Армения

Г.В. Саргсян, Г.Р. Абгарян, Л.С. Саргсян

Агентство Национальной службы сейсмической защиты Республики Армения, г. Ереван, heghinesar@mail.ru

В 2005 г. сеть сейсмологических наблюдений на территории Республики Армения, по сравнению с таковой в [1, 2], не изменилась и состояла из 8 аналоговых и 28 телеметрических станций. При обработке сейсмологического материала большую роль сыграли данные сейсмических станций Нагорного Карабаха «Степанакерт» и «Мартакерт», т.к. они значительно перекрывают восточную зону, но еще нуждаются в доработке. Положение всех станций и обеспечиваемая ими энергетическая представительность землетрясений показаны на рис. 1.

Puc. 1. Карта расположения аналоговых и телеметрических станций на территории Армении по [1] и изолинии *K*_{min} в 2005 г.

1, 2 – аналоговая и телеметрические сейсмическая станции соответственно; 3 – изолиния K_{\min} ; 4 – центр сбора и обработки данных; 5 – государственная граница.

Уровень представительной регистрации землетрясений, показанный на рис. 1 и рассчитанный минимум по трем станциям, соответствует $K_{3\min}$ =8 для всей территории Армении. На карте отмечены два центра обработки сейсмологической информации в городах Ереване и Гюмри, оперативно собирающие данные из наблюдательных пунктов.

Но, к сожалению, в самой Армении имеется большое число землетрясений с K_P <9.5, зарегистрированных на сейсмических станциях «Варденис» и «Степанаван» в радиусе до 200 км, которые не локализованы из-за отсутствия данных с востока и северо-востока. Для них известны лишь времена (t_S - t_P , c), которые можно использовать для расчета приближенных значений эпицентральных расстояний. Для наглядного представления числа нелоцированных землетрясений разных классов, например, только по данным станции «Варденис», приведен график распределения таких землетрясений (рис. 2) в координатах (Δ , K_P).

Рис. 2. Распределение землетрясений разных классов, записанных сейсмической станцией «Варденис», не вошедших в каталог

Как видим, много землетрясений с 4.0<*К*_Р≤9.0 попадают в область с радиусом до 60 км. Их список дан в Приложении [3] к наст. сб. В этой связи просьба к коллегам из соседних стран обменяться данными по отмеченным в списке [3] землетрясениям и составить сводный бюллетень для их обработки. Поэтому при изучении изменения В пространстве некоторых параметров сейсмического режима необходимо учитывать подобные детали, которые иногда принимаются за локальные сейсмические затишья.

Методы определения основных параметров землетрясений [4–7] не изменились. Использовались данные аналоговых и телеметрических станций НССЗ РА, а

для более сильных землетрясений – сведения Геофизической службы РАН, сети станций Грузии, Национального центра информации о землетрясениях Геологической службы США (NEIC), Европейско-Средиземноморского сейсмологического центра (CSEM). Обработка сейсмологического материала проводилась машинным способом по программе НУРО-71 [7] для ближней зоны и ручным (методом засечек и изохор). Общее число зарегистрированных землетрясений сетью сейсмологических наблюдений НССЗ РА в 2005 г. в пределах координат ϕ =37.5–43.0°N, λ =39.0–49.0°E превысило *N*=985, из которых локализованы 546 [8]. Карта их эпицентров изображена на рис. 3.

Рис. 3. Карта эпицентров землетрясений для территории Республики Армения и прилегающих государств за 2005 г. по данным каталога [8] с сеткой разломов по тектонической карте А.А. Габриеляна [9]

Многие эпицентры на рис. 3 находятся вне государственных границ республики. Традиционно в *ped*. для дальнейшего анализа оставлены только землетрясения, локализованные на приграничных территориях Грузии и Азербайджана не далее 30 км от границ Армении; по территории Ирана – некоторое ограничение по долготе (не более 48.3°Е); в пределах Турции оставлены все эпицентры. В итоге в публикуемом в каталоге [10] содержится 418 землетрясений (табл. 1). Карта их эпицентров по формату Сборника дана на рис. 4.

Годы	N_{Σ}	ΣΕ,									
	5	6	7	8	9	10	11	12	13		10 ¹² Дж
2005 в [8]	2	55	137	114	110	65	47	10	6	546	103.478
2005 в [10]	2	53	133	91	60	38	29	6	6	418	95.337
2005 в Армении	1	28	41	38	6	5	0	0	1	121	10.055

Таблица 1. Числа землетрясений разных классов и суммарная сейсмическая энергия по [10]

Рис. 4. Карта эпицентров землетрясений Армении за 2005 г. по [10]

1 – энергетический класс *K*_P; 2, 3 – сейсмическая станция аналоговая и телеметрическая соответственно; 4 – населенный пункт; 5, 6 – государственная граница других стран и Армении соответственно. Номера землетрясений соответствуют таковым в графе 1 каталога [10].

Построенные по [10] гистограммы распределения числа землетрясений N и высвобожденной энергии ΣE в 2005 г. показаны на рис. 5. Больше всего землетрясений реализовалось в январе (N=58) и декабре (N=70), меньше – в мае (N=10). По энергии выделяются январь (ΣE =37.019·10¹² Дж) и март (ΣE =25.475·10¹² Дж), в остальные месяцы уровень высвобожденной энергии очень низкий (от 0.093·10¹² Дж до 10.588·10¹² Дж).

График повторяемости землетрясений, рассчитанный по данным табл. 1 и изображенный на рис. 6, характеризуется очень низким наклоном γ , равным $\gamma = -0.23 \pm 0.02$, что, возможно, вызвано большим числом землетрясений с $K_P \ge 11.6$ (табл. 2). Уравнение графика повторяемости, рассчитанное методом ортогональной регрессии, имеет вид:

$$\log N = (3.9 \pm 0.3) - (0.23 \pm 0.02) K_{\rm P}$$

N₂	Дата,	$t_0,$	Эпицентр		h,	h,	$K_{\rm P}$	Магнитуды						Территория
	д м	ч мин с	φ°, Ν	λ°, Ε	км	КМ		М	MS,	Ms,	MPSP,	Mb,	Mw,	
			-					[8]	[16]	[15]	[16]	[15]	[16]	
1	25.01	15 24 21.2	37.80	44.13	20	17*	12.5	4.1	4.2	4.3	5.0	4.7	5.2	Турция
2	25.01	16 43 55.0	37.60	43.80	30	22*	13.5	5.7	5.5	5.6	5.5	5.3	5.9	Турция
3	30.01	06 06 42	38.82	44.52	30		12.0				4.5	4.1		Иран
4	12.03	07 36 14	39.54	40.87	30	21*	12.5	5.3	5.1	5.2	5.4	5.3	5.6	Турция
5	13.03	03 02 20	39.60	46.0		17*	12.0			4.0	4.8	4.5	4.7	Сисианск
6	14.03	01 55 55	39.24	40.87	40	24*	13.0	5.6	5.5	5.6	5.6	5.4	5.8	Турция
7	14.03	04 58 09	39.50	40.80	50		12.0			4.1	4.7	4.5	4.9	Турция
8	23.03	21 44 54.5	39.40	40.90	30	17*	13.0		5.1	5.3	5.4	5.1	5.6	Турция
9	12.05	09 25 54	40.46	37.29		15*	12.0			3.9	5.0	4.7	4.9	Турция
10	06.06	07 41 29	39.40	41.00	10		13.0	5.2	5.2	5.3	5.1	4.9	5.7	Турция
11	17.08	18 26 40.5	39.34	44.65	10		11.6	4.1		3.3	4.4	3.6		Иран
12	26.09	18 57 10	40.60	42.90	50	17*	13.0	5.4		4.2	5.2	5.0	5.2	Турция
13	10.12	00 09 40	39.44	40.90	20	13*	13.0		4.7	4.9	5.3	5.0	5.4	Турция

Таблица 2. Сильные (*К*_Р≥11.6) землетрясения в 2005 г. по [10]

Рассмотрим более детально пространственное распределение землетрясений. При этом наибольший интерес представляют землетрясения, зарегистрированные в самой Армении, которых оказалось N_{Σ} =121. Их распределение по классам представлено в нижней строке табл. 1. В 2005 г. на территории республики особо сильных землетрясений не было, но, как видно из рис. 3 и 4, сработали все очаговые зоны сильных землетрясений, кроме очаговой зоны Спитакского разрушительного землетрясения [11], правда, за исключением северо-западного участка, который характеризуется наибольшей плотностью эпицентров в приграничной с Грузией зоне в пределах Джавахетского нагорья. В 2005 г. на северо-западе республики на расстоянии 19 км от с. Бавра происходили ощутимые землетрясения с интенсивностью до *I*=3–4 балла. Наиболее сильные из них – это землетрясения 16 декабря в 04^h02^m с K_P =11.5 (φ =41.43°N, λ =43.95°E) и 17 декабря в 06^h26^m с K_P =11.0 (φ =41.19°N, λ =43.86°E) с интенсивностью *I*₀=5 баллов в эпицен-

тре. Очаги землетрясений в этой зоне мигрируют в Арпаличском водохранилище с севера на юго-запад. Землетрясение 16 декабря ощущалось с интенсивностью *I*=4–5 баллов в Бавре (19 км); 3–4 балла – в Ашоцке (31 км), Гюмри (40 км), Степанаване (59 км).

Интересна также цепочка эпицентров, которая тянется от оз. Урмия по транскавказскому направлению на север, вдоль разлома, близпараллельного меридиану λ =44°, вплоть до пересечения с разломом северо-восточного простирания, секущего Армению южнее оз. Севан (рис. 3). Возле оз. Севан, на юго-востоке, хорошо видна область повышенной плотности эпицентров в зоне пересечения названного выше разлома северо-восточного простирания с весьма протяженным разломом северо-западного простирания. Заметна сейсмичность на крайнем юге республики, в приграничной зоне с Нахичеванской территорией.

Однако самым важным в 2005 г. событием в пределах Республики Армения является, безусловно, ощутимое Сисианское землетрясений 13 марта в $03^{h}02^{m}$ с K_{P} =12.0 с интенсивностью в эпицентре I_{0} =6 баллов. Оно обследовано и детально описано в статье [12] наст. сб. Его макросейсмическое поле имеет эллипсоидную форму, вытянутую вдоль Сомхето-Кафанского глубинного разлома. Инструментальный эпицентр, по данным сети НССЗ Республики Армения, расходится с данными других агентств, видимо, из-за использования ими данных станций, далеких от эпицентра [12], тогда как локация в НССЗ была выполнена по прямым волнам от близких станций – «Варденис», «Горис», «Каджаран», «Ереван», «Степанаван», «Степанакерт», «Каджаран», «Егвард», «Мегри», «Каджаран».

Следует отметить также небольшой энергии (K_P =9.8) землетрясение в окрестностях г. Ереван (φ =40.25°N, λ =44.39°E) с интенсивностью сотрясений в городе *I*=4–5 баллов, произошедшее 29 июля в 21^h09^m. Землетрясение сопровождалось гулом, вызвало панику среди населения, люди были в испуге; был период сдачи экзаменов для абитуриентов, поступающих в ВУЗы, среди которых много приезжих. До трех баллов в Ереване (85 км) ощущалось другое землетрясение с K_P =11.3, *M*=4.0, произошедшее 1 сентября в 18^h17^m и локализованное у подножья горы Арарат (φ =39.50°N, λ =44.43°E). В г. Арарат (55 км) оно вызвало сотрясения с *I*=3– 4 балла [10].

Из землетрясений, локализованных вне Армении, но близко к ее южным границам, заслуживают внимания два толчка в Иране, на северо-западе (ϕ_1 =39.00°N, λ_1 =44.85°E), севере (ϕ_2 =39.10°N, λ_2 =47.50°E) и одно – в приграничном районе с Нахичеванью (ϕ =39.02°N, λ =46.00°E). Все три события одинакового класса K_P =11.0 и вызвали сотрясения в южных районах Армении. Иранские события были зарегистрированы 31 января в 00^h58^m и 14 сентября в 16^h52^m. Первое из них ощущалось с интенсивностью 3–4 балла – в Кафане (120 км) и 3 балла – в Горис (134 км) и Мегри (139 км); второе – 3–4 балла в Кафане (85 км) и 3 балла – в Горис (102 км) и Мегри (105 км). Землетрясение с эпицентром в Нахичевани ощущалось с интенсивностью *I*=4 балла в Мегри (20 км), Кафане (45 км) и Горис (65 км) [10].

Рассмотрим сильные (*K*_P≥11.6) землетрясения (табл. 2), удаленные от границ Армении. Большая их часть локализована в Турции. Для некоторых имеются решения механизма их очагов агентств HRVD, NEIC или ZUR, помещенные в Приложении к наст. сб. в двух каталогах – в основном [13] и дополнительном [14]. Первый из них приведен ниже, в табл. 3. В Иране всего два сильных землетрясения (3, 11), для которых, к сожалению, механизмы очагов не определены.

Самая многочисленная группа сильных землетрясений (4, 6–7, 8, 10, 13) реализовалась к северо-западу от оз. Ван между двумя широтными анатолийскими разломами с марта по декабрь. Тип подвижки в их очагах – сдвиги с компонентами сброса по обеим нодальным плоскостям. В очаге (13) такой же механизм только по плоскости NP1, а по близвертикальной $(DP_2=87^\circ)$ плоскости NP2 – чистый сдвиг. И лишь в одном очаге (7) из этой группы произошли сдвиги, левосторонний – по NP1 и правосторонний – по NP2 с незначительными компонентами взброса (рис. 7).

Вблизи Черного моря зарегистрировано одиночное землетрясение (9) без форшоков и афтершоков. Подвижка в его очаге – чистый сброс по обеим нодальным плоскостям (рис. 8). Практически на той же широте, но вблизи границы Армении с Грузией записано землетрясение (12), в очаге которого по обеим нодальным плоскостям подвижка типа взброс с небольшими компонентами левостороннего сдвига по плоскости *NP*1 и правостороннего – по *NP*2 (рис. 8).

N⁰	Дата,	t_0 ,	<i>h</i> , Магнитуды			<i>h</i> , Магнитуды		Магнитуды			$K_{\rm P}$	Oc	и гла	вны	х нап	ряж	ений	Н	ода.	льные	е пло	скос	ти	Агент-
	д м	ч мин с	км	Mw	Ms	MPSP	$m_{\rm b}$			Т		Ν		Р		NP	1		NP2	2	ство			
									PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP				
4	12.03	07 36 12.8	19	5.6	5.2	5.4	5.3	12.5	9	39	78	173	9	308	84	78	-180	353	90	-12	NEIC			
		07 36 15	16	5.6	5.2	5.4	5.3		4	58	65	318	25	150	191	70	-15	286	76	-159	HRVD			
5	13.03	03 02 12	10	4.7	4.0	4.8	4.5	12.0	18	246	72	71	1	337	290	78	166	23	77	12	ZUR			
6	14.03	01 55 55.6	20	5.7	5.6	5.6	5.4	13.0	6	234	84	72	2	324	112	75	177	203	87	15	NEIC			
		01 56 01.6	12	5.8	5.6	5.6	5.4		13	68	74	212	9	336	287	75	-165	194	76	-15	HRVD			
8	23.03	21 44 53.0	15	5.7	5.3	5.4	5.1	13.0	10	67	79	228	3	336	111	80	175	202	85	10	NEIC			
		21 44 56.4	15	5.6	5.3	5.4	5.1		0	54	72	323	18	144	188	77	-13	281	77	-167	HRVD			
10	06.06	07 41 28.7	25	5.5	5.3	5.1	4.9	13.0	15	68	75	246	0	338	112	79	170	204	80	11	NEIC			
		07 41 33.9	15	5.7	5.3	5.1	4.9		5	247	67	348	22	155	293	71	-167	199	78	-19	HRVD			
12	26.09	18 57 11.9	20	5.2	4.2	5.2	5.0	13.0	66	22	23	221	7	128	194	43	55	57	56	118	HRVD			
13	10.12	00 09 54.5	20	5.4	4.9	5.3	5.0	13	8	232	76	355	11	141	277	76	-177	186	87	-14	HRVD			

Таблица 3. Параметры механизмов очагов некоторых сильных (*K*_P≥11.6) землетрясений за 2005 г. (метод ТМЦ)

Примечание. Номера землетрясений соответствуют таковым в табл. 2 и каталоге [10].

Рис. 7. Стереограммы механизмов очагов землетрясений 4, 6-8, 10, 13 в проекции нижней полусферы

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Рис. 8. Стереограммы механизмов очагов землетрясений 9, 12 в проекции нижней полусферы

Усл. об. см. на рис. 7.

В заключение остановимся на самом сильном (K_P =13.5) землетрясении в каталоге [10] в 2005 г., которое произошло 25 января 2005 г. 16^h43^m на глубине h=30 км (h_{pP} =22 км) с магнитудой Mw=5.9 [15] на территории Юго-Восточной Турции в районе Хаккари. Согласно данным информации бюллетеня Первой Международной федерации обществ Красного Креста и Красного полумесяца МФКК, погибло 2 человека и 22 получили ранения, 80 зданий в г. Хаккари получили повреждения. Землетрясение ощущалось в городах Ван, Сирнак, Батман, Сиирт и

даже на юге Армении (Мегри (270 км) – 2–3 балла [10]). Оно предварялось форшоками и сопровождалось немногочисленными афтершоками (табл. 4). По данным NEIC, максимальный форшок был ощутим в г. Ван [15].

<i>Таблица 4.</i> Основные	параметры форшоко	в и афтершоков л	Агдашского	землетрясения
		1 1		1

№	Дата, д м	t ₀ , ч мин с	Эпиі	tentp λ°, E	h, км	<i>Md,</i>	K_{P}					
			1.2	,		[15]						
Форшоки												
1	25.01	15 24 21.2	37.80	44.13	20	4.9	12.5					
2	25.01	16 32 53.7	37.50	43.60	25	4.5	10.7					
3	25.01	16 40 56	37.50	43.70	20	4.0	9.0					
Основной толчок												
	25.01	16 43 55	37.60	43.80	30	5.5	13.5					
Афтершоки												
1	25.01	16 51 20	37.70	44.30	15	4.0	9.1					

N⁰	Дата, д м	t ₀ , ч мин с	Эпиг ф°, N	teнтр λ°, E	h, км	<i>Md,</i> [15]	К _Р
2	25.01	17 11 01.5	37.60	43.80	30	4.1	9.8
3	25.01	17 15 13	37.84	43.62	10	4.2	10.1
4	25.01	18 34 48.5	37.70	43.60	5	3.9	9.9
5	25.01	19 50 19.5	37.70	43.90	30		8.8
6	25.01	20 56 15	37.80	44.00	15	3.9	10.8
7	26.01	00 04 50	37.80	43.70	35	4.1	10.8
8	26.01	00 33 59	37.80	44.33	5	3.8	9.2
9	26.01	15 11 33.5	37.80	44.00	20	4.0	9.5

Согласно [14], подвижки в очагах главного толчка и максимального форшока похожи, – это сдвиги с компонентами сброса по обеим нодальным плоскостям, по плоскостям *NP*1 реализовался правосторонний сдвиг, по *NP*2 – левосторонний (рис. 9).

Рис. 9. Стереограммы механизмов очагов землетрясений 1, 2 в проекции нижней полусферы

Усл. об. см. на рис. 7.

- 1. Саргсян Г.В., Мхитарян К.А., Саргсян Л.С. Армения // Землетрясения Северной Евразии, 2002. Обнинск: ГС РАН. 2008. С. 87–93.
- 2. Саргсян Г.В., Саргсян Л.С., Абгарян Г.Р., Мхитарян К.А. Армения // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 67–72.
- 3. Саргсян Г.В., Абгарян Г.Р., Саргсян Л.С. Нелокализованные землетрясения (*N*=206) по записям станции «Варденис» за 2005 г. (См. Приложение к наст. сб. на CD).
- 4. Аракелян А.Р., Саргсян Г.В., Маргарян С.С., Гаспарян В.Р., Асатрян Л.С. Армения // Землетрясения Северной Евразии в 1996 году. М.: ГС РАН, 2002. С. 28–31.
- 5. Папалашвили В.Г. (по региону), Агаларова Э.Б. (АзССР), Кахиани Л.А. (ГССР), Саргсян Г.В. (АрмССР), Габсатарова И.П. (ОМЭ ИФЗ АН СССР), Мусалаева З.А. (ОМП ГИ Дагфил. АН СССР). Кавказ // Землетрясения в СССР в 1988 году. М.: Наука, 1991. С. 236–247.
- 6. Гедакян Э.Г., Голинский Г.Л., Папалашвили В.Г., Хромецкая Е.А., Шебалин Н.В. Спитакское землетрясение 7 декабря 1988 г., карты изосейст // Землетрясения в СССР в 1988 году. М.: Наука, 1991. С. 74–86.
- 7. Lee W.H.K., Lahr J.C. HYPO-71 (Revised): A computer program for determining hypocenter, magnitude and first motion patting of local earthquakes // USGS Survey open-file Report. 1975, June. P. 75–311.
- 8. Саргсян Г.В. (отв. сост.), Абгарян Г.Р., Саргсян Л.С. Каталог (оригинал) землетрясений Армении за 2005 год (*N*=546). Обнинск: Фонды ГС РАН, 11.03.2010. 10 с.
- 9. Габриелян А.А., Саргсян О.А., Симонян Г.П. Сейсмотектоника Армянской ССР (с приложениями: Сейсмотектоническая карта Кавказа. Составитель: А.А. Габриелян). – Ереван: Ереванский гос. университет, 1981. – 283 с.
- 10. Саргсян Г.В. (отв. сост.), Саргсян Л.С., Абгарян Г.Р. Каталог землетрясений Армении за 2005 год (*N*=418). (См. Приложение к наст. сб. на CD).
- 11. Геодакян Э.Г., Голинский Г.Л., Папалашвили В.Г., Хромецкая Е.А., Шебалин Н.В. Спитакское землетрясение 7 декабря 1988 г., карты изосейст // Землетрясения в СССР в 1988 году. М.: Наука, 1991. С. 74–86.
- Саргсян Г.В., Абгарян Г.Р., Мазманян Л.В., Мугнецян Э.А. Сисианское землетрясение 13 марта 2005 года с K_P=12.0, Mw=4.7, I₀=6 (Армения). (См. раздел I (Сильные и ощутимые землетрясения) в наст. сб.).
- 13. Саргсян Г.В., Абгарян Г.Р., Саргсян Л.С. (сост.). Каталог механизмов очагов землетрясений Армении за 2005 год (*N*=7). (См. Приложение к наст. сб. на CD).
- 14. Михайлова Р.С. (сост.). Дополнение к каталогу механизмов очагов землетрясений Армении за 2005 год (*N*=15). (См. Приложение к наст. сб. на CD).
- 15. Bulletin of the International Seismological Centre for 2005. Berkshire: ISC, 2007.
- 16. Сейсмологический бюллетень (ежедекадный) за 2005 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2005–2006.