) и крутое падение на запад, при этом западное крыло разрыва поднялось и сдвинулось на северо-запад, подвижка в очаге носила характер пологого надвига. Анализируя данные каталога механизмов очагов Курило-Охотского региона за 2005 г., можно отметить, что в земной коре и верхней мантии преобладали близгоризонтальные напряжения сжатия и более крутые растягивающие напряжения, подвижка в очагах носила характер взброса по плоскостям, ориентированным в направлении простирания Курило-Камчатской островной дуги, что характерно для поверхностного слоя зоны субдукции.

Для более глубоких землетрясений напряжения сжатия и растяжения были близки. Очаг глубокофокусного землетрясения (13) находился под преимущественным воздействием сжимающих напряжений, тип подвижки – пологий надвиг. В промежуточном интервале глубины $h=81-300 \ \kappa m$ был определен механизм землетрясения (10), систему напряжений которого характеризует преобладание напряжения растяжения, подвижка в очаге носила характер поддвига [19].

Литература

- 1. Фокина Т.А., Кислицына И.П., Нагорных Т.В., Сафонов Д.А. Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за 2005 год / Отв. ред. О.Е. Старовойт. Обнинск: ОМЭ ИФЗ РАН, 2005–2006.
- 4. Bulletin of International Seismological Centre for 2005. Ньюбери: ISC, 2007, *http://www.isc.ac.uk/search/bulletin/rectang.html* (состояние на ноябрь 2010 г.).
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 6. **Миталева Н.А., Бойчук А.Н.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 7. Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- 9. Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- 10. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 11. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 12. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 13. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 14. Габсатарова И.П. Границы сейсмоактивных районов с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139
- 15. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии в 2004 году. – Обнинск: ГС РАН, 2009. – С. 180–187.
- 16. Дорошкевич Е.Н. (отв. сост.), Брагина Г.И., Пиневич М.В., Гладырь Ж.В. Каталог землетрясений

Курило-Охотского региона за 2005 г. (N=332). (См. Приложение к наст. сб. на CD).

- 17. Hisada T., Nakagawa K. Present Japanese Development in Engineering Seismology and their Application to Building. Japan, 1958.
- 18. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 19. Нагорных Т.В. (отв. сост.). Каталог механизмов очагов землетрясений Курило-Охотского региона за 2005 год (*N*=6). (См. Приложение к наст. сб. на CD).
- 20. Левина В.И. (сост.). Дополнение к каталогу механизмов очагов землетрясений Курило-Охотского региона за 2005 г. (*N*=224). (См. Приложение к наст. сб. на CD).