ВОСТОЧНО-ЕВРОПЕЙСКАЯ ПЛАТФОРМА, УРАЛ и ЗАПАДНАЯ СИБИРЬ:

УДК 550.348.098.64 (470.21)

Восточная часть Балтийского Щита С.В. Баранов, С.И. Петров

Кольский филиал ГС РАН, г. Апатиты, bars@krsc.ru

Кольский филиал ГС РАН в 2005 г. проводил круглосуточный сейсмический мониторинг северо-западной части Российской Федерации и Европейского сектора Арктики (включая архипелаг Шпицберген и срединно-океанические хребты Северной Атлантики). На постоянной основе работали сейсмическая группа АРО (Апатитский ARRAY) в 17 км от г. Апатиты, аналоговая трехкомпонентная сейсмическая станция АРА в г. Апатиты, цифровая трехкомпонентная широкополосная станция АРА в г. Апатиты (рис. 1).

Рис. 1. Сеть сейсмических станций КФ ГС РАН в 2005 г.

Кроме того, продолжались наблюдения с помощью цифровых короткопериодных станций в зоне добычи апатит-нефелиновых руд в Хибинском массиве: станция GFR на Кировском руднике, RASV – на руднике Расвумчорр ОАО «Апатит». Такого же типа две станции BRBA и BRBB работали в зоне угледобычи на о. Западный Шпицберген (рис. 1). Все зарегистрированные сейсмические события обработаны, систематизированы и введены в базу данных. В нее введена также полученная от действующих горных предприятий информация о промышленных взрывах. Сведения о сейсмических станциях Кольского филиала ГС АН в 2005 г. приведены в табл. 1, 2.

Помимо сейсмомониторинга, проводились работы по модернизации и развитию программно-аппаратных средств систем сбора и обработки сейсмических данных. В частности, в КФ ГС РАН развивался новый подход к детектированию и классификации сейсмического сигнала с помощью «обобщенных огибающих». В 2005 г. он был реализован в программе для предварительной обработки записей одиночных сейсмических групп «МТR», которая используется в Институте динамики геосфер РАН для анализа данных сейсмической группы «Михнево». Разработана новая система сбора и обработки данных для цифровой станции типа GeoSIG+GBV-316B, работающая под управлением программного обеспечения Windows NT и отличающаяся от прежних систем тем, что привязка по времени, детектирование и локация сейсмических событий происходит непосредственно в компьютере, связанном со станцией. Данные, представляющие собой непрерывные волновые формы и их отдельные фрагменты, соответствующие сейсмическим событиям, сохраняются в формате CSS 3.0. Реализована возможность использования произвольных внешних устройств – МОД, flash, Div и т.д. Указанная система используется в сейсмическом мониторинге архипелага Шпицберген.

№	Станция		Дата	Координаты			Аппаратура			
	Название	Код	открытия	φ°, Ν	λ°, Ε	$h_{\rm y}$,	Тип Компо-		V _{max}	$\Delta T_{\rm max.}$
		межд.				м	прибора	нента		С
1	Апатиты	APA	01.07.1956	67.569	33.405	182	СКМ-3	Ζ	54700	0.50-0.80
							СКД	N, E, Z	1040	0.20–19
							КПЧ	Ζ	100	0.20–19
			01.10.1992				Guralp+CMG-3T			
2	Апатитская группа	APA0	01.10.1992	67.603	32.994	240	GEOTECH+S-500			
3	Баренцбург А	BRBA	01.01.2001	78.059	14.217	58	GeoSIG+GBV-316W			
4	Баренцбург В	BRBB	01.01.2001	78.093	14.208	80	GeoSIG+GBV-316W			
5	Хибины	GFR	11.01.2000	67.666	33.734	380	GeoSIG+GBV-316W			
6	Хибины	RASV	01.01.2001	67.641	33.798	420	GeoSIG+GBV-316W			

Таблица 1. Сейсмические станции КФ ГС РАН, действовавшие в 2005 г., и параметры аппаратуры с аналоговой записью

Таблица 2. Данные об аппаратуре цифровых	станций Кольского фил	иала ГС РАН в 2005 г.
--	-----------------------	-----------------------

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф, отсчет/(<i>м/c</i>)
Апатиты	Guralp+CMG-3T	BH(N, E, Z) v	0.01-16	40	16	$3.28 \cdot 10^8$
Апатитская группа	GEOTECH+S-500	9*S(Z) v	1–16	40	16	$1.47 \cdot 10^{10}$
		BH(N, E, Z) v	1-32	80	16	$1.47 \cdot 10^{10}$
Баренцбург А	GeoSIG+GBV-316W	SH(N, E, Z) v	1-50	100	16	$3.6 \cdot 10^{6}$
Баренцбург В	GeoSIG+GBV-316W	SH(N, E, Z) v	1-50	100	16	$3.6 \cdot 10^{6}$
Хибины GFR	GeoSIG+GBV-316W	SH(N, E, Z) v	1-50	100	16	$3.6 \cdot 10^{6}$
Хибины Rasv	GeoSIG+GBV-316W	SH(N, E, Z) v	1-50	100	16	$3.6 \cdot 10^{6}$

Продолжались работы по подбору оптимальной комплектации серийной аппаратуры для создания мобильного сейсмического комплекса, адаптированного к арктическим условиям и пригодного для оперативного развертывания в удаленных районах при отсутствии электроснабжения. Такой комплекс предполагалось использовать для осуществления сейсмических наблюдений на архипелаге Шпицберген в дополнение к имеющейся там постоянной сети сейсмических станций для повышения точности локации слабых малоглубинных событий в шахтных полях. Полевые испытания опытного образца были проведены в районе рудника «Баренцбург» на Шпицбергене в третьем квартале 2005 г. и показали, что комплекс нуждается в доработке, но одновременно с этим подтвердили необходимость установки в этом районе дополнительной сейсмической станции.

В 2005 г. в пределах Кольского п-ва и прилегающих территорий Апатитские сейсмические станции зарегистрировали 25 слабых сейсмических событий (рис. 2), которые были идентифицированы как землетрясения. Из них 11 событий произошли в Ловозерском горном массиве. Максимальная магнитуда здесь составила ML=1.68 и характеризует событие, зарегистрированное 6 мая в $00^{h}13^{m}$. На всей названной территории наиболее сильное землетрясение имело магнитуду ML=1.95 и произошло в Кандалакшском заливе 17 марта в $10^{h}24^{m}$.

N⁰	Дата,	$t_0,$	Эпицентр		ML	K	Район
	дм	ч мин с	φ°, N	λ°, Ε			
1	05.01	05 37 30	68.216	35.009	1.36	4.90	Севернее Ловозерского массива
2	19.01	14 47 30	67.882	34.771	1.08	4.35	Ловозерский массив
3	19.01	15 21 50	66.208	32.923	1.69	5.56	Кандалакшский залив
4	30.01	21 35 10	67.935	34.609	1.53	5.24	Ловозерский массив
5	16.02	06 48 31	67.330	32.151	1.74	5.66	Кандалакшский залив
6	19.02	16 13 45	67.703	33.401	0.15	2.46	Хибинский массив
7	23.02	00 34 42	67.350	32.205	0.67	3.52	Кандалакшский залив
8	08.03	12 21 40	67.919	34.828	1.42	5.02	Ловозерский массив
9	17.03	10 24 55	66.342	33.627	1.95	6.07	Кандалакшский залив
10	18.03	01 49 45	67.129	32.246	1.09	4.37	Кандалакшский залив
11	06.05	00 13 41	67.853	34.699	1.68	5.54	Ловозерский массив
12	19.05	22 28 27	67.910	34.575	1.09	4.37	Ловозерский массив
13	20.06	07 31 47	68.404	33.585	1.32	4.82	Мурманск
14	12.07	07 19 11	67.824	33.641	1.70	5.58	Хибинский массив
15	27.07	04 24 53	67.942	34.591	1.24	4.67	Ловозерский массив
16	27.07	17 29 19	67.98	35.625	1.77	5.71	Ловозерский массив
17	13.08	16 36 24	68.250	34.507	1.38	4.94	Севернее Ловозерского массива
18	28.08	11 01 27	68.885	33.841	1.88	5.93	Мурманск
19	01.10	01 22 59	67.228	32.589	1.72	5.62	Кандалакшский залив
20	23.10	00 34 07	66.714	32.890	1.66	5.50	Кандалакшский залив
21	19.11	20 07 21	67.913	34.712	1.05	4.29	Ловозерский массив
22	02.12	00 04 00	66.805	32.408	1.65	5.48	Кандалакшский залив
23	09.12	16 50 53	67.960	34.542	1.27	4.73	Ловозерский массив
24	16.12	17 19 41	67.853	34.699	1.12	4.43	Ловозерский массив
25	18.12	07 25 49	67.933	34.789	1.11	4.41	Ловозерский массив

Таблица 3. Землетрясения на Кольском полуострове и прилегающих территориях в 2005 г.

Рис. 2. Землетрясения на Кольском полуострове и прилегающих территориях в 2005 г.

Кроме того, сейсмические станции зарегистрировали ряд региональных землетрясений в пределах о-вов Шпицберген, Норвежского моря, Норвегии, Швеции и Финляндии с магнитудами *ML*=2.74–3.69 (табл. 4, рис. 3).

					1	1	
N⁰	Дата,	Дата, t_0 , Эпи		центр МL		К	Район
	д м	ч мин с	φ°, Ν	λ° , Ε			
1	20.01	17 28 14	79.879	22.923	3.21	8.49	Шпицберген
2	28.01	14 45 15	69.011	9.7427	3.12	8.32	Норвежское море
3	01.03	09 58 35	76.945	25.704	3.31	8.68	Шпицберген
4	02.04	06 06 48	79.008	11.941	3.51	9.06	Шпицберген
5	02.04	06 34 34	79.399	13.841	3.28	8.63	Шпицберген
6	02.04	12 52 41	78.931	11.368	3.69	9.40	Шпицберген
7	13.05	18 53 37	63.717	16.422	3.21	8.49	Швеция
8	18.07	22 51 45	80.269	35.722	3.24	8.55	Шпицберген
9	13.08	23 23 21	81.251	20.352	3.68	9.38	Шпицберген
10	20.08	10 51 33	71.665	11.799	3.52	9.08	Норвежское море
11	06.09	10 00 29	67.898	28.593	1.83	5.83	Финляндия
12	16.09	12 53 07	69.443	20.705	2.74	7.60	Норвегия
13	27.10	20 26 10	73.475	12.760	2.90	7.90	Норвежское море
14	15.12	16 47 08	66.491	12.989	3.09	8.27	Норвегия

Таблица 4. Региональные землетрясения в 2005 г.

Рис. 3. Региональные и локальные землетрясения в 2005 г.

Определение координат эпицентров и магнитуд зарегистрированных событий осуществлялось по данным цифровой и аналоговой аппаратуры аналогично определениям в 2004 г. [1, 2]. Каталог землетрясений [3], включающий события из табл. 3, 4, помещен в Приложении.

По результатам наблюдений в 2005 г. сейсмическая активность на исследуемой территории оценивается как слабая.

Литература

- 1. Виноградов А.Н., Виноградов Ю.А., Петров С.И., Асминг В.Э., Баранов С.В., Нахшина Л.П. О сейсмических наблюдениях Кольского регионального сейсмологического центра ГС РАН за 2004 год (Отчет за 2004 г.). Обнинск: Фонды ГС РАН, 2005. 52 с.
- 2. Баранов С.В., Петров С.И. Восточная часть Балтийского щита // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 216–219.
- 3. Баранов С.В., Петров С.И., Нахшина Л.П. (отв. сост.). Каталог землетрясений Северо-Восточной части Балтийского щита за 2005 год (*N*=40). (См. Приложение к наст. сб. на CD).