АРКТИЧЕСКИЙ БАССЕЙН

Г.П. Аветисов

ВНИИ геологии и минеральных ресурсов Мирового океана Министерства природных ресурсов Российской Федерации, г. Санкт-Петербург, avet@vniio.nw.ru

Рассматриваются землетрясения, попадающие в рамки девятиугольника со следующими координатами угловых точек (рис. 1): 1. Северный полюс; 2. φ =81°N, λ =10°W; 3. φ =81°N, λ =29°E; 4. φ =70°N, λ =29°E; 5. φ =70°N, λ =68°E; 6. φ =76°N, λ =68°E; 7. φ =76°N, λ =162°E; 8. φ =74°N, λ =162°E; 9. φ =74°N, λ =168°W; 10. Северный полюс. В этих пределах в 2005 г. не работало ни одной сейсмологической станции, поэтому, как и в прошлые годы [1], представляемая информация о землетрясениях соответствует исключительно данным [2, 3] мировой сети, вводимым последовательно в Банк арктических сейсмологических данных (APC), структура которого описана в [4].

Всего в течение 2005 г. мировой сетью в пределах указанного региона зарегистрировано 73 землетрясения [5], охарактеризованных определениями магнитуд по данным ISC (m_b и Ms), NEIC (m_b и Ms), EIDC (m_b и Ms), MOS (MPSP и MS) и NAO (ML). Карта эпицентров землетрясений за 2005 г. изображена на рис. 1. Как показано в [1] и подтверждено в [6], представительными для данного региона в настоящее время являются землетрясения, начиная с $m_b \ge 4.5$.

Рис. 1. Карта эпицентров землетрясений Арктического бассейна за 2005 г. Числа 1–13 соответствуют номерам землетрясений с $m_b \ge 4.5$ в графе 2 каталога [5].

Картина распределения эпицентров в 2005 г. типична для данного района Арктики: большая часть землетрясений (65 из 73) связаны с сейсмоактивной зоной, протягивающейся

через глубоководную часть Арктического бассейна до шельфа моря Лаптевых. Указанная зона является фрагментом глобального сейсмического пояса срединно-океанических хребтов, трассирующего дивергентные границы литосферных плит. В глубоководной части Северного Ледовитого океана она приурочена к гребню подводного хр. Гаккеля, являющегося продольной осью Евразийского суббассейна. По ней проходит граница Евразийской и Североамериканской литосферных плит [7–10]. В 2005 г., как и в 2004 г. [11], высокой активностью отличался фрагмент хребта между 90°E и 100°E, на котором в прошлые годы отмечалось затишье. Здесь произошло девять землетрясений с $m_b > 5.0$, в том числе 6 марта в $05^h 21^m$ зарегистрировано событие с $m_b(ISC)=5.9$.

В зоне сочленения глубоководной части Северного Ледовитого океана с шельфом моря Лаптевых, где, как известно [12–14], единая линия землетрясений раздваивается и обтекает с востока и запада Лаптевскую микроплиту, в 2005 г. не отмечено ни одного землетрясения.

Восемь слабых землетрясений с *ML*(NAO)=2.2–3.8 произошли в Баренцевом море на северном и западном обрамлениях архипелага Шпицберген, где и раньше отмечались проявления повышенной сейсмичности, обусловленной разрядкой напряжений в ослабленных зонах литосферы, генерируемых на границе литосферных плит.

Решения фокальных механизмов выбраны из бюллетеней ISC для тринадцати землетрясений [15]. Движения во всех очагах типа нормального сброса (рис. 2 а). Из этих тринадцати землетрясений восемь относятся к указанной выше зоне между 90°E и 100°E. Субгоризонтальная ось растяжения имеет простирание с северо-востока на юго-запад (среднее значение азимута – 35° –215°). Максимальное отклонение от среднего в 25° дало определение MOS по землетрясению от 6 марта в $05^{h}21^{m}$. Как видно на рис. 2 б, это простирание субортогонально простиранию хр. Гаккеля на этом участке. Такое же соотношение простираний оси *T* и хр. Гаккеля отмечается и на других участках, т.е. азимут оси *T* меняется вслед за изменением азимута простирания хребта.

Рис. 2 а. Стереограммы фокальных механизмов 13 землетрясений Арктики в 2005 г. (в проекции нижней полусферы)

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия; в верхнем ряду для каждого решения указаны число, месяц и агентство.

Распределения годового числа землетрясений и выделенной сейсмической энергии за период 1990–2005 гг. даны в табл. 1. Энергия *Е* рассчитывалась по формуле К. Касахара из [16]:

$$lgE$$
, $3pc=5.8 + 2.4 m_b$,

в которой использовались значения *m*_b (ISC).

Рис. 2 б. Карта эпицентров землетрясений в 2005 г., имеющих решение механизма очага

Распределение энергии за этот период проиллюстрировано также на рис. 3.

Таблица 1. Годовые числа землетрясений разных магнитуд *m*_b и суммарной выделенной сейсмической энергии Σ*E* в Арктическом бассейне за 1990–2005 гг.

Год	mb						N_{Σ}	ΣE ,
	3.1-3.5	3.6-4.0	4.1-4.5	4.6-5.0	5.1-5.5	5.6-6.0	1	10 ¹¹ Дж
1990	1	2	4	5	1		13	0.9
1991		1	3	5	3		12	13
1992	2	1	6	1	1	1	12	93
1993	1	1	6	9	1		18	3.3
1994	2	1	1	3			7	0.8
1995	2	10	10	3			25	0.8
1996	3	7	2				12	0.02
1997	6	7	2	1		1	17	18
1998	3	14	8	3			28	1.0
1999	33	122	79	29	4		267	15
1999 (без роя)	3	5	3	4	1		16	2.2
2000	3	17	7		1		28	1.3
2001	4	10	3	3			20	0.3
2002	5	7	3	1	2		18	3.4
2003	9	7	3	2	1		22	1.5
2004	11	10	10	2	1		34	11
2005	11	28	10	10	3	1	63	101
Сумма	96	245	157	77	18	3	596	264.3
Сумма (без роя)	66	128	81	52	15	3	345	251.5
Среднее за 1990–2005 гг.	6.000	15.313	9.813	4.813	1.125	0.188	37.250	16.519
Среднее без роя 1999 г.	4.125	8.000	5.063	3.250	0.938	0.188	21.563	15.719

Рис. 3. Изменение во времени выделенной в регионе сейсмической энергии в 1990-2005 гг.

Для более полного представления об особенностях сейсмического режима в регионе на основе информации, заложенной в АРС, построен график изменения во времени количества выделившейся в очагах сейсмической энергии за более длительный период – 1970–2005 гг. (рис. 4). Использованы только представительные землетрясения с магнитудами $m_b \ge 4.5$ (в 1996 г. таких землетрясений не было). Повышенное значение высвобожденной сейсмической энергии отмечено в 1973, 1975 и 1976 гг., затем, после десятилетнего спада, появились максимумы в 1988 и 1992 гг., когда 21 марта и 17 февраля, соответственно, произошли землетрясения с $m_b=5.9$, далее резкий спад в 1996 г. и снова максимум в 2005 г., обусловленный землетрясением 6 марта с $m_b=5.9$. В этот же день практически в том же очаге имели место два события с $m_b=5.0$ и 5.2. При указанных достаточно резких флуктуациях устанавливается, тем не менее, заметный положительный тренд – общее повышение количества высвобождающейся сейсмической энергии в исследованные 25 лет.

Рис. 4. Временной ход количества выделенной в очагах сейсмической энергии за 35 лет

Любопытная особенность отмечается в распределении суммарной сейсмической энергии землетрясений ΣE , Д ж по месяцам (рис. 5). За исключением 1970-х годов, когда сейсмическая активность была наименее интенсивной, по количеству выделенной сейсмической энергии доминируют февраль и март. В эти месяцы произошли все три сильнейших в рассматриваемом регионе землетрясения с m_b =5.9. В 1970-е годы относительно большая активность наблюдалась в сентябре. Аналогичное исследование, проведенное О.А. Владимировым [17] для всего Арктического региона за период 1900–1960 гг., выявило повышенную активность в августе. В качестве первого предположения можно высказать мысль о приуроченности этого всплеска к периодам перехода от полярного дня к полярной ночи и наоборот.

Рис. 5. Круговые диаграммы распределения суммарной сейсмической энергии Σ*E*·10¹⁰ Дж по месяцам а – 1970–2005 гг.; б – 1970–1979 гг., в – 1980–1989 гг.; г – 1990–1999 гг.; д – 2000–2005 гг.

В распределении числа N событий по времени суток (рис. 6) отмечается незначительное преобладание активности в первой половине суток. Среди дней недели наибольшая активность пришлась на четверг (рис. 7).

Рис. 6. Распределение землетрясений по времени суток за 2005 г.

Рис. 7. Распределение землетрясений по дням недели за 2005 г.

Литература

- 1. **Аветисов Г.П.** Арктический бассейн за 1990–1994 гг. // Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 117–121.
- 2. Bulletin of the International Seismological Centre for 2005. Berkshire: ISC, 2007.
- 3. Сейсмологический бюллетень (ежедекадный) за 2005 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2005–2006.
- 4. Аветисов Г.П., Винник А.А., Копылова А.В. Модернизированный банк арктических сейсмологических данных // Российский геофизический журнал. – 2001. – № 23–24. – С. 42–48.
- 5. Аветисов Г.П. (сост.). Каталог землетрясений Арктического бассейна за 2005 год (*N*=73). (См. Приложение к наст. сб. на CD).

- 6. Аветисов Г.П. Арктический бассейн за 2001 год // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 248–251.
- 7. Sykes L.R. The seismicity of the Arctic // Bull. Seismol. Soc. Am. 1965. -55. N 2. P. 519-536.
- Карасик А.М. Магнитные аномалии хребта Гаккеля и происхождение Евразийского суббассейна Северного Ледовитого океана // Геофизические методы разведки в Арктике. Ленинград: НИИГА, 1968. Вып. 5. С. 8–19.
- 9. The Arctic Ocean region / The Geology of North America (edited by Grantz A., Johnson L. and Sweeney J.F.). The Geological Society of America. 1990. L. 644 p.
- 10. Аветисов Г.П. Сейсмоактивные зоны Арктики. СПб: ВНИИокеангеологии, 1996. 185 с.
- 11. Аветисов Г.П. Арктический бассейн // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 234–237.
- 12. Аветисов Г.П. Некоторые вопросы динамики литосферы моря Лаптевых // Физика Земли. 1993. № 5. С. 28–38.
- Avetisov G.P. Geodynamics of the zone of continental continuation of Mid-Arctic earthquakes belt (Laptev Sea) // Physics of the Earth and Planetary Interiors. – 1999. – 114. – N 1–2. – P. 59–70.
- Аветисов Г.П. О границе литосферных плит на шельфе моря Лаптевых // ДАН. 2002. 385. № 6. С. 793–796.
- 15. **Аветисов Г.П. (сост.).** Каталог механизмов очагов землетрясений Арктического бассейна за 2005 год (*N*=13). (См. Приложение к наст. сб. на CD).
- 16. Касахара К. Механика землетрясений. М.: Мир, 1985. С. 25.
- 17. Владимиров О.А. Некоторые статистические характеристики землетрясений в Арктике // Известия Всесоюзного географического общества. 1968. № 5. С. 442–444.