КОПЕТДАГ

Н.В. Петрова, Л.В. Безменова, Г.Ч. Сарыева, М.М. Чарыев

Институт сейсмологии АН Туркменистана, Государственная сейсмологическая служба АН Туркменистана, г. Аихабад, **tm.seismology@online.tm**

В 2005 г. стационарная сеть сейсмических наблюдений на территории Туркменистана насчитывала 20 аналоговых и одну цифровую станцию «Геокча» системы IRIS (табл. 1 и 2). К сожалению, из-за отсутствия фотобумаги и ухудшения условий регистрации был остановлен длиннопериодный комплект СКД на станции «Ванновская» еще в декабре 2004 г.

Таблица 1. Сейсмические станции Туркменистана (в хронологии их открытия), действовавшие в 2005 г., и параметры аппаратуры

№	е Станция Название Кол			Дата	Коорд	инаты	$h_{\rm y}$,		Апг	аратура	
	Название	Ко	д	открытия	φ°, N	λ°, Ε	м	Тип	Компо-	$V_{\rm max}$	$\Delta T_{\rm max}$,
		межд.	рег.					прибора	нента		С
1	Ашхабад	ASH	Ашх	16.02.1947	37.96	58.37	305	CKM-3	N, E, Z	6000	0.20-1.2
	(г. Ашгабат)							СК	N, E, Z	1000	0.30–10
								C-5-C	N, E, Z	100	0.20-3.2
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5
								CCP3-M	N, E, Z	$0.0019 c^2$	0.05
2	Кизыл-Арват	КАТ	Кат	01.01.1950	38.97	56.28	110	ИСО+С-5-С	N, E	0.1 c; 2.5 c	0.01-4.5
	(г. Сердар)								Ζ	0.1 <i>c</i>	0.01-4.5
								CCP3-M	N, E, Z	$0.0021 c^2$	0.05
3	Ванновская	VAN	Ван	07.07.1952	37.95	58.11	580	CKM-3	Ν	70000	0.17-1.4
	(г. Арчабил)								E	70000	0.18-1.2
									Ζ	70000	0.20-1.3
								C-5-C	Ν	1000	0.18-3.12
									Ζ	950	0.16-3.81
									E	1000	0.20-2.10
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5
								CCP3-M	N, E, Z	$0.0021 c^2$	0.05
4	Красноводск	KRF	Крс	31.03.1966	40.04	53.00	10	CKM-3	N, E	30000	0.14-0.81
	(г. Туркменбаши)								Ζ	30000	0.17-0.81
								СК	N, Z	1000	0.20-9.8
									E	100	0.24–9.8
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5
								CCP3-M	N, E, Z	$0.0019 c^2$	0.05
5	Небит-Даг [*]	NBD	Нбд	12.02.1966	39.51	54.39	15	CKM-3	N, E	5000	0.16-1.3
	(г. Балканабат)								Ζ	5000	0.13-1.3
								СКД	N, E	1000	0.17-17.4
									Ζ	1000	0.18-17.0
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 c	0.01-4.5
								CCP3-M	N, E, Z	$0.002 c^2$	0.05
6	Кизыл-Атрек	GZLA	Ктр	10.10.1968	37.68	54.77	55	CM-3	N, E, Z	5000	0.20-1.2
	(пос. Этрек)							СКД	N, E, Z	1000	0.20-18.5
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5

№	Станш	ия		Лата	Коорл	инаты	$h_{\rm v}$		Апг	аратура	
	Название	Ко	Д	открытия	φ°. N	λ°. E	м	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$
		межд.	рег.	-		,		прибора	нента		C
7	Кара-Кала	GARG	Крк	26.03.1971	38.44	56.27	315	СКМ-3	N, E, Z	5000	0.20-1.2
	(пос. Магтымгулы)		1					CMTP	, ,	8.0	
								ИСО+С-5-С	N, E	0.1 c; 2.5 c	0.01-4.5
									Z	0.1 c	0.01-4.5
8	Чагыл	CAGT	Чгл	11.11.1972	40.78	55.38	144	СКМ-3	Ν	40000	0.13-0.8
	(с. Чагыл)								E, Z	40000	0.20-0.7
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5
9	Каушут	KAH	Кшт	24.06.1977	37.46	59.49	257	ВЭГИК	Ν	9400	0.20-1.2
	(с. Говшут)								E	10700	0.30-1.5
									Ζ	8300	0.20-1.2
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5
10	Маныш	MNYS	Мнш	04.01.1978	37.72	58.61	680	CKM-3	Ν	6000	0.14–1.3
	(с. Касамлы)								E, Z	30000	0.17–1.3
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 c	0.01-4.5
11	Овадан-Тепе		Овд	12.04.1978	38.11	58.36	160	CM-3	N, E, Z	5000	0.20–1.3
	(с. Овадандепе)							ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Z	0.1 c	0.01-4.5
12	Серный		Срн	01.12.1980	39.99	58.83	120	СКМ-3	N	56000	0.20-0.8
	(с. Серный завод)								E	61000	0.20-0.8
			_						Z	52000	0.20-0.8
13	Гермаб		Грм	24.05.1980	38.01	57.75	775	ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
	(с. Гермап)			10.11.0001					Z	0.1 c	0.01-4.5
14	9		G	19.11.2004	26.52	(1.01		CD ()	Дел	ьта-Геон	0.00.1.0
14	Cepaxc		Срх	01.01.1982	36.53	61.21		CM-3	N, E, Z	11700	0.20-1.2
	(noc. Cepaxc)							исо+с-5-с	N, E	0.1 c; 2.5 c	0.01-4.5
1.5	T.		Б	01 10 1005	27.00	66.05	100	<u>()</u> ()	L	0.1 C	0.01-4.5
15	I аурдак		I рд	01.12.1985	37.80	66.05	460	CM-3	N	13600	0.10 - 1.3
	(г. Магданлы)								E	10/00	0.16 - 1.3
									L N E	01 0 25 0	0.20 - 1.3
								исо-с-з-с	N, E 7	0.1 c, 2.3 c	0.01 - 4.5
								CCD3 M	L NE7	0.1 c 0.0021 c ²	0.01-4.5
16	Vyuuro		Vuur	01 01 1086	25 27	62.21	650	CM 3	N Z E	10000	0.05
10	Кушка (г. Серхетабат)		КШК	01.01.1900	55.21	02.31	050	$MCO+C_{-5}C$	N, Z, L N F	$01c^{2}5c$	0.20-0.9
								neo e se	7, E	0.1 c, 2.5 c	0.01 - 4.5
17	Ланата		Лнт	24 04 1988	39.07	55 17		СКМ-3	NEZ	30000	0.01 1.5
17	(с. Лянеата)		<u>д</u> ш	21.01.1900	57.07	55.17		CCP3-M	N E Z	$0.0021 c^2$	0.05
18	Сунча		Сун	01.10.1990	38.50	57.30		CM-3	N	8880	0.60-14
	(с. Сунче)		-)						E	9420	0.80-1.5
									Ζ	10000	0.60-1.3
								ИСО+С-5-С	N, E	0.1 c; 2.5 c	0.01-4.5
									Ź	0.1 c	0.01-4.5
								CCP3-M	N, E, Z	$0.0021 c^2$	0.05
19	Карлюк		Кар	20.07.1992	37.56	66.43		CM-3	N	20000	0.20-1.2
	(с. Кюнджек)		-						Е	20000	0.20-1.3
									Ζ	28400	0.30-1.3
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.01-4.5
20	Кугитанг		Куг	05.10.1992	37.91	66.48		CM-3	N	2000	0.13–1.3
	(с. Койтен)								E, Z	10000	0.20-1.3
								ИСО+С-5-С	N, E	0.1 <i>c</i> ; 2.5 <i>c</i>	0.01-4.5
									Ζ	0.1 <i>c</i>	0.1-4.5

N₂	Станц	ия		Дата	а Координаты		$h_{\rm y}$,		Ап	аратура	
	Название	Ко	д	открытия	$\phi^{\circ}, N \mid \lambda^{\circ}, E$		м	Тип	Тип Компо- V _{max}		$\Delta T_{\rm max}$,
		межд.	рег.					прибора	нента		С
21	Кёнекесир		Кнк	04.09.1995	38.20	56.90		CM-3+PB3	Ν	40000	0.20-1.5
	(с. Кёнекесир)								Е	40000	0.50-1.4
									Ζ	40000	0.30-1.2
								CCP3-M	N, E, Z	$0.002 c^2$	0.05
22	Геокча	ABKT	Гкч	20.11.2000	37.93	58.12				IRIS	
	(г. Арчабил)										

Примечание. * Комплект СКД на станции «Небит-Даг» простаивал с 01.06.2003 г. по 10.09.2005 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>)
Геокча	IRIS+STS-1	BH(N, Z, E) v	0.002-5	20	24	$6.28 \cdot 10^8$
	IRIS+GS-13	SH(N, Z, E) v	0.5-10	40	24	$6.25 \cdot 10^8$
Гермаб	Дельта-Геон+СК-П1	SH(N, Z, E) v	0.3-0.8	31	24	$1.00 \cdot 10^{7}$

Таблица 2. Данные об аппаратуре цифровых станций в 2005 г.

На новой цифровой станции типа Дельта-Геон, установленной в конце 2004 г. в с. Гермап на смену комплекта СКМ-3 и предназначенной для стационарной работы, осуществлялась отладка оборудования и программного обеспечения, поэтому она функционировала с перебоями. Две станции Дельта-Геон продолжали работать в подвале и на 24-м этаже здания Нефтегазового комплекса в пос. Берзенги, еще две функционировали в опытно-методическом режиме в с. Овадандепе и с декабря 2005 г. в с. Гаудан. Поскольку ни одна из новых станций не работала постоянно, их не учитывали при расчете энергетической представительности землетрясений Копетдага. В связи с этим она не изменилась, по сравнению с таковой в 2004 г. (рис. 1).

Методика обработки записей землетрясений Копетдага в 2005 г. осталась прежней: кинематические параметры определялись на основе региональных блочных годографов [1], энергетический класс K_P – по палетке Т.Г. Раутиан [2], магнитуды MPVA – согласно [3], макросейсмические характеристики ощутимых землетрясений – на основе регионального уравнения макросейсмического поля [4]. Правильность и полнота обработки частично контролировались путем сопоставления кинематических и динамических параметров общих землетрясений из регионального каталога [5] и бюллетеней Международного сейсмологического центра ISC [6]. Для перевода в энергетические классы магнитуд MS, MPSP(MOS) и Ms, m_b (ISC), публикуемых в [6], использовались соотношения из [7]. При сопоставлении параметров 76 общих землетрясений из [5] и [6] оказалось, что для ряда слабых землетрясений Копетдага в бюллетенях ISC приведены лишь локальные магнитуды M_L по данным Европейско-Средиземноморского сейсмологического центра CSEM и/или магнитуды M_L и M_n по сетям THR и TEH сейсмических станций Ирана. Для перевода этих магнитуд в энергетические классы K_P^{TRKM} в [8] установлены следующие соотношения:

$$K_{\rm P}^{\rm TRKM} = 1.62 M_{\rm L}^{\rm CSEM} + 3.74, \qquad n=46, \qquad r=0.71,$$
 (1)

$$K_{\rm P}^{\rm TRKM} = 1.915 M_{\rm n}^{\rm TEH} + 2.68, \qquad n=54, \qquad r=0.79,$$
 (2)

$$K_{\rm P}^{\rm TRKM} = 1.65 M_{\rm L}^{\rm THR} + 4.13, \qquad n=104, \qquad r=0.76,$$
 (3)

где *n* – число использованных пар данных, *r* – коэффициент корреляции.

При больших расхождениях сопоставляемых кинематических и динамических параметров, а также при пропуске отдельных землетрясений в каталоге землетрясений Копетдага [5] первичный сейсмограммный материал анализировался заново. Анализ показал, что наибольшее расхождение параметров и пропуски землетрясений сейсмической службой Туркменистана наблюдаются в юго-западной части Эльбурского района (№ 2 на рис. 1) и в юго-восточной части Восточного Туркменистана (район № 4 на рис. 1), что связано с высоким энергетическим уровнем представительных землетрясений. В этой части региона из-за отсутствия близких станций без пропусков регистрируются землетрясения лишь с *К*_Р>9.

Рис. 1. Карта энергетической представительности землетрясений Копетдага *К*_{3min} по данным наблюдений в 2005 г.

1 – изолиния $K_{3\min}$; 2 – сейсмическая станция аналоговая (а) и цифровая (б) соответственно; 3 – государственная граница; 4 – граница и номер сейсмоактивного района; 5 – город.

В 2005 г. в каталог [5] и на карту эпицентров землетрясений Копетдага (рис. 2) включены все землетрясения с $K_P \ge 8.6$, зарегистрированные сейсмическими станциями Туркменистана, безотносительно указанных в табл. 3 границ. Кроме того, в каталог включены 13 землетрясений (табл. 4) из бюллетеня ISC [6], записи которых нельзя было обработать станциями Туркменистана, т.к. на сейсмограмме был виден лишь «след». Расчетные энергетические классы $K_{\rm расч}$ большинства из представленных в табл. 4 землетрясений получены из магнитуд с помощью соотношений (2), (3), приведенных выше, и формулы (4) из [7]:

$$K_{\rm P}^{\rm TRKM} = 2.0 \ m_{\rm b}^{\rm ISC} + 2.8.$$
 (4)

Таблица 3. Координаты и площади пяти районов и региона в целом, а также значения в них $K_{3\min}$ и $K_{\gamma\min}$

N⁰	Район	$\phi_1^{\circ} - \phi_2^{\circ}, N$	$\lambda_1^{\circ} - \lambda_2^{\circ}$, E	<i>S</i> , 10 ³ км ²	K _{3min}	$K_{\gamma \min}$
1	Балхано-Каспийский	38.5-42.0	51.0-55.5	149	9–10	9
2	Эльбурский	35.0-38.5	51.0-55.5	156	10	10
3	Туркмено-Хорасанский	35.0-39.5	55.5-61.0	243	9	8
4	Восточный Туркменистан	35.0-42.0	61.0-67.0	406	10	10
5	Центрально-Каракумский	39.5-42.0	55.5-61.0	130	9	
	КОПЕТДАГ	35.0-42.0	51.0-67.0	1082	10	10

Эпицентры всех 13 добавленных землетрясений включены в общее поле эпицентров на рис. 2. Из них один эпицентр лоцирован в Афганистане ($K_{\text{расч}}=10.2$), остальные – в Эльбурском районе ($K_{\text{расч}}=8.6-9.4$).

N⁰	Дата,		$m_{\rm b}^{\rm \ ISC}$	$M_{\rm L}^{\rm CSEM}$	$M_{ m L}^{ m THR}$	$M_{\rm n}^{\rm TEH}$	Красч	Исходная			
	д м год	$t_0,$	φ°, N	λ°, Ε	<i>h</i> ,						магнитуда
		ч мин с			КМ						для $K_{\text{расч}}$
1	06.02.2005	13 05 10	35.47	52.62	18		3.5	2.7	3.5	8.6	$M_{ m L}^{ m THR}$
2	11.02.2005	05 11 49	35.09	53.79	10		3.6	3.2	3.6	9.4	$M_{ m L}{}^{ m THR}$
3	21.02.2005	01 18 21	35.48	53.76	10		3.3	2.7	3.3	8.6	$M_{ m L}{}^{ m THR}$
4	27.04.2005	23 35 11	35.86	53.23	10		3.2	2.7	3.2	8.6	$M_{ m L}{}^{ m THR}$
5	29.04.2005	17 05 23	35.25	53.50	16		3.1	2.8	3.1	8.8	$M_{ m L}{}^{ m THR}$
6	13.05.2005	09 56 53	35.21	51.53	7		3.0	2.8	3.0	8.8	$M_{ m L}{}^{ m THR}$
7	22.05.2005	15 55 35	36.08	53.13	16		3.2	3.1	3.2	8.8	$M_{ m L}{}^{ m THR}$
8	19.06.2005	03 04 27	36.03	64.32	10	3.7				10.2	$m_{\rm b}^{\rm ISC}$
9	30.07.2005	03 54 38	36.33	52.52	10		3.4	2.7	3.4	8.6	$M_{ m L}^{ m THR}$
10	01.08.2005	10 39 39	35.29	51.01	6		3.0	2.8	3.0	8.8	$M_{ m L}{}^{ m THR}$
11	29.08.2005	21 27 03	35.78	52.24	6		3.1	3.1	3.1	8.6	$M_{ m n}^{ m TEH}$
12	06.10.2005	01 11 54	35.11	53.90	10		3.4	3.3	3.4	9.2	$M_{ m n}^{ m TEH}$
13	09.12.2005	10 57 05	36.46	51.85	4		3.0	3.0	3.0	9.1	$M_{ m L}^{ m THR}$

Таблица 4. Список землетрясений из бюллетеня ISC [6], добавленных в региональный каталог Копетдага [5]

Рис. 2. Карта эпицентров землетрясений Копетдага за 2005 г.

1 – энергетический класс $K_{\rm P}$; 2 – глубина гипоцентра *h*, *км*; 3 – эпицентры землетрясений из бюллетеня ISC с указанием номера из табл. 4; 4 – глубинный разлом I порядка; 5 – граница сейсмоактивного района; 6 – граница выборки для рис. 9; 7 – ось проекции эпицентров на рис. 9; 8 – государственная граница; 9 – сейсмическая станция; 10 а – город; 10 б – столица Туркменистана и Ирана.

Механизмы очагов землетрясений Копетдага за 2005 г., определенные с привлечением знаков первых вступлений на сейсмических станциях ISC [6], представлены в [9] и на рис. 3. Для землетрясения № 1 в [9] механизм рассчитывался с привлечением знаков вступлений на иранских станциях из [10]. Примеры записей землетрясений на станциях Ирана приведены на

рис. 4. При решении фокальных механизмов использовались методические приемы, предложенные в [11]. В [9] указаны также другие решения механизмов очагов для землетрясений №№ 1, 2, 14 и 15 (рис. 3) агентств ZUR и HRVD.

Рис. 3. Механизмы очагов землетрясений Копетдага в 2005 г.

1 – энергетический класс K_P (цифра рядом соответствует номеру землетрясения в [9]); 2 – глубина *h* гипоцентра, *км*; 3 – стереограмма механизма очага в проекции нижней полусферы, зачернена область сжатия; 4 – другое решение механизма очага из [6] с указанием агентства; 5 – глубинный разлом I порядка; 6 – сейсмическая станция.

Таблица 5. Распределение по годам и энергетическим классам K_P числа землетрясений ΣN и суммарной сейсмической энергии ΣE за 1992–2005 гг. в границах Копетдагского региона

Год					N_{Σ}	ΣE ,					
	2–7	8	9	10	11	12	13	14	16		10 ¹² Дж
1992	2048	343	150	42	17	2	4	1		2607	82.8
1993	1922	325	157	55	23	12	1			2495	20.4
1994	1737	333	176	77	16	3	4	1		2348	156.2
1995	1595	228	95	39	11	1	2			1971	12.2
1996	1070	210	98	52	20	3	1			1454	13.4
1997	10050	1170	482	139	57	9	2	1	1	11911	4102.4
1998	1685	363	173	49	10	2	1			2283	15.1
1999	1196	278	161	65	19	11	3	1		1734	73.5
2000	4531	763	304	94	31	6	4	2	1	5739	31796.7
2001	1982	383	158	54	19	2	1	2		2601	408.32
2002	3070	279	143	42	21	5				3560	6.6
2003	1563	297	150	52	22	3	1			2088	18.0
2004	1189	357	159	64	24	6	2	1		1802	132.35
2005	2110	362	169	44	12	5	3			2707	26.9

Рис. 4. Записи цифровых сейсмических станций «Газвин» (Ghazvin – GZV), «Мехдашт» (Mahdasht – MHD), «Фирозку» (Firozkooh – FIR), «Афдже» (Afjeh – AFJ), «Разеган» (Razeghan – RAZ), «Варамин» (Varamin – VRN) типа SP3 системы Nanometrics Inc. of Canada Тегеранской подсети телеметрической сети Ирана, оборудованных трехкомпонентными короткопериодными (*T*_c=1 *Гµ*) сейсмометрами, знаки первых вступлений *Pn*-волн которых подключены к определению механизма очага землетрясения 5 января с *K*_P=11.8 в [9] (№1 на рис. 3)

Габлица 6.	Распределение	числа зе	емлет	гря	сений по эн	ергетическим и	классам К _Р ,	сум	ма	рна	١Я
	сейсмическая	энергия	ΣE	И	параметры	сейсмическог	о режима	A_{10}	И	γ	в
	сейсмоактивны	іх района	ах за	200	05 г.						

N⁰	Район	K _P							N_{Σ}	ΣE ,	γ	A_{10}	ΔK
		8	9	10	11	12	13	14		10 ¹² Дж	•		
1	Балхано-Каспийский	121	53	9	1	3			187	3.33	0.49	0.075	8-12
2	Эльбурский	41	40	10	2		1		94	6.83	0.40	0.072	9–13
			(52)						(106)	(6.84)	(0.42)	(0.074)	
3	Туркмено-Хорасанский	187	69	19	8	1	1		285	9.92	0.49	0.081	8–13
4	Восточный Туркменистан	13	9	5	1	1	1		30	6.80	0.26	0.01	9–13
				(6)					(31)	(6.81)	(0.27)	(0.01)	
5	Центрально-Каракумский												
	КОПЕТДАГ	362	171	43	12	5	3		596	26.89	0.44	0.043	9–13
			(183)	(44)					(610)	(26.91)	(0.45)	0.045	

Примечание. Δ*K* – диапазон энергетических классов для расчета графика повторяемости и определения параметров γ, *A*₁₀; в скобках приведены параметры с учетом землетрясений, дополненных из [6].

 иранскими городами Себзевар и Нишапур; 7 августа в $17^{h}23^{m}$ с $K_{P}=12.9$ на территории Узбекистана, юго-западнее г. Бухара. Ниже детально описаны сейсмические процессы в разных районах.

В Балхано-Каспийском районе (\mathbb{N} 1) выделившаяся сейсмическая энергия и общее число землетрясений с $K_P \geq 8$, равные $\Sigma E=3.33 \cdot 10^{12} \ \mathcal{A} \times$ и $N_{\Sigma}=187$, возросли, по сравнению с таковыми ($\Sigma E=1.12 \cdot 10^{12} \ \mathcal{A} \times$ и $N_{\Sigma}=179$) в 2004 г. [12], однако сейсмическая активность A_{10} несколько понизилась ($A_{10}=0.075$ вместо $A_{10}=0.086$) за счет существенного уменьшения числа землетрясений 10-го и 11-го энергетических классов, дефицит которых при повышенном числе землетрясений с $K_P=12$ обусловил значительные стандартные отклонения и пониженный коэф-фициент корреляции графика повторяемости.

Афтершоковая деятельность Балханского землетрясения 06.12.2000 г. с Mw=7.3 [13] в 2005 г. практически прекратилась – в радиусе 75 км от его эпицентра зарегистрировано лишь восемь сейсмических событий с $K_P=9$ и два с $K_P=10$ (рис. 5). Механизм очага последнего, произошедшего 16 августа в $22^{h}06^{m}$, представлял собой сброс по крутой плоскости северо-западного простирания с падением на северо-восток, или поддвиг висячего крыла пологого широтного разрыва в южном направлении. Такой механизм нетипичен для очаговой зоны Балханского землетрясения, где в предыдущие годы регистрировались преимущественно взбросы и надвиги.

Рис. 5. Карта эпицентров землетрясений в Балхано-Каспийском районе в 2005 г.

1 – энергетический класс K_P ; 2 – сейсмогенная зона по [16]; 3 – разрыв по геолого-геоморфологическим и геологогеофизическим данным [17]; 4 – город; 5 – сейсмическая станция; 6 – эпицентр Балханского землетрясения 06.12.2000 г. с MS=7.3; 7 – области и радиусы выборок для анализа афтершоковой деятельности в 2005 г. Хазарского, Сюльменского и Дянеатинского землетрясений с K_P =11–12 (рис. 7), а также Балханского землетрясения 2000 г. с MS=7.3.

В акватории и на побережье Каспийского моря сейсмическая активность, наоборот, увеличилась, что выразилось в возрастании энергетического уровня максимальных землетрясений от $K_{\text{max}}=10$ в 2004 г. [12] до $K_{\text{max}}=12$ в 2005 г. Начало активизации положило землетрясение 5 января в $08^{\text{h}}27^{\text{m}}$ с $K_{\text{P}}=11.8$, произошедшее на западной границе района \mathbb{N}_{P} 1. По данным ISC [6], эпицентр этого землетрясения находился в 50 км севернее, на самом южном из Каспийских разломов северо-западного простирания (рис. 5). Механизм очага этого землетрясения получен в регионе с использованием знаков первых вступлений *P*-волн на 32 станциях ISC [6], Туркменистана [9] и Ирана [10]. Согласно региональному решению [9], в очаге произошел взброс южного крыла крутого широтного разрыва или правый сдвиго-надвиг восточного крыла меридионального разрыва (\mathbb{N} 1 на рис. 3). Согласно другому решению [6], полученному методом тензора сейсмического момента агентством ZUR с использованием 10 станций, в очаге произошел сброс южного крыла разрыва по крутой субширотной плоскости или поддвиг в северовосточном направлении висячего крыла пологого разрыва северо-западного простирания. Хотя число использованных в [9] станций втрое больше, чем в [6], решение ZUR представляется более предпочтительным, т.к. оно типично для тектоники зоны контакта южного и центрального Каспия [14]. В его пользу говорит и то, что 10.03.2004 г. в 00^h50^m в этом же очаге произошло землетрясение с K_P =10.1 со схожим механизмом очага [15]: поддвиг в северном направлении по пологой широтной плоскости или сброс по крутой север–северо-восточной плоскости.

Землетрясение 5 января имело несколько афтершоков с $K_P=9-10$, четыре из которых зарегистрированы в январе-феврале, из них самый заметный ($K_P=9.8$) отмечен 9 февраля в $09^{h}07^{m}$. Еще один такого же уровня ($K_P=9.7$) афтершок зарегистрирован 16 ноября в $23^{h}15^{m}$.

В Каспийском море, в 75 км к западу от эпицентра готовящегося очага сильного (K_P=12.1) землетрясения 6 октября в 09^h48^m, зарегистрирован толчок с K_P=9.9, произошедший 3 февраля в 15^h51^m, представляющий собой сбросо-сдвиг по крутой плоскости северо-западного простирания или сдвиг с небольшой компонентой сброса по плоскости северо-восточного простирания, составляющей с горизонтом угол 53° (№ 3 на рис. 3). Это землетрясение было одним из сейсмических событий, мигрировавших к зонам подготовки трех следующих крупных землетрясений Балхано-Каспийского района с K_P=11-12, которые произошли практически одновременно с 24 сентября по 6 октября 2005 г. (рис. 5-7). Несмотря на значительные расстояния между ними, эти очаги, несомненно, связаны между собой, являясь актами единого тектонического процесса сближения Аравии и Евразии [14]. На связь между ними указывает синхронность сейсмического процесса в их очаговых зонах (рис. 6, 7): за активизацией сейсмичности в январе, марте, мае и сентябре в зоне подготовки Хазарского землетрясения 24 сентября последовали слабые толчки или рои землетрясений в зоне подготовки Дянеатинского землетрясения 6 октября в 20^h37^m с K_P=10.7 (рис. 7). Дянеатинское землетрясение в свою очередь явилось главным событием роя землетрясений, который начался 4 октября и таким образом предшествовал реализации Сюльменского землетрясения 6 октября в 09^h48^m с *K*_P=12.1 (рис. 7, табл. 4–6). Во всех трех очаговых зонах сразу после землетрясения 5 января была зарегистрирована сейсмичность с *К*_Р≤8–9 (рис. 6, 7), что указывало на уже существующий здесь повышенный уровень напряжений. В первой половине года наблюдалось смещение центра тяжести поля эпицентров землетрясений Балхано-Каспийского района на север и восток (рис. 6), в мае-июне зарегистрированы цепочки эпицентров землетрясений, стягивающиеся к зонам подготовки землетрясений 24 сентября и 6 октября с равными классами K_P=12.1, затем – их расхождение и сейсмическое затишье в зонах подготовки землетрясения 24 сентября в $19^{h}28^{m}$ с K_{P} =12.1 и 6 октября в $20^{h}37^{m}$ с Кр=10.7 (рис. 6, 7).

Источником деформационных волн, вызвавших эти землетрясения, явился, вероятно, процесс надвига земной коры Ирана на Южно-Каспийский бассейн и опускания Южно-Каспийского блока, земная кора которого, по мнению авторов [14], поддвигается под Центрально-Каспийский блок. Отражением этого процесса послужил надвиг в очаге Чалусского землетрясения 28.05.2004 г. с *Мw*=6.3 на южном побережье Каспия [18], а также наблюдаемое в 2005 г. преобладание сбросов в пределах Южно-Каспийской впадины, взбросов и надвигов – на территории Эльбурса и Туркмено-Хорасанских гор (рис. 3).

Первое из трех описываемых сейсмических событий произошло 24 сентября в $19^{h}28^{m}$ с K_{P} =12.1 в Хазар-Кюрендагской сейсмогенной зоне, в 25 км к западу от п-ва Челекенский и пос. Хазар (рис. 5). Оно сопровождалось подземным гулом и ощущалось жителями г. Туркменбаши (Δ =70 км) с интенсивностью *I* до двух баллов. Региональное решение механизма очага [9] совпадает с решением [6] по тензору момента, представленным в бюллетене ISC агентством HRVD. В очаге реализовался сброс северного крыла крутого субширотного разрыва (*NP1*), совпадающего по простиранию с Хазар-Кюрендагским разломом, или сбросо-сдвиг юго-

восточного крыла пологого разрыва, простирание которого перпендикулярно Хазар-Кюрендагскому разлому.

Параметры предваряющих и последующих землетрясений, зарегистрированных в 2005 г. в радиусе 50 км от эпицентра Хазарского землетрясения 24 сентября, приведены в табл. 7.

Рис. 6. Пространственно-временное развитие сейсмического процесса на энергетическом уровне землетрясений с *К*_P≥6.6 в Балхано-Каспийском районе в 2005 г. в 3D-проекции

Таблица 7. Форшоки и афтершоки Хазарского землетрясения 24 сентября в 19^h28^m с K_P=12.1 в радиусе 50 км от эпицентра

N⁰	Дата,	$t_0,$	Эпин	центр	K_{P}	h,
	мд	ч мин с	φ°, Ν	λ° , Ε		км
		Φ	оршоки			
1	06.01	13 27 35	39.3	52.9	7.5	
2	21.01	02 43 46	39.58	53.03	7.7	16
3	29.01	17 19 22	39.55	52.8	8.3	
4	02.03	03 06 40	39.48	53.4	8.7	22
5	18.03	05 45 24	39.2	52.8	7.8	
6	11.05	00 19 13	39.53	52.47	8.6	22
7	07.09	00 18 11	39.69	52.84	7.9	10
8	13.09.	12 56 45	39.69	52.91	7.8	13

№	Дата, <i>м</i> д	t ₀ , ч мин с	Эпит ф°, N	іентр λ°, Е	К _Р	h, км
		Основ	вной тол	чок		
9	24.09	19 28 07	39.43	52.83	12.1	26
		Аф	тершоки	1		
10	24.09	19 37 20	39.50	52.50	9.6	26
11	24.09	19 50 32	39.40	52.80	8.2	
12	24.09	19 55 29	39.40	52.70	8.1	
13	24.09	21 09 37	39.40	52.70	7.4	
14	31.10	02 42 01	39.70	52.80	7.9	
15	05.12	11 57 48	39.50	52.50	7.6	

Первые три форшока с K_P =7.5–8.3 зарегистрированы в январе, три следующих с K_P =7.8–8.7 – в марте и мае, после чего последовало трехмесячное сейсмическое затишье. Еще два форшока произошли 7 и 13 сентября, после чего реализовался основной толчок. Афтершоковая деятельность была еще более скудной и состояла из пяти толчков с K_P =7.4–9.6. Небольшое число фори афтершоков этого землетрясения может быть связано как с удаленностью от сейсмических станций (Δ =65 км до ближайшей станции «Красноводск»), так и с неполной разрядкой напряжений после основного толчка.

Рис. 7. Распределение по 10-дневным интервалам числа (*N*) землетрясений с *K*_P≥6.6 и суммарной сейсмической энергии (*lgE*) в очаговых зонах трех землетрясений

Следующее сильное (K_P =12.1) землетрясение возникло 6 октября в 09^h48^m на Красноводском п-ве (Красноводское плато) вблизи с. Сюльмен (рис. 5), поэтому далее оно называется Сюльменским. В г. Туркменбаши (70 км) событие ощущалось слабо (до 2 баллов) на верхних этажах зданий. Согласно решению в [9], в его очаге произошел надвиг северного крыла субширотного разрыва (*NP*1) или взброс по плоскости юго-восточного простирания (рис. 3). Нодальная плоскость *NP1* близка по простиранию к проходящему южнее разлому, выделенному Л.М. Расцветаевым и др. [17] по комплексу геолого-геофизических данных (рис. 5). По решению агентства HRVD [6], в очаге произошел сбросо-сдвиг по субширотной плоскости (*NP1*) или сброс по субмеридиональной плоскости (*NP2*).

Сюльменское землетрясение имело множество фор- и афтершоков, приведенных в Приложении к наст. сб. [19]. Предваряющие толчки с $K_P \leq 8.8$ продолжались с начала года до 21 сентября, после чего наступило 15-дневное затишье (рис. 7). В период затишья активизировались другие очаговые зоны: 24 сентября произошло Хазарское землетрясение, 4–7 октября начался рой землетрясений вблизи с. Дянеата (см. Приложение к наст. сб. [20]), где через 11 часов после Сюльменского землетрясения произошел максимальный толчок с K_P =10.7. Афтершоки Сюльменского землетрясения начались сразу после основного толчка и продолжались до конца года. Самый крупный (K_P =10.3) из них возник через полчаса после главного события. В его очаге произошел левосторонний сдвиг с компонентами сброса по пологой субмеридиональной *NP1* или сбрососдвиг по крутой субширотной плоскости *NP2* (рис. 3).

Дянеатинское землетрясение 6 октября в $20^{h}23^{m}$ с $K_{P}=10.7$ является скорее главным событием роя землетрясений, начавшимся 4 октября, чем обычным землетрясением с несколькими форшоками и более многочисленной, постепенно затухающей серией афтершоков. Рой 4-7 октября возник в 220 км восточнее очага Хазарского землетрясения 24 сентября, в месте пересечения Хазар-Кюрендагского и Шахманского разломов. Этот тектонический узел характерен высокой степенью группирования землетрясений. Рои слабых толчков происходят здесь довольно часто, практически каждый год, способствуя разрядке напряжений, постоянно накапливающихся в этой угловой точке контакта Прибалханского блока с Южно-Каспийской и Иранской плитами. В 2005 г. здесь зарегистрировано два роя землетрясений: 2-3 февраля с максимальным событием с K_P=8.3 и 4-7 октября, максимальным событием которого явилось Дянеатинское землетрясение с К_Р=10.7. Рой 2-3 февраля насчитывал 53 сейсмических события *К*_P=3.0-8.3 с суммарной энергией Σ*E*=2.49.10⁸ Дж. Рой 4-7 октября состоял из 40 сейсмических событий с $K_{\rm P}$ =3.0–10.7 с суммарной энергией ΣE =5.61·10¹⁰ Дж [20]. Главному из них с K_P=10.7 предшествовало 27 более слабых событий, зарегистрированных между толчками 4 октября в $04^{h}04^{m}$ с $K_{P}=5.8$ и 6 октября в $19^{h}34^{m}$ с $K_{P}=5.7$, среди которых два самых крупных произошли 5 октября в $15^{h}52^{m}$ с $K_{P}=9.2$ и 6 октября в $06^{h}14^{m}$ с $K_{P}=9.6$ [20]. Оба толчка реализовались до момента возникновения Сюльменского землетрясения 6 октября в 09^h48^m с К_Р=12.1, что позволяет считать начальные события Дянеатинского роя землетрясений удаленными форшоками Сюльменского землетрясения.

На территории Эльбурского района (№ 2) в 2005 г. выделившаяся сейсмическая энергия $(\Sigma E=6.83 \cdot 10^{12} \, Д \mathcal{H})$ и сейсмическая активность ($A_{10}=0.075$) значительно понизились по сравнению с таковыми (ΣE=1.2·10¹⁴ Дж и A₁₀=0.168) в 2004 г. [12], однако превысили аналогичные параметры за 2003 г. (ΣE=0.87·10¹² Дж и A₁₀=0.052 [22]). Высокая сейсмическая активность в 2004 г. на территории района № 2 в значительной степени была обусловлена возникновением Чалусского землетрясения 28.05.2004 г. с *Мw*=6.3 [18] на южном побережье Каспийского моря, сопровождаемого интенсивной серией афтершоков, а также сейсмическими событиями Этрекской и Горган-Гомбеде-Кабусской очаговых зон, где в 2004 г. были зарегистрированы четыре события с K_P=11.5-11.8 и одно – с K_P=13.2 [12]. В 2005 г. афтершоковая серия Чалусского землетрясения 28.05.2004 г. практически прекратилась или вышла на уровень K_P≤9, не регистрируемый сетью сейсмических станций Туркменистана на данном участке региона. В двух других вышеупомянутых очаговых зонах продолжалась повышенная сейсмическая активность, причем в Горган-Гомбеде-Кабусской – на более низком энергетическом уровне $K_P \leq 10$, а в Этрекской – на прежнем уровне – с *K*_P≤13. Этрекское землетрясение 07.10.2004 г. с *K*_P=13.2 (далее называемое как «Этрекское-I») вызвало интенсивную, но непродолжительную серию афтершоков с $K_P=6-$ 11 [12], после которой с 3 ноября 2004 г. наступило сейсмическое затишье (рис. 8). Оно продолжалось до 18^h47^m 10 января 2005 г., когда в очаговой зоне реализовался второй сильный (K_P=12.8) толчок – Этрекское-II землетрясение. Оно ощущалось в пос. Этрек (25 км) с интенсивностью *I*=3 балла, в Эсенгулы (55 км) – 2 балла.

Региональное решение механизма очага Этрекского-II землетрясения в [9] близко к решению HRVD [6] (рис. 3) как по азимутам осей сжимающих и растягивающих напряжений, так и по ориентации нодальных плоскостей. Однако различие в угле погружения оси растягивающих напряжений (близгоризонтальное – в [9] и близвертикальное – в [6]), при близгоризонтальной оси сжатия в обоих решениях приводит к преобладанию сдвиговой компоненты движения в очаге над взбросовой [9], в отличие от преимущественно взброса согласно решению HRVD [6]. По [9], в очаге Этрекского-I землетрясения 10 января произошел левый сдвиг по плоскости северо-восточного простирания (*NP1*) с незначительной взбросовой компонентой или правый взбросо-сдвиг по плоскости северо-западного простирания (*NP2*). Рассмотрение системы близлежащих разломов, которые имеют преимущественно северо-восточную или меридиональную ориентацию [16, 17], позволяет выбрать нодальную плоскость *NP2* в качестве плоскости разрыва. В пользу этого выбора говорит и северо-восточная или меридиональная ориентация всех нодальных плоскостей в решениях механизмов очагов для Этрекского-I землетрясения 07.10.2004 г. с $K_P=13.2$ и его главного афтершока 08.10.2004 г. с $K_P=11.5$ [12] (рис. 8).

Рис. 8. Месячные значения числа (*N*₃₀) землетрясений и суммарной сейсмической энергии (lg*E*) в 2004–2005 гг. в радиусе 50 *км* от пункта с координатами 37.4°N, 54.4°E

1 – логарифм помесячной суммарной энергии lgE; 2 – соответствующие значения N_{30} ; 3 – момент возникновения и энергетический класс землетрясений с $K_P \ge 10.9$; 4 – стереограмма механизма очага соответствующего землетрясения в проекции нижней полусферы.

Афтершоковая деятельность Этрекского-II землетрясения была наиболее интенсивна (N=21) в январе 2005 г. (табл. 8). Энергетический уровень повторных толчков $K_P \leq 8.9$ этого периода на четыре порядка ниже энергии основного толчка. В последующий период, вплоть до конца года, месячные числа землетрясений не превышали N=3, однако их энергетический уровень повысился до $K_P=10.9$ в августе и $K_P=11.5$ – в ноябре (рис. 8).

№	Дата,	t_0	Эпиг	центр	$K_{\rm P}$	h,	N⁰	Дата,	t_0	Эпиг	центр	Кр	h,
	мд	ч мин с	φ°, N	λ°, Ε	-	км		мд	ч мин с	φ°, N	λ°, Ε	-	км
		Основ	зной тол	чок			16	12.01	20 34 30	37.3	54.4	7.7	
1	10.01	18 47 31	37.53	54.59	12.8	17	17	12.01	22 32 51	37.4	54.4	8.0	
		A¢	тершоки	4			18	16.01	00 36 04	37.4	54.2	8.6	
2	10.01	19 32 19	37.4	54.5	7.6	<u>.</u>	20	16.01	19 32 47	37.4 37.41	54.2 54.26	0.7 84	2
3	10.01	19 39 11	37.4	54.5	7.5		20	27.01	15 48 27	37.4	54.20	89	2
4	10.01	19 42 20	37.3	54.4	7.7		22	27.01	20 34 40	37.4	54.2	8.9	
5	10.01	20 02 16	37.3	54.4	7.7		23	15.03	01 11 58	37.3	54.0	9.2	
6	10.01	20 56 12	37.3	54.4	8.0		24	16.03	18 50 00	37.32	54.36	8	2
7	10.01	21 13 30	37.3	54.4	8.9		25	26.03	01 04 58	37.4	54.5	8	
8	10.01	21 30 05	37.4	54.4	7.2		26	16.04	12 37 20	37.4	54.3	8	
9	10.01	22 01 28	37.4	54.4	7.5		27	08.05	12 27 29	37.64	54.41	7.9	
10	10.01	22 28 34	37.4	54.4	7.5		28	09.05	12 40 11	37.4	53.9	9.1	
11	11.01	00 27 22	37.4	54.5	7.6		29	28.06	16 11 56	37.04	54.26	8.2	20
12	11.01	00 51 05	37.22	54.29	8.6	18	30	26.08	02 21 40	37.47	54.07	10.9	20
13	11.01	00 56 24	37.4	54.4	7.8		31	29.09	19 18 18	37.47	54.7	7.8	2
14	11.01	01 14 32	37.4	54.4	7.2		32	29.11	05 57 06	37.4	54.4	11.5	
15	12.01	18 37 36	37.26	54.21	8.4	13	33	15.12	08 41 09	37.17	54.24	10.2	24

Таблица 8. Афтершоки землетрясения 10 января с *K*_P=12.8 в радиусе 50 км от центра (37.4°N, 54.4°E) области афтершоков, зарегистрированных в январе

Механизм очага афтершока с K_P =10.9, произошедшего 26 августа в 02^h21^m, представлял собой поддвиг восточного крыла пологого разрыва север–северо-западного простирания или сброс западного крыла крутого меридионального разрыва. В очаге землетрясения 29 ноября в

 $05^{h}57^{m}$ с K_{P} =11.5 произошел левый сдвиг с небольшой компонентой сброса по субмеридиональной плоскости или правый сдвиг, также с незначительной сбросовой компонентой по субширотной плоскости (рис. 3, 8).

В Туркмено-Хорасанском районе (№ 3) сейсмическая активность и выделившаяся сейсмическая энергия практически не изменились по сравнению с аналогичными показателями в 2004 г. [12].

Самое крупное (K_P =12.9) землетрясение здесь произошло 7 августа в 17^h23^m между иранскими городами Себзевар и Нишапур примерно в 50 км от каждого и на расстояниях более 140 км от приграничных населенных пунктов Туркменистана, где оно ощущалось с интенсивностью *I* до 3 баллов. В Ашхабаде (170 км) интенсивность сотрясений не превышала 2 баллов. В его очаге произошел левый взбросо-сдвиг по плоскости северо-восточного простирания (*NP1*) или правый взбросо-сдвиг по крутой плоскости северо-западного простирания (*NP2*). Представляется предпочтительным выбрать в качестве действующей плоскость *NP2*, поскольку она совпадает с ориентацией и сдвиговым типом движений по локализованному чуть восточнее Гермабскому разлому. Положение эпицентра по решению ISC [6] в 30 км к северо-востоку от установленного сейсмологической службой Туркменистана ([9], рис. 2, 3) позволяет отнести его к Гермабскому разлому.

Всего в 2005 г. в радиусе 60 км от эпицентра землетрясения 7 августа сейсмической службой Туркменистана зарегистрировано 41 сейсмическое событие (табл. 9), из них 19 предваряющих толчков и 21 афтершок. Максимальный (K_P =10.4) форшок произошел за 1^h20^m до основного толчка, энергетический класс максимального (K_P =9.0) афтершока 27 ноября почти на четыре порядка ниже энергии основного толчка.

N⁰	Дата,	<i>t</i> ₀ ,	Эпицентр		K_{P}	h,	N₂	Дата,	<i>t</i> ₀ ,	Эпицентр		$K_{\rm P}$	h,
	м д	ч мин с	φ°, Ν	λ° , Ε		КМ		мд	ч мин с	φ°, N	λ° , Ε		КМ
Форшоки							Афтершоки						
1	06.01	19 12 19	36.37	58.42	8.6	11	21	07.08	17 34 29	36.5	58.2	7.7	0
2	06.01	19 19 33	36.49	58.42	7.7	3	22	07.08	17 44 36	36.5	58.3	7.0	0
3	18.01	13 04 55	36.49	58.81	7.0	37	23	07.08	18 05 48	36.58	58.85	7.6	42
4	27.01	23 50 04	36.45	57.76	9.4	18	24	07.08	18 24 02	36.5	58.5	7.0	0
5	13.02	19 04 00	36.5	58.2	7.6	0	25	07.08	19 02 23	36.5	58.3	6.8	0
6	24.02	03 20 48	36.7	58.1	7.4	0	26	07.08	22 35 15	36.8	58.4	7.0	0
7	03.03	01 31 10	36.3	57.7	6.5	0	27	08.08	00 00 05	36.54	58.71	7.3	37
8	14.03	12 59 23	36.53	58.79	6.9	9	28	09.08	15 57 57	36.77	58.57	7.1	8
9	09.04	01 22 55	36.7	58.4	6.9	0	29	16.08	23 20 43	36.3	57.8	6.8	0
10	31.05	14 38 50	36.4	58.1	7.3	0	30	19.08	08 44 34	36.03	57.91	7.4	42
11	03.07	09 04 27	35.84	58.12	8.6	42	31	24.08	13 18 07	36.7	58.2	6.3	0
12	04.07	20 20 20	36.64	57.98	6.8	42	32	24.08	15 41 43	36.6	58	6.3	0
13	09.07	11 02 24	35.9	58.25	6.9	0	33	10.09	15 30 56	36.44	57.98	8.6	12
14	10.07	21 21 46	36.65	58.7	7.1	3	34	15.09	04 44 47	36.5	58.7	7.2	0
15	11.07	07 59 27	36.44	57.76	8.0	7	35	30.09	15 16 05	36.51	58.72	7.6	15
16	21.07	11 55 17	36.61	58.48	7.3	5	36	01.10	17 16 26	36.81	58.32	7.5	38
17	30.07	22 20 31	36.7	58.5	6.3	0	37	25.11	16 57 05	36.68	58.49	6.8	22
18	07.08	16 03 48	36.65	58.44	10.4	10	38	27.11	08 59 02	36.4	58.1	9.0	0
19	07.08	16 14 44	36.5	58.25	6.7	0	39	02.12	16 56 04	36.47	57.7	8.1	14
Основной толчок							40	05.12	20 30 23	36.6	58.4	7.2	0
20	07.08	17 23 46	58.27	36.36	12.9	20	41	20.12	23 30 00	36.6	58.5	8.3	0

Таблица 9. Форшоки и афтершоки землетрясения 7 августа в 17^h23^m с *K*_P=12.9 в радиусе 60 км от эпицентра главного события

В 2005 г. меридионально вытянутая южнее сейсмической станции «Сунче» Арчман-Боджнурдская очаговая зона продолжала генерировать землетрясения с $K_P \le 11.7$. Эта зона разделяет территорию Копетдагских гор на восточный участок с преимущественно северозападной ориентацией разрывов и западный с северо-восточной ориентацией разрывов, выявленных по геолого-геофизическим данным. Эпицентры землетрясений Арчман-Боджнурдской зоны с $K_P \ge 10$ «выстроились» в описываемый период вдоль оси АБ северо-восточной ориентации, поэтому для анализа пространственно-временного распределения сейсмических событий был выбран прямоугольник с такой же ориентацией (рис. 2). Все события проецировались на линию АБ с центром отсчета в эпицентре землетрясения 17 августа в $20^{h}55^{m}$ с K_{P} =11.7 (рис. 9).

Отметим, что в центре этой зоны ($r=50 \ км$ на рис. 9) произошло сильное ($K_P=12.9$) землетрясение21.08.2004 г., афтершоковая деятельность которого продолжалась на уровне $K_P \leq 9$ весь 2004 г. [12] и в январе 2005 г. В феврале наступило сейсмическое затишье, завершившееся 20 марта 2005 г. в $06^{h}24^{m}$ сильным афтершоком с $K_P=10.9$ (рис. 9). После него началась миграция эпицентров слабых сейсмических событий на северо-восток и юго-запад от его очага: на юго-западе в июне произошло три землетрясения с $K_P=10$ и множество более слабых, а на западе, в области Арчман-Нохурского тектонического узла пересечения разломов, возникли землетрясения 24 мая в $09^{h}23^{m}$ с $K_P=9.5$ и в $09^{h}23^{m}$ с $K_P=10$ и 26 мая в $19^{h}52^{m}$ с $K_P=11.5$. Механизм очага землетрясения 26 мая с $K_P=11.5$ представлял собой взброс южного крыла крутого разрыва восток–северо-восточного простирания (NP1) или надвиг северного крыла пологого разрыва северо-восточного простирания (NP2). Учитывая общеизвестный процесс надвига Копетдага на Предкопетдагский прогиб, а не наоборот, следует выбрать в качестве действующей плоскость NP1.

Землетрясения 24–26 мая вместе с их фор- и афтершоками явились событиями, предваряющими новую активизацию сейсмичности в этом узле в августе–сентябре (рис. 9).

Рис. 9. Пространственно-временное распределение сейсмических событий с *К*_Р≥6.6 в Арчман-Боджнурдской очаговой зоне

Границы выборки и ось проекции АБ показаны на рис. 2; центр отсчета совпадает с эпицентром землетрясения 17 августа с *К*_P=11.7; заштрихована наиболее активная область Арчман-Нохурского тектонического узла.

17 августа в 20^h55^m в Арчман-Нохурском тектоническом узле произошло самое сильное в 2005 г. в районе № 3 землетрясение с K_P =11.7, ощущавшееся в п. Ванновский (Δ =60 км) с интенсивностью *I*=2 балла. В его очаге, согласно [9], произошел взброс южного крыла крутого разрыва юго-восточного простирания (*NP1*) или почти горизонтальный надвиг северного крыла субширотного разрыва (*NP2*) (№ 10 на рис. 3). По тектоническим соображениям предпочтительней представляется плоскость *NP1*.

Большинство последующих толчков мигрировало на юг и юго-запад от события 17 августа, в том числе афтершок 10 сентября в $01^{h}09^{m}$ с K_{P} =10.7. Региональное решение механизма очага этого землетрясения в [9] дает левый сдвиго-сброс по субширотной или правый сдвиг по субмеридиональной плоскостям. Ни одна из плоскостей не совпадает с ориентацией близлежащих разрывов, возможно, из-за ненадежного решения, т.к. использовано всего семь знаков первых вступлений *P*-волн.

Декабрьская миграция эпицентров слабых землетрясений от очага 17 августа в югозападном направлении завершилась землетрясением 20 декабря в $00^{h}11^{m}$ с K_{p} =10.7 (рис. 9), сопровождаемым беспрецедентным числом афтершоков – только 20–21 декабря их зарегистрировано $N_{a\phi T}$ =84 с $K_{P} \le 8.6$. Его эпицентр лежит в очаговой зоне землетрясения 21.08.2004 г. с K_{P} =12.9 [12].

В Восточном Туркменистане (район № 4) суммарная сейсмическая энергия возросла с $\Sigma E=1.064 \cdot 10^{12} \ Д \mathscr{R}$ [12] до $6.8 \cdot 10^{12} \ Д \mathscr{R}$ (табл. 5). Сейсмическая активность осталась практически на прежнем уровне при повышении наклона графика повторяемости.

Самое крупное (K_P =12.8) сейсмическое событие в районе зарегистрировано 24 июля в 18^h05^m. По данным сейсмической службы Туркменистана (ССТ) [5], его эпицентр находился в 67 км южнее пос. Газли. ISC [6] относит этот эпицентр на 30 км к западу от эпицентра ССТ. Глубина гипоцентра h=24 км в бюллетене ISC совпадает с данными ССТ. В Туркменабаде (90 км) интенсивность сотрясений от этого землетрясения составила 3–4 балла [5].

28 мая в 14^h06^m в 15 км севернее пос. Газли зарегистрирован толчок с K_P =11.6. Землетрясению предшествовал один форшок, произошедший 6 апреля в 20^h06^m с K_P =9.0. Афтершоков зарегистрировано два: 17 августа в 01^h32^m с K_P =8.6 и 2 сентября в 10^h33^m с K_P =10.1.

В Гаурдак-Кугитангской и Каршинской очаговых зонах происходили слабые землетрясения с $K_P \le 9$ и лишь одно – 12 ноября в $11^h 38^m$ с $K_P = 9.6$.

6 марта в $10^{h}19^{m}$ на территории Северного Ирана произошло землетрясение с $K_{\rm P}$ =10.6 (рис. 2). С учетом более северного расположения этого эпицентра, по данным ISC [6], землетрясение 19 марта в $00^{h}27^{m}$ с $K_{\rm P}$ =10.2 является его афтершоком [5].

Литература

- 1. Рахимов А.Р., Славина Л.Б. Региональный годограф Копетдагской сейсмической зоны // Изв. АН ТССР. Сер. ФТХиГН. 1984. № 3. С. 31–38.
- 2. Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Труды ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 3. Рахимов А.Р., Соловьёва О.Н., Арбузова Г.Н. Определение магнитуды землетрясений Туркмении на эпицентральных расстояниях до 400 км // Изв. АН ТССР. Сер. ФТХиГН. 1983. № 5. С. 61–65.
- 4. **Голинский Г.Л.** Уравнения макросейсмического поля землетрясений Туркмении // Изв. АН ТССР. Сер. ФТХиГН. 1977. № 1. С. 69–74.
- 5. Сарыева Г.Ч. (отв. сост.), Тачов Б., Халлаева А.Т., Клочков А.В., Дурасова И.А., Клычева Э.Р., Эсенова А., Петрова Н.В., Мустафаев Н.С. Каталог землетрясений Копетдага за 2005 год (*N*=250). (См. Приложение к наст. сб. на CD).
- 6. Bulletin of the International Seismological Centre for 2005. Berkshire: ISC, 2007.
- 7. Петрова Н.В. Соотношения между оценками величины землетрясений Копетдага по данным различных сейсмологических центров // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 409–417.
- Петрова Н.В. Магнитуды в международной сейсмологической практике и их связь с энергетическим классом по сети сейсмических станций Туркменистана // Материалы Международной конференции «Наука, техника и инновационные технологии в эпоху великого возрождения». – Ашхабад: Ылым, 2010. – С. 83–86.
- 9. Безменова Л.В., Петрова Н.В., Петров В.А. (отв. сост.), Карцева Л.А. Каталог механизмов очагов землетрясений Копетдага за 2005 год (*N*=18). (См. Приложение к наст. сб. на CD).
- 10. http://irsc.ut.ac.ir
- Мострюков А.О., Петров В.А. Каталог механизмов очагов землетрясений Копетдага, 1964–1990. М.: Мировой центр данных, – Б, 1994. – 87 с.

- 12. Гаипов Б.Н., Петрова Н.В., Безменова Л.В., Сарыева Г.Ч. Копетдаг // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2009. С. 101–112.
- 13. Гаипов Б.Н., Петрова Н.В., Голинский Г.Л., Безменова Л.В., Рахимов А.Р. Балханское землетрясение 6 декабря 2000 г. с *Мw*=7.3, *I*₀=8–9 (Копетдаг) // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 306–320.
- Jackson J., Priestley K., Allen M. and Berberian M. Active tectonics of the South Caspian Basin // Geophys. J. Int. - 2002. - N 148. - P. 214-245.
- 15. Безменова Л.В., Петров В.А., Петрова Н.В. (отв. сост.). Каталог механизмов очагов землетрясений Копетдага за 2004 год (*N*=24). (См. Приложение к наст. сб. на CD).
- 16. **Мурадов Ч.М.** Сейсмогенерирующие зоны Туркменистана // Материалы Международной конференции «Урбанизация и землетрясения». Ашхабад: Ылым, 1999. С. 103–106.
- 17. Расцветаев Л.М., Бирман А.С., Полетаев А.И., Тихонов А.М. Тектоническая карта юга Средней Азии и сопредельных территорий. Масштаб 1:1000000. М.: МГУ, 1976.
- 18. **Петрова Н.В., Михайлова Р.С.** Чалусское землетрясение 28 мая 2004 г. с *Мw*=6.3, *I*₀~8 (Копетдаг) // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 297–302.
- 19. Сарыева Г.Ч. (отв. сост.), Петрова Н.В. Форшоки (*N*=25) и афтершоки (*N*=61) Сюльменского землетрясения 6 октября 2005 г. с *K*_P=12.1 (Копетдаг). (См. Приложение к наст. сб. на CD).
- 20. Сарыева Г.Ч. (отв. сост.), Петрова Н.В. Рои землетрясений 2–3 февраля (*N*=78) и 4–7 октября (*N*=56) в очаге Дянеатинского землетрясения 6 октября 2005 г. с *K*_P=10.7 (Копетдаг). (См. Приложение к наст. сб. на CD).
- 22. Гаипов Б.Н., Петрова Н.В., Безменова Л.В., Сарыева Г.Ч. Копетдаг // Землетрясения Северной Евразии, 2003. Обнинск: ГС РАН, 2009. С. 97–108.