ЧАЛУССКОЕ ЗЕМЛЕТРЯСЕНИЕ 28 мая 2004 г. с Ms=6.3, I₀~8 (Konemdar)

Н.В. Петрова¹, Р.С. Михайлова²

¹Институт сейсмологии АН Туркменистана, г. Ашхабад, gaipsr@online.tm ²Геофизическая служба РАН, г. Обнинск, raisa@gsras.ru

28 мая в 12^h38^m в 25 км от иранского г. Чалус и в 85 км от Тегерана (рис. 1) произошло землетрясение с *MS*=6.1 [1], *Mw*=6.3 [2] на южном побережье Каспийского моря на одном из участков Хазарского разлома [3].

По данным NEIC [2], землетрясение было записано огромным (*n*=1345) числом станций мировой сети (табл. 1) и ощущалось на большей части территории Центрального и Северного Ирана. По ближайшему населенному пункту его можно назвать Чалусским. Сообщалось о 35 погибших и 400 раненых в провинциях Казвин и Мазандаран, об оползнях на дороге Тегеран-Чалус, вызвавших несколько смертельных случаев. В самом Тегеране повреждения были незначительны. По данным ГС РАН [1], землетрясение ощущалось в Азербайджане (Ленкорань – 3–4 балла, Баку – 2–3 балла) и Дагестане (Махачкала – 2 балла). На территории Туркменистана сведения об ощутимости этого землетрясения отсутствуют [4].

Расчетная интенсивность сотрясений I_0 в эпицентре для магнитуды Mw=6.3 и двух значений глубины гипоцентра $h=17 \ \kappa m$ (по годографу), $h^*=29 \ \kappa m$ (по фазе pP) из [2], с использованием усредненного уравнения макросейсмического поля Н.В. Шебалина [5, 6]:

$$I_0 = 1.5 M - 3.5 \lg h + 3.0 \tag{1}$$

составляет 8.1 или 7.3 балла, а по уравнению Г.Л. Голинского для Копетдага [7]:

$$I_0 = 1.5 M - 3.8 \lg h + 3.5 \tag{2}$$

-8.3 или 7.4 балла, т.е. оценки весьма близки по обеим формулам. В целом расчетные данные и факты оползней на дорогах и многочисленных жертвах свидетельствуют об интенсивности I_0 , близкой к 8 баллам.

Параметры Чалусского землетрясения, определенные различными сейсмологическими центрами, представлены в табл. 1.

Агентство,	$t_0,$	δt_0 ,	Гипоцентр						Магнитуда	Источ-
число	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	<i>h</i> ,	δh ,		ник
станций			-				км	км		
КОП, <i>n</i> =20	12 38 42	1.06	36.68	0.32	51.12	0.32	60	3	$MPVA=7.3/14, K_{P}=14.0$	[4]
MOS, <i>n</i> =162	12 38 46.3	1.1	36.47		51.61		33f		MS=6.1/38, MPSP=6.2/52	[2]
ISC, <i>n</i> =1345	12 38 43.0	0.1	36.32	0.02	51.59	0.01	17		$Ms=6.3/175, m_b=6.2/303,$	[3]
							29*	1*	<i>h</i> * по <i>pP</i>	
NEIC, <i>n</i> =732	12 38 44.5	0.1	36.29		51.61		17		$Mw=6.2, Ms=6.3/121, m_b=6.2/190$	[3]
IDC, <i>n</i> =16	12 38 44.5	1.0	36.31		51.62		16	6	$Ms=6.2/26, m_b=5.6/39$	[3]
HRVD, <i>n</i> =22	12 38 44.3	0.2	36.55		51.58		22		<i>Mw</i> =6.3/76	[3]
ZUR, <i>n</i> =14	12 38 44		36.25		51.62		30		<i>Mw</i> =6.5/14	[3]

Таблица 1. Основные параметры Чалусского землетрясения 28 мая 2004 г. с *Мw*=6.3 по данным сейсмической службы Туркменистана (КОП) в сопоставлении с определениями других агентств

Как видим из рис. 1, разные решения эпицентра Чалусского землетрясения сгруппировались частично южнее Хазарского разлома в зоне сближения его с надвиговой зоной близширотного простирания (ISC, ILC, NEIC), частично – севернее (MOS, HRVD), в зоне параллельных с ним двух других разломов меньшего порядка и, наконец, одно решение удалено от остальных на 40–55 км к северо-западу. Это решение получено по данным региональной сети Копетдага. Такая же тенденция сдвига эпицентров к северо-западу, по данным КОП, имеет место и у всех афтершоков (рис. 2), которые, к тому же, рассеяны на большой площади, тогда как эпицентры афтершоков, по данным ISC, образуют компактную протяженную область.

Рис. 1. Решения эпицентра Чалусского землетрясения с Mw=6.3 по данным различных агентств

Четвертичные разломы согласно [8]: 1 – сдвиг, 2 – надвиг; 3 – сейсмогенерирующая зона; 4 – эпицентр землетрясения 28 мая по данным разных сейсмологических центров; 5 – город.

Рис. 2. Сопоставление координат афтершоков землетрясения 28 мая с *MS*=6.3 по данным сейсмических станций Туркменистана (КОП) [4] и международного сейсмологического Центра (ISC) [2]

1 – эпицентры землетрясений с градацией по энергетическим классам K_P по данным КОП; 2 – то же по данным ISC (магнитуды m_b ISC переведены в классы по формуле $K_P = 2.0 m_b + 2.8$ из [9]); 3 – расстояние между эпицентрами по данным КОП и ISC; 4 – эпицентры землетрясений из бюллетеня ISC, не зарегистрированные КОП; 5 – сейсмогенерирующая зона.

Учитывая, с одной стороны, одностороннее расположение сейсмических станций Туркменистана относительно данной эпицентральной зоны, небольшое их число и значительное удаление ($\Delta \ge 340 \ \kappa m$), а с другой – хорошую сходимость данных других агентств, следует отдать предпочтение определениям координат гипоцентров землетрясений этой зоны Международным сейсмологическим центром ISC [2].

В тектоническом плане любое из определений координат эпицентра главного толчка 28 мая на рис. 1 приурочено к Хазарскому разлому, отделяющему с севера горную дугу Эльбурса от Южно-Каспийского бассейна. Согласно [8], тип движений по Хазарскому разлому – надвиг южного крыла на северное. Возраст гранитов в центральном Эльбурсе подтверждает его быстрый подъем, примерно синхронный опусканию Каспия [10]. Авторы работы [11] на основе анализа надежно определенных механизмов очагов, результатов полевых исследований и аэрофотоснимков считают, что движения по разломам, параллельным простиранию Эльбурса, представляют собой либо надвиги, либо левосторонние сдвиги, причем последние наиболее доказаны на долготах больше 52° и по разломам, обрамляющим Эльбурс с юга. Отсюда следует вывод, что кора Ирана надвигается на Южно-Каспийский бассейн и Эльбурс полностью регулирует это движение [12].

Механизм очага Чалусского землетрясения по региональным данным (рис. 2 [13]) поддерживает данную концепцию. В очаге произошел взброс (надвиг) по широтной плоскости, падающей на юг (*NP1*), или взброс по плоскости северо-западного простирания, падающей на север (*NP2*). Нодальная плоскость *NP1* более предпочтительна, так как отражает процесс надвига Эльбурса на Южно-Каспийский бассейн, а не наоборот. Близкие решения получены еще в трех агентствах – HRVD, NEIC и ZUR (табл. 2, рис. 2).

№	Дата,	t_0 ,	h,	Магнитуды			$K_{\rm P}$	Oci	Оси главных напряжений Нодальны							іьныє	е пло	Агент-		
	дм	ч мин с	км	Mw	MS	MPSP		Т		N			Р	NP1			NP2			ство
					Ms	$*m_{\rm b}$		PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	Главный толчок																			
10	28.05	12 38 42	60		6.1	6.2	14.0	69	286	21	110	1	19	89	48	61	308	50	118	КОП
					6.3	*6.2														
		12 38 44.3	22	6.3				67	244	7	136	21	43	119	24	72	319	67	98	HRVD
		12 38.44.5	17	6.2				74	283	16	117	4	26	100	43	67	310	51	110	NEIC
		12 38 44.36	30	6.5				78	275	10	132	7	41	320	53	102	120	39	74	ZUR
Афтершоки																				
11	28.05	13:15:09	61			*4.3	11.0	22	165	42	53	40	275	302	44	-15	44	79	-132	КОП
12	28.05	19:46:59	60			*4.2	11.1	40	118	50	285	6	23	257	68	35	152	58	154	КОП
13	29.05	09:23:40	61			*4.8	12.3	0	113	75	203	15	23	67	80	-9	159	80	-169	КОП
14	29.05	18:38:05	60			*4.3	10.6	24	266	50	27	31	161	212	86	-39	306	50	-173	КОП
15	30.05	01:42:36	60			*4.1	10.8	63	158	27	343	2	252	317	49	54	186	53	125	КОП
16	30.05	13:09:50	56			*4.2	10.4	35	222	55	48	3	314	4	64	24	262	69	152	КОП
17	30.05	19:26:59	59			*4.3	11.2	67	195	7	88	22	355	72	24	72	271	68	98	КОП

Таблица 2. Параметры механизма очага Чалусского землетрясения 28 мая 2004 г. с *Мw*=6.3 и его семи афтершоков

Примечание. Номера землетрясений в графе 1 соответствуют таковым в [13].

Для семи афтершоков с $K_{\rm P} \ge 10.4$ определены механизмы очагов [13], приведенные в табл. 2. Подвижки в основном носили взбросо-сдвиговый и надвиговый характер (стереограммы № 12, 15, 16, 17 на рис. 3), за исключением сдвигов с компонентами сброса для землетрясений № 11, 13 и 14.

Однако если выбирать нодальные плоскости, совпадающие с простиранием Хазарского разлома, сбросовыми компонентами движений в очагах этих землетрясений можно пренебречь. Примечательно, что практически для всех афтершоков, в очагах которых присутствовали компоненты сдвига по простиранию, по широтным и северо-западным (юго-восточным) нодальным плоскостям, совпадающим с ориентацией Хазарского разлома, происходили правосдвиговые смещения. Левосторонний сдвиг по плоскости северо-западного простирания зарегистрирован только при землетрясении № 11.

Рис. 3. Стереограммы механизмов очагов афтершоков Чалусского землетрясения в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Форшоки. Для исследования сейсмичности, предшествующей главному толчку и после него, была выбрана обширная область в пределах координат φ =35.0–37.5°N, λ =50.0–53.0°E за период с 1 января по 31 декабря 2004 г. По данным ISC [2], на этой территории имело место абсолютное затишье с начала года и вплоть до главного толчка (рис. 3).

Рис. 3. Развертка во времени магнитуд зарегистрированных землетрясений по [2] в пределах координат φ=35.0–37.5°N, λ=50.0–53.0°E с 1 января по 31 декабря 2004 г.

Но, по данным каталога землетрясений Копетдага с $K_P \ge 8.6$ [4], за это время в указанных координатах зарегистрированы три землетрясения, произошедшие 19 февраля с $K_P=10.7$, 13 апреля с $K_P=9.5$ и, наконец, 28 мая с $K_P=9.3$, т.е. за 12^h до главного толчка. По-видимому, лишь последний из них можно считать форшоком.

Активное последействие вслед за главным событием проявилось, как следует из рис. 4, практически на всей выбранной площади, концентрируясь в двух полосах северо-западного простирания вдоль двух разломов (см. рис. 1), т.е. активная разрядка тектонических напряжений в зоне Хазарского разлома индуктивно вызвала слабую сейсмичность в соседнем разломе. Непосредственно афтершоки Чалусского землетрясения сконцентрированы в пределах координат φ =36.25–36.75°N, λ =51.00–51.75°E.

Для количественного анализа сейсмической активности очаговой зоны и ее окрестностей составлен общий список землетрясений за период с 1 января по 31 декабря 2004 г. на выбранной территории, помещенный в дополнительных данных [14]. Источниками сведений о каждом землетрясении явились данные агентств КОП, ISC и THR (Иран). Суммарное число землетрясений равно N=88, из которых 17 имеются во всех трех источниках, но есть и такие, которые содержатся только в одном из них: 4 – в ISC, 8 – в КОП и больше всего (45) – по данным Ирана (THR) [14].

Классификация событий в [14] соответствует энергетическим классам K_P [11] в КОП [4], магнитудам типа Ms, m_b – в ISC [2], ML – в THR [2]. Для ее унификации нужно было пересчитать разные магнитуды в энергетические классы. Переход от m_b к K_P исследован в статье [9] наст. сб., где получено приведенное выше уравнение:

15

14

$$K_{\rm P}=2 m_{\rm b}+2.8.$$
 (3)

Переход от ML к классам K_P исследован непосредственно по немногочисленным данным в [14], представленным графически на рис. 5.

Уравнение связи имеет вид:

$$K_{\rm P} \simeq 2 ML + 2.3.$$
 (4)

Используя формулы (3) и (4), проведен пересчет магнитуд m_b и ML в энергетические классы во всех тех случаях, когда не было данных КОП. Результат содержится в [14].

Представляет интерес оценка расчетного значения энергетического класса главного толчка, используя уравнения (3) и (4) функций $K_P = f(m_b)$, $K_P = f(ML)$, а также уравнения из [9] еще двух функций связи K_P с магнитудами MS(MOS) и Ms(ISC) по поверхностным волнам, а также с магнитудой объемных волн по короткоперидной аппаратуре MPVA [16]:

 $K_{\rm P}$ =1.47 MS + 5.96,

 $K_{\rm P}=2.0 MS + 2.15$,

 $K_{\rm P}=1.46~Ms+5.80$,

-0

$$K_{\rm P}=1.74 \ MPVA + 2.36.$$
 (8)

Как следует из табл. 1, исходные магнитуды для главного толчка равны: $m_b=6.2$, ML=6.3, MS=6.1, MPSP=6.2, Ms=6.3, MPVA=7.3, а расчетные по ним значения K_P равны 15.2(m_b), 14.9(ML), 14.9(MS), 14.6(MPSP), 15.0(Ms), 15.1(MPVA) соответственно, т.е. все расчетные значения K_P на единицу больше $K_P=14.0$ по [4]. Среднее расчетное значение равно $K_P=14.95\sim15.0$. По-видимому, региональное значение энергетического класса Чалусского землетрясения в каталоге [4] занижено.

Афтершоки хорошо видны в виде компактной группы повышенной плотности эпицентров, расположенной в центральной части малого квадрата (φ =36.3–36.7°N, λ =51.0–51.9°E) на рис. 2, 4. Размеры области афтершоков следующие: продольная ось, вытянутая вдоль Хазарско-

го разлома, равна ℓ_{\parallel} =26 км, поперечная – ℓ_{\perp} =16 км.

Среди афтершоков, последовавших сразу же за основным толчком, максимальный реализовался 29 мая в $09^{h}23^{m}$ с K_{P} =12.3. Зарегистрировано также семь афтершоков с K_{P} ÷11, десять с K_{P} ÷10 и несколько более слабых с K_{P} =8–9. Общее число афтершоков составило N_{Σ} =67 [14]. Затухает серия достаточно быстро, в основном до 12 июня (рис. 6), хотя редкие одиночные афтершоки тянутся вплоть до 21 октября [14].

Рис. 6. График затухания афтершоков Чалусского землетрясеня во времени

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2004 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2004–2005.
- 2. Bulletin of the International Seismological Centre for 2004. Berkshire: ISC, 2006–2007.
- 3. Гаипов Б.Н., Петрова Н.В., Безменова Л.В., Сарыева Г.Ч. Копетдаг. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 4. Сарыева Г.Ч. (отв. сост.), Тачов Б., Мамедязова М.Т., Халлаева А.Т., Коржукова Т.А., Дурасова И.А., Клычева Э.Р., Эсенова А., Петрова Н.В., Мустафаев Н.С. Каталог землетрясений Копетдага за 2004 год. (См. Приложение к наст. сб. на CD).
- 5. Шебалин Н.В. Об оценке сейсмической интенсивности // Сейсмическая шкала и методы измерения сейсмической интенсивности. М.: Наука, 1975. С. 87–109.
- 6. Шебалин Н.В. Коэффициенты уравнения макросейсмического поля по регионам // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 30.
- 7. Голинский Г.Л. Уравнения макросейсмического поля землетрясений Туркмении // Изв. АН ТССР. Сер. ФТХ и ГН. 1977. № 1. –С. 69–74.
- Berberian M. Historical Seismicity (pre 1900) Map of Iran. Scale 1:5000000 // Geological Survey of Iran, Tectonic-Seismotectonic Research Section. – 1977.
- 9. Петрова Н.В. Соотношения между оценками величины землетрясений Копетдага по данным различных сейсмологических центров. (См. раздел V (Методические вопросы) в наст. сб. на CD).
- Axen G.J., Lam P.S., Grove M., Stockli D.F. Exhumation of the west-central Alborz mountains, Iran, Caspian subsidence, and collision-related tectonics // Geology. – 2001. – 29. – 559–562.
- 11. Jackson J., Priestley K., Allen M. and Berberian M. Active tectonics of the South Caspian Basin // Geophys. J. Int. 2002. 148. P. 214–245.
- 12. Berberian M. The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust // Canad. J. Earth Sci. –
- 13. Безменова Л.В., Петров В.А., Петрова Н.В. (отв. сост.). Каталог механизмов очагов землетрясений Копетдага за 2004 год. (См. Приложение к наст. сб. на CD).
- 14. Сарыева Г.Ч., Артёмова Е.В., Михайлова Р.С. Землетрясения очаговой зоны Чалусского землетрясения 28.05.2004 г. с 1 января по 31 декабря 2004 г. в пределах координат 35.0–37.5°N и 50.0–43.0°E. (См. Приложение к наст. сб. на CD).
- 15. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 16. Рахимов А.Р., Соловьёва О.Н., Арбузова Г.Н. Определение магнитуды землетрясений Туркмении на эпицентральных расстояниях до 400 км // Изв. АН ТССР. Сер. ФТХиГН. – 1983. – № 5. – С. 61–65.