ИГДЫР-ДОГУБАЯЗИТСКОЕ ЗЕМЛЕТРЯСЕНИЕ 1 июля 2004 г. с Ms=4.8, I₀=6–7 (Турция–Армения) Г.В. Саргсян, Г.Р. Абгарян, Л.С. Саргсян, Л.В. Мазманян

Агентство Национальной службы сейсмической защиты Республики Армения, г. Ереван, heghinesar@mail.ru

С 1 июля 2004 г. произошли несколько сильных (K_P ÷12) землетрясений на территории Турции вблизи гг. Игдыр и Догубаязит: 1 июля в $22^{h}30^{m}$ с K_P =12.0, 30 июля в $07^{h}14^{m}$ и в $07^{h}16^{m}$ с K_P =12.0 и 11.8, 10 августа в $08^{h}17^{m}$ и в $23^{h}45^{m}$ с K_P =11.7 и 11.6 [1]. Эпицентры изучаемых землетрясений находятся вблизи государственной границы Республики Армения с густонаселенными пунктами и объектами важного значения, как, например, АЭС и столица Армении г. Ереван. Землетрясения не признают границ, поэтому необходимо изучать их воздействия по всем направлениям. Эпицентральная зона Игдыр-Догубаязитских землетрясений со всех сторон ограничена хребтами и горами. В ее северной части расположены южные отроги Цахкуняцкого хребта и гора Арагац высотой 4000 *м*, а также гора Араилер – свыше 2500 *м*. В восточной части, на расстоянии около 60 *км*, расположены Гегамский хребет и оз. Севан; в южной – горы Большой и Малый Арарат высотой 5165 *м* и 3925 *м* соответственно; в юго-западной – хр. Агрыдак. На исследуемой территории имеются несколько крупных разломов. Очаги Игдыр-Догузбаязитских землетрясении, а также со Спитак-Араратским и Севано-Араратским разломами, проходящими по юго-западному углу.

Самые сильные землетрясения этой серии произошли 1 июля в $22^{h}30^{m}$ с Ms=4.8, h=25 км, I_0 =6–7 баллов и 30 июля в $07^{h}14^{m}$ с Ms=4.2, h=10 км, I_0 =6 баллов. Значение основных параметров землетрясения 1 июля из разных сейсмологических центров приведены в табл. 1 и на рис. 1.

Агентство	t_0 ,	δt_0 ,			Гипоце	ентр			Магнитуда	Источ-
	ч мин с	С	φ°, N	δφ°	λ° , Ε	δλ°	<i>h</i> ,	δh ,		ник
			-				КМ	км		
ISK, Турция	22 30 08.6		39.63		43.94		5f		<i>Md</i> =5.0, <i>ML</i> =5.2	[2]
HCC3 PA	22 30 07.5	0.8	39.76	0.02	44.15	0.02	25		<i>M</i> =5.0, <i>MPVA</i> =5.3, <i>K</i> _P =12.0	[1]
MOS	22 30 12.6	1.2	39.81	0.05	43.94	0.05	33f		MS=4.6/36, MPSP=5.3/22	[3]
ISC	22 30 08.0	0.1	39.78	0.02	43.97	0.02			$M_{\rm S}=4.8/117, m_{\rm b}=5.3/183,$	[2]
							18	2	<i>h</i> * по <i>pP</i>	
NEIC	22 30 09.3	0.2	39.77		43.98		5f		$M_s=4.8/86, m_b=5.4/127$	[2]
BJI	22 30 08.8		39.77		43.31		33f		<i>Ms</i> =5.0, <i>Mb</i> =5.2	[2]
HRVD	22 30 09.3	0.3	39.65		43.83		13	1	<i>Mw</i> =5.1/57	[2]
ZUR	22 30 09		39.77		43.98		24		<i>Mw</i> =5.2/17	[2]
MED	22 30 13.3	0.3	39.67		43.69		38	2	Mw=5.0/11	[2]

Таблица 1. Основные параметры Игдыр-Догубаязитского землетрясения 1 июля 2004 г. по данным Турции и Армении в сопоставлении с определениями других агентств

Примечание. Знаком «f» отмечена фиксированная глубина.

Решение эпицентра землетрясения 1 июля, по данным сейсмической службы НССЗ отличается от наблюдений других сейсмологических центров смещением в сторону государственной границы Республики Армения.

Механизм очага землетрясения 1 июля, рассчитанный по методу тензора момента центроида в трех центрах – HRVD, ZUR, MED [2], приведен в табл. 2 и на рис. 2.

Рис. 1. Сравнение разных решений эпицентра землетрясения 1 июля 2004 г. с Ms=4.8

1 – республиканский эпицентр; 2 – эпицентр по данным других агентств; 3 – населенный пункт; 4 – г. Ереван; 5 – государственная граница.

Таблица 2. Параметры механизма очага землетрясения 1 июля в 22^h30^m с Ms=4.8

N₂	Дата,	$t_0,$	h,	Магни	ітуды	K _P	Оси главных напряжений				Нодальные плоскости						Агент-		
	д м	ч мин с	км	Mw	Ms		Т		N		Р		NP1			NP2			ство
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
	01.07	22 30 09.3	13	5.1	4.8	12.0	46	273	42	70	12	171	300	50	152	50	69	44	HRVD
	01.07	22 30 09.39	24	5.2			82	90	8	264	1	354	256	46	79	91	45	101	ZUR
	01.07	22 30 13.3	38	5.0			9	277	68	31	20	184	322	69	-172	229	83	-21	MED

Рис. 2. Стереограммы механизма очага землетрясения 1 июля 2004 г. с *Ms*=4.8 в проекции нижней полусферы

 нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Решения HRVD и ZUR подобны. Землетрясение возникло под действием превалирующих сжимающих напряжений, ориентированных в направлении север-юг. Тип движения по HRVD – сдвиг (правосторонний – по *NP1*, левосторонний – по *NP2*) с компонентами взброса. Обе нодальные плоскости залегают достаточно круто (DP= 45, 69°). Их простирания по HRVD для *NP1* северо-западное (*STK*=300°), для *NP2* – северо-восточное (*STK*=50°). По ZUR обе плоскости имеют близширотное простирание (AZM=256 и 91°). Тип движения в решении ZUR – взброс по обеим плоскостям с компонентами сдвига (левостороннего – по *NP1*, правостороннего – по *NP2*).

Решение MED отличается от решений HRVD и ZUR как по типу движения в очаге, так и по положению нодальных плоскостей. Землетрясение возникло под действием близких по ве-

личине сжимающих и растягивающих напряжений, ориентированных на юг и запад соответственно. Тип движения по обеим плоскостям – сдвиго-сбросы (сдвиги правосторонний – по NP1, левосторонний – по NP2, с компонентами сброса). Обе нодальные плоскости имеют крутое (DP=69 и 83°) падение. Плоскость NP1 простирается на северо-запад (STK=322°), плоскость NP2 – на юго-запад (STK=229°).

Макросейсмическое обследование землетрясения 1 июля выявило, что сотрясениями была охвачена большая площадь ($S=63900 \ \kappa m^2$) из-за заглубленного очага. Оно произошло ночью, что вызвало панику среди населения в приграничной с Турцией территории Армении, находящейся ближе к эпицентру. Это землетрясение обследовано также турецкими коллегами и описано в [4] (дата по местному времени).

По данным турецких исследователей, при этом землетрясении наибольшие повреждения получили на территории Турции село Йегинсал, где погибли 17 и ранены 35 человек, и 15 других деревень в окрестностях его эпицентра [4]. Два примера типа разрушений показаны на рис. 3 а, б. Много домов было разрушено из-за непрочной конструкции традиционных застроек: 300 – полностью, 200 – в средней степени, 500 – повреждены слабо. Землетрясение ощущалось на расстоянии до 200 км (табл. 3).

Рис. 3. Разрушенные дома в селе Йегинсал от землетрясения 1 июля 2004 г. (по данным D. Kalafat, Y. Güneş, K. Kekovalý [4])

N⁰	Пункт	Δ, км	N⁰	Пункт	Δ, км
	6 баллов		16	Армавир	44
1	Барцакци	3	17	Арташат	48
2	Бозяя	4		<u>4 балла</u>	
3	Йегинсал	7	18	Вагаршапат	56
4	Сагликсую	8	19	Арарат	58
5	Сазоба	8	20	Паракар	60
6	Гултебе	9	21	Арагац	60
7	Гунелу	15	22	Ереван	67
8	Догубаязит	16	23	Гарни	76
9	Игдыр	25	24	Агри	86
	<u>5 баллов</u>			<u>3 балла</u>	
10	Джанфида	38	25	Раздан	105
11	Пшатаван	38	26	Гюмри	124
12	Маркара	39	27	Ширакамут	130
13	Аразап	39	28	Карс	135
14	Вардашен	41	29	Горис	198
15	Ерасхаун	44			

Таблица 3. Макросейсмические данные о землетрясении 1 июля в 22^h30^m с *Ms*=4.8

На основе макросейсмического обследования армянских и турецких коллег была составлена единая карта изосейт землетрясения (рис. 4). Как видим, плейстосейстовая зона данного землетрясения имеет форму эллипса, большая ось направлена на северо восток, а малая – на юго-запад и является как бы продолжением плейстосейстовой зоны Ереванского-III землетрясения 01.03.1997 г. с *MLH*=3.8 [5].

Рис. 4. Карта изосейст для землетрясения 1 июля в 22^h30^m с *K*_P=12.0, *Ms*=4.8

1 – интенсивность сотрясений в баллах по шкале MSK-64 [6]; 2, 3 – инструментальный эпицентр по данным Армении (А) и Турции (Т); 4 – изосейста; 5 – населенный пункт.

Макросейсмический эпицентр землетрясения находится на пересечении большой и малой осей эллипса. В табл. 4 приведены некоторые параметры геометрического поля построенной карты изосейст (рис. 4).

<i>I</i> , баллы	$\ell_{\rm a}, \ {\cal K}{\cal M}$	$\ell_{\rm b}, \ {\cal K}{\cal M}$	ℓ_a/ℓ_b	<u>,</u> км	<i>S</i> , км ²
6–7	31	11	2.82	18.5	277
6	81	44	1.84	59.7	2520
5	128	76	1.68	98.6	4840
4	193	115	1.68	149	9787
3	370	280	1.33	321.9	63903

Таблица 4. Параметры макросейсмического поля землетрясения 1 июля 2004 г. с Мs=4.8

Примечание. $\overline{\ell} = \sqrt{\ell_a \cdot \ell_b}$

Зона Игдыр-Догубаязитских землетрясений, сопредельная с центральной частью Республики Армения с центром в столице г. Ереван, известна в прошлом как сейсмически активная.

В этой зоне с наибольшей интенсивностью проявилось землетрясение 04.09.1962 г. с M=51/4, произошедшее также в ночное время «в районе г. Игдыр в 15 км к югу от границы СССР (в 50 км к югу от г. Ереван)». По данным заведующего сейсмической станции «Ереван» Д.М. Мнацакяна, землетрясение 04.09.1962 г. ощущалось на значительной части территории Армянской ССР с силой 4–5.5 баллов. В пограничных селах Маркара, Ерасхаун, Вардашен, Аразап, Пшатаван и Джанфида интенсивность сотрясений достигала 5–5.5 баллов; в Ереване, Арташате и Октомберяне – 5 баллов, в Ленинакане, Степановане и Горисе – 4 балла. Из газетных сообщений известно, что в г. Игдыр в результате землетрясения 4 сентября 1962 г. было ранены около 100 человек, разрушены дома, в том числе здания муниципалитета, пожарной службы и почты, многие здания сильно повреждены. Землетрясение 4 сентября сопровождалось большим числом повторных толчков…» [7]. В селе Маркара наблюдался разрыв длиной 10 м, шириной 5–7 см. Таблица пунктов-баллов землетрясения 04.09.1962 г., составленная Т.О. Бабаян, приведена в дополнительных данных [8] в наст. сб.

На рис. 5 приведена карта изосейст землетрясения 4 сентября 1962 г. по «Атласу...» Т.О. Бабаян [9]. Она несколько отличается от карты изосейст землетрясения 1 июля 2004 г. (рис. 4). Ее плейстосейстовая область имеет широтное простирание, тогда как плейстосейстовая область землетрясения 1 июля вытянута в северо-восточном направлении.

Рис. 5. Карта изосейст Игдырского землетрясения 4 сентября 1962 г. в 22^h59^m (по Т.О. Бабаян [6])

Форшоки и афтершоки землетрясения 1 июля 2004 г. приведены в табл. 5 и на рис. 6. Из таблицы следует, что к явным форшокам следует отнести лишь одно землетрясение с K_P =9.5, зарегистрированное за 1.5 часа до основного толчка. Остальные четыре предшествующие землетрясения представлены небольшим роем из трех землетрясений с K_P =8.3, 7.8 и 9.1 соответственно, произошедшие за полгода до главного толчка (10 января) в течение 16 часов, и одиночного события с K_P =10.0, записанного примерно за месяц до главного толчка. Поскольку они весьма удалены от главного толчка как во времени, так и в пространстве (рис. 6), то их не следует считать, по-видимому, его форшоками.

N⁰	Дата,	<i>t</i> ₀ ,	Эпиг	центр	<i>h</i> ,		Магні	итуда		K _P		
	д м	ч мин с	φ°, N	λ°, Ε	КМ	MLH	MPVA	Md	<i>Ms</i> [3]			
				Форшон	ки							
1	10.01	00 15 20.7	39.50	44.00				2.4		8.3		
2	10.01	00 21 08.7	39.50	44.00						7.8		
3	10.01	16 11 17.7	39.55	44.00				3.0		9.1		
4	08.06	04 43 55.2	40.17	43.50	20	2.9		3.3		10.0		
5	01.07	20 57 19	39.83	43.93	30		4.5	2.6		9.5		
			Oc	новной т	олчок							
	01.07	22 30 07.5	39.76	44.15	25	5.0	5.3		4.8	12.0		
Афтершоки												
1	01.07	23 20 56.7	40.00	44.00		1.6				7.0		
2	02.07	13 37 35	40.00	44.00						7.0		
3	02.07*	22 25 08.6	39.70	43.72	12			3.1		9**		
4	02.07*	22 37 12.5	39.70	44.05	7			3.1		9**		
5	03.07	00 55 30.7	39.80	44.00			3.4			10.0		
6	03.07	00 57 21.7	39.60	43.99	13		3.5			10.0		
7	03.07	00 57 45	39.60	43.99	14	2.8				9.0		
8	04.07	09 30 16.8	40.00	44.20						7.5		
9	08.07	02 41 04.5	39.80	43.95		2.8	4.0	3.5		9.0		
10	15.07*	12 12 16.3	39.85	43.69	5			3.1		9**		
11	21.07	20 11 09	39.50	43.92	8	3.2	3.8	3.8		10.8		
12	28.07	00 15 40.5	39.57	44.00	1			3.4		9.5		
13	30.07	07 14 03.5	39.83	43.85	10			4.5	4.2	12.0		
14	30.07	07 16 20	39.80	44.00	10			4.5		11.8		
15	30.07	07 36 31.2	39.68	43.89	3			4.1		11.5		
16	31.07	06 45 47	40.00	43.90						9.2		
17	01.08	06 32 14	39.62	44.03				2.4		9.2		
18	10.08	08 17 41	39.82	44.11	20	4.5		3.5		11.7		
19	10.08	14 49 09.4	39.73	44.15	5			2.4		8.5		
20	10.08	23 44 38	39.57	44.32	4			3.7		10.4		
21	10.08	23 45 18.2	39.50	43.70	3			4.5		11.6		
22	15.08	22 21 22.5	39.70	43.90	24			2.7		8.5		
23	18.08	13 22 24.3	39.64	44.13	8			3.7		10.0		
24	24.08	14 17 47.5	39.70	44.10	11			3.4		10.0		
25	27.08	15 29 28.2	39.50	44.17						10.0		
26	29.08	06 36 47.4	39.70	44.00	5			3.0		9.4		
27	29.08	15 52 45.5	39.70	43.53	10					9.6		
28	04.09	08 15 20.8	39.87	44.30	5			3.7		10.0		
29	15.10	09 43 45	39.55	43.67				3.3		9.2		
30	09.11	01 18 17.4	39.75	44.20						7.6		

Таблица 5. Основные параметры форшоков и афтершоков Игдыр-Догубаязитского землетрясения 1 июля 2004 г. с *Ms*=4.8

Примечание. Знаком * помечены слабые землетрясения, не включенные в каталог [1]; знаком ** отмечены экспертные значения *K*_P из значений *Md* (ред.).

Серия афтершоков более определенна (табл. 5), хотя и немногочисленна. При этом она представлена двумя совокупностями. Первая содержит 12 афтершоков, 8 из которых возникли

в первые четыре дня после главного толчка, остальные четыре растянулись на 24 дня, и максимальным (K_P =10.8) в первой совокупности оказался афтершок 21 июля в 20^h11^m. Вторая вызвана сильным (K_P =12.0) афтершоком 30 июля в 07^h14^m и сопутствующими ему достаточно сильными толчками с K_P =11.8 и 11.5 через 2 и 12 с соответственно (табл. 5). Еще 13 афтершоков реализовались до 4 сентября. Еще по одному толчку зарегистрировано 15 октября в 09^h43^m с K_P =9.2 и 9 ноября в 01^h18^m с K_P =7.6.

Рис. 6. Карта эпицентров форшока, главного толчка и афтершоков Игдыр-Догубаязитского землетрясения 1 июля 2004 г.

1–3 – главный толчок, форшок и афтершок соответственно; 4 – энергетический класс; 5 – глубина гипоцентра; 6 – сейсмическая станция; 7 – г. Ереван; 8 – населенный пункт; 9 – государственная граница.

Очаг землетрясения 30 июля в 07^h14^m находится сравнительно более поверхностно, как следует из табл. 6, содержащей разные решения его гипоцентра.

Агентство	$t_0,$	δt_0 ,]	Гипоце	нтр			Магнитуда	Источ-
	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	h,	δh ,		ник
							КМ	км		
ISK, Турция	07 14 08.2		39.62		43.90		5f		<i>Md</i> =4.5, <i>ML</i> =4.6	[2]
HCC3 PA	07 14 03.5	3.5	39.83	0.03	43.85	0.03	10		$MPVA=4.5, K_{P}=12.0$	[1]
MOS	07 14 08.9	1.2	39.84	0.07	43.98	0.07	10f		MPSP=4.6/14	[3]
ISC	07 14 08.2	0.2	39.76	0.02	43.97	0.02	10f		$M_{s}=4.2/34, m_{b}=4.7/70,$	[2]
							15*	2*	<i>h</i> * по <i>pP</i>	
NEIC	07 14 07.8		39.63		43.97		5f		$Ms=4.0/9, m_b=4.8/36$	[2]
BJI	07 14 06.8		39.60		44.00		5f		<i>Ms</i> =4.3, <i>Mb</i> =4.9	[2]
ZUR	07 14 07		39.63		43.97		24		Mw=4.9/16	[2]

Таблица 6. Основные параметры землетрясения 30 июля с *Ms*=4.2 по данным Турции и Армении в сопоставлении с определениями других агентств

По республиканским данным, его эпицентр совпадает с макросейсмическим эпицентром землетрясения 1 июля. Но после афтершока 30 июля таких серьезных повреждений, как после главного толчка 1 июля, не наблюдалось (конкретные макросейсмические данные отсутствуют). Имеется решение механизма очага землетрясения 30 июля [10], приведенное в табл. 7.

Дата,	t_0 ,	h,	Магни	туды	K _P	0	си гла	вны	х напр	эже	ений	Нодальные плоскости						Агент-
дм	ч мин с	км	Mw	Ms		Т			Ν		Р	NP1			NP2			ство
						PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
30.07	07 14 07	24	4.9	4.2	12.0	0	76	79	166	11	346	122	82	-172	31	82	-8	ZUR

Таблица 7. Параметры механизма очага землетрясения 30 июля с Ms=4.2

ZUR

2

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Это решение получено по методу тензора момента центроида в ZUR. Землетрясение возникло под действием близких по величине сжимающих и растягивающих напряжений, ориентированных на северо-северо-запад (AZM=346°) и северо-восток-восток соответственно (рис. 7). Тип движения – сдвиго-сброс (правосторонний сдвиг – по NP1 и левосторонний – по NP2, с компонентами сброса). Обе нодальные плоскости – крутые (DP=82°). Плоскость NP1 простирается на юго-восток (STK=122°), плоскость NP2 – на северо-восток (STK=31°), т.е. это решение практически совпадает с решением MED для главного толчка 1 июля.

Авторы статьи весьма благодарны Раисе Степановне Михайловой за дополнение статьи результатами параметров механизмов очагов землетрясения 1 июля, рассчитанными по методу тензора момента центроида в трех центрах – HRVD, ZUR, MED, и 30 июля – ZUR.

Литература

- 1. Саргсян Г.В. (отв. сост.), Саргсян Л.С., Абгарян Г.Р. Каталог землетрясений Армении за 2004 год. (См. Приложение к наст. сб. на CD).
- 2. Bulletin of the International Seismological Centre for 2004. Berkshire: ISC, 2006-2007.
- 3. Сейсмологический бюллетень (ежедекадный) за 2004 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2004-2005.
- 4. D. Kalafat, Y. Günes, K. Kekovalý, B.U. Kandilli. 2 july 2004 Dogubayazit (Karakose-arri) earthquake // Observatory ERI, National Earthquake Monitoring Centre 34684 Cengelkov-Istanbul/TURKEY.
- 5. Саргсян Г.В., Гаспарян В.Р. Ереванское-III землетрясение 1 марта 1997 года с *MLH*=3.8, *I*₀=6 (Армения) // Землетрясения Северной Евразии в 1997 году. – Обнинск: ГС РАН, 2003. – С. 222–225.
- 6. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. - М.: МГК АН СССР, 1965. - 11 с.
- 7. Цхакая А.Д., Джибладзе Э.Ф., Папалашвили В.Г., Лебедева Т.М., Майсурадзе О.М., Табуцадзе Ц.А., Кахиани Л.А., Рагимов Ш.С. Землетрясения Кавказа (особенности проявления сейсмичности) // Землетрясения в СССР в 1962 году. – М.: Наука, 1964. – С. 33–37.
- 8. Бабаян Т.О. Макросейсмические данные об Игдырском землетрясении 4 сентября 1962 г. в 22^h59^m с *М*=5¼. (См. Приложение к наст. сб. на CD).
- 9. Babayan Tamara. Atlas of Strong Earthquakes of the Republik of Armenia, Artsakh and Adjacent territories from ancient times through 2003. - Yerevan: Tigran Mets, 2006. - 140 p.
- 10. Михайлова Р.С. (сост.). Каталог механизмов очагов землетрясений Армении за 2004 год. (См. Приложение к наст. сб. на CD).

Рис. 7. Стереограмма механизма очага землетрясения 30 июля 2004 г. с Ms=4.2 в проекции нижней полусферы