<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348.436 (100)

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Для девяти коровых землетрясений земного шара, удаленных от станции «Обнинск» на расстояние Δ =65–98° (рис. 1), исследованы основные (табл. 1) и динамические (табл. 2, 3) параметры очагов.

Таблица 1.	Сведения о	рассмотренных	землетрясениях	2004 г.
------------	------------	---------------	----------------	---------

N⁰	Дата,	Вариант	t_0 ,	Ги	поцентр			Магни	Район		
	д м	_	ч мин с	φ°	λ°	<i>h</i> ,	Mw/n_{OBN}	MPSP/n,	MPSP/n, MPLP/n		
						км	$Mw/n_{\rm HRVD}$	$m_{\rm b}/n$		Ms/n	
1	2	3	4	5	6	7	8	9	10	11	12
1	07.02	Ι	02 42 33.5	-3.98	135.04	10f	7.1/1	6.4/39	7.0/10	7.4/23	Район Западного
		II	02 42 34.2	-4.03	135.09	15		6.3/124		7.5/158	Ириана, Индонезия
		III	02 42 35.2	-4.03	134.78	12	7.3/89				-
2	28.06	Ι	09 49 44.9	54.91	-134.44	10f	6.7/1	6.3/61	6.7/12	6.9/31	Район островов
		II	09 49 46.3	54.82	-134.49	20		5.9/281		6.8/152	Королевы Шарлотты
		III	09 49 47.0	55.02	-134.46	12	6.8/69				
3	05.09	Ι	10 07 09.8	33.13	136.68	33f	7.3/1	7.0/76	7.8/11	7.2/31	Южное побережье
		II	10 07 07.2	33.07	136.74	19		6.7/318		7.1/132	Западного Хонсю
		III	10 07 07.8	32.94	137.00	16	7.2/78				
4	23.10	Ι	08 56 03.6	37.66	138.73	33f	6.7/1	6.6/90	7.0/7	6.9/38	Западное побережье
		II	08 55 58.6	37.30	138.77	8		6.3/320		6.4/164	Хонсю, Япония
		III	08 56 00.9	37.31	138.83	13	6.6/77				
5	11.11	Ι	21 26 43.6	-8.14	124.78	33f	7.2/1*	6.7/26	7.3/10	7.1/34	Район Тимора
		II	21 26 42.4	-8.15	124.74	23		6.4/117		7.2/171	
		III	21 26 41.2	-7.87	125.12	17	7.5/78				
6	28.11	Ι	18 32 14.4	43.15	145.14	50	7.4/1	6.5/74	7.5/11	7.1/57	Район Хоккайдо,
		II	18 32 12.8	42.90	145.21	43		6.4/325		6.9/188	Япония
		III	18 32 14.1	42.88	145.36	47	7.0/78				
7	06.12	Ι	14 15 11.9	43.11	145.21	41	7.0/1	6.6/88		7.0/43	Район Хоккайдо,
		II	14 15 10.2	42.77	145.25	36		6.5/323		6.6/191	Япония
		III	14 15 11.9	42.82	145.41	36	6.7/61				
8	18.12	Ι	06 46 18.1	48.84	156.21	10f	6.3/1**	5.8/93	6.6/5	6.4/50	Район Курильских
		II	06 46 19.2	48.87	156.37	16		5.5/246		6.2/170	островов
		III	06 46 19.9	48.77	156.58	15	6.2/74				
9	26.12	Ι	00 58 52.8	3.42	95.96	33f	7.9/1	7.1/75	7.8/5	8.7/61	У западного побе-
		II	00 58 52.0	3.41	95.90	26		6.8/197		8.7/149	режья Северной
		III	00 58 50.0	3.09	94.26	29	9.0/73				Суматры

Примечание. В графе 3 вариант I дан по [1], II, III – по [2]; в графе 7 символом f отмечены фиксированные глубины по [3]; в графе 8 знаками * и ** отмечены значения *Mw* по станциям «Арти» и «Талая» соответственно.

Очаги всех девяти землетрясений расположены в земной коре (табл. 1). Семь из них с *MS*, *MPLP*, *MPSP*≥7.0 [1] локализованыв различных регионах мира на расстоянии Δ=65–98° от

станции «Обнинск». Выбор Δ связан с методикой расчета спектров *P*-волн [4, 5]. Для двух землетрясений магнитуды *MS*, *MPLP*, *MPSP*<7.0, но одно из них (18 декабря в 06^h46^m с *MS*=6.4) является сильным для Курильского региона, другое (28 июня в 09^h49^m с *MS*=6.9) расположено в западной части земного шара (о-ва Королевы Шарлотты) и достаточно значимо для этого района.

Рис. 1. Эпицентры землетрясений (1–4, 6, 7, 9), (5), (8), для которых построены спектры по цифровым сейсмограммам станций «Обнинск», «Арти» и «Талая» соответственно

Основные параметры очагов землетрясений (время возникновения t_0 , координаты гипоцентра φ , λ , h, магнитуды) даны в табл. 1 из двух бюллетеней в трех вариантах: I – Сейсмологического бюллетеня ГС РАН (MOS) [1]; II – бюллетеня Международного сейсмологического центра (ISC) [2]. Параметры землетрясений варианта III определены в Гарвардском центре США HRVD [2] по методу тензора момента центроида (ТМЦ) [6], использующего при расчетах волновые формы всей сейсмограммы. Значения гипоцентров в I и II получены по временам первых вступлений *P*-волн на основе одного и того же годографа Джеффриса–Буллена [7], но по разным системам наблюдений. Различия значений t_0 , φ , λ , h по варианту III от I и II связаны с тем, что решения по I и II локализуют начальную фазу процесса в очаге, а III – максимальную. Параметры t_0 , φ , λ , h по I и II в большинстве случаев различаются в пределах погрешности их определений.

В варианте I даны магнитуды *MPSP*, *MPLP* по продольным волнам и MS – по поверхностным. Кроме того, здесь приведены моментные магнитуды Mw, рассчитанные на основе величины сейсмического момента M_0 , определенного по цифровым сейсмограммам станций «Обнинск» (землетрясения 1–4, 6, 7, 9), «Арти» (5) и «Талая» (8). Расчет Mw выполнен по формуле X. Канамори [8]:

$$Mw = \frac{2}{3} \lg M_0 - 10.7$$

для сейсмического момента в единицах « $duha \cdot cm$ ». В варианте II даны магнитуды m_b по продольным волнам и M_S – по поверхностным; в III – моментные магнитуды Mw, полученные по методу ТМЦ.

Относительно магнитуд m_b и MPSP следует отметить, что для восьми землетрясений значения $m_b < MPSP$ на 0.1–0.3, лишь для одного (2) – на 0.4. Разница объясняется методикой расчета: для m_b выбирается интервал записи P-волн в пределах 5 c от вступления, для MPSP – до 40–60 c [9]. Различия магнитуд MS(MOS) и M_s (ISC) по поверхностным волнам заключены в интервале 0.1–0.3 единицы магнитуды. Максимальная разница в 0.4 единицы получена для землетрясения (7), что, возможно, связано с разной выборкой данных для расчета. Сравнение магнитуд Mw(MOS) и Mw(HRVD) показывает, что для землетрясений (1, 2, 5, 9) – $Mw(MOS) \le Mw(HRVD)$, для землетрясений (3, 4, 6, 7, 8) – $Mw(MOS) \ge Mw(HRVD)$. При этом наибольшие различия $Mw(MOS) \le Mw(HRVD)$ на 0.4–0.5 единицы Mw отмечены для землетрясения (9) у западного побережья Северной Суматры. В настоящей статье Mw(MOS) определена для большинства землетрясений (1, 2, 3, 4, 6, 7, 9) по записям на станции «Обнинск» по одному типу волн (*P*-волне); для землетрясения (5) с MS=7.1 спектры *P*-волн рассчитывались по сейсмограмме на станции «Арти» (Δ =84°), для (8) с MS=6.4 – по сейсмограмме на станции «Талая» (Δ =33°), т.к. записи на станции «Обнинск» для этих землетрясений были осложнены сильными фоновыми колебаниями в области *P*-волн. В то же время значение Mw(HRVD) рассчитано по волновым формам на многих (n=61–89) станциях.

В табл. 2 для землетрясений (1–4, 6–8) из [1, 10] приведены параметры механизмов очагов, определенные по знакам первых вступлений *P*-волн на ряде сейсмических станций для модели двойной пары сил по программе А.С. Ландера и Ж.Я. Аптекман. Эта программа написана для персонального компьютера и представляет собой удобную для пользователя версию программы [11]. Второй строкой для всех девяти землетрясений даны решения по ТМЦ [2].

№	Дата,	t_0 ,	h,	Магнитуды				Оси главных напряжений					Нодальные плоскости					Источ-	
	дм	ч мин с	км	Mw	MS	MPSP	, T		N		Р		NP1			NP2			ник
				Mw^*	Ms	mb	PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	07.02	02 42 33.5	10f	7.1	7.4	6.4	6	128	64	27	25	221	262	68	-15	357	76	-157	[1]
		02 42 35.2	12	7.3			11	126	67	10	21	220	261	68	7	354	83	158	[2]
2	28.06	09 49 44.9	10f	6.7	6.9	6.3	20	285	64	63	16	189	326	64	177	58	87	26	[1]
		09 49 47.0	20	6.8			27	295	51	64	26	191	333	51	179	63	89	39	[2]
3	05.09	10 07 09.8	33f	7.2	7.2	7.0	62	79	28	259	0	169	234	51	53	104	51	127	[1]
		10 07 07.8	16	7.2			80	321	6	89	7	180	277	38	100	85	53	82	[2]
4	23.10	08 56 03.6	33f	6.7	6.9	6.6	66	202	24	22	0	292	360	50	58	224	50	122	[1]
		08 56 00.9	13	6.6			78	144	5	30	11	299	23	34	81	214	56	96	[2]
5	11.11	21 26 43.6	33f	7.2	7.1	6.7													[1]
		21 26 41.2	17	7.5			69	194	8	83	19	350	67	27	72	267	65	- 99	[2]
6	28.11	18 32 14.4	50	7.4	7.1	6.5	63	290	9	39	25	133	244	21	117	35	71	80	[1]
		18 32 14.1	47	7.0			64	274	13	33	22	129	242	26	122	28	68	75	[2]
7	06.12	14 15 11.9	41	7.0	7.0	6.6	68	248	18	31	12	125	237	36	121	20	60	69	[1]
		14 15 11.9	36	6.7			62	277	13	33	25	129	246	24	125	29	71	76	[2]
8	18.12	06 46 18.1	10f	6.3	6.4	5.8	55	332	24	202	23	101	152	30	36	30	72	115	[1]
		06 46 19.9	15	6.2			67	303	2	38	22	129	223	23	95	37	68	88	[2]
9	26.12	00 58 52.8	33f	7.9	8.7	7.1													[1]
		00 58 50.0	29	9.0			52	36	3	113	38	222	329	8	110	129	83	87	[2]

Таблица 2. Параметры механизмов очагов землетрясений с Mw(MOS) и Mw(HRVD)*

Ниже дано краткое описание механизмов очагов всех землетрясений из табл. 2, показанных на рис. 2.

Большинство землетрясений (1-8) произошли в Тихоокеанском сейсмическом поясе, и лишь одно (9) – в Индийском. Решения механизмов очагов по MOS и HRVD близки (табл. 2, рис. 2).

Землетрясение (1) возникло 7 февраля в $02^{h}42^{m}$ с MS=7.4, Mw=7.1 в районе Западного Ириана, Индонезия. Движение в очаге происходило под действием близких по величине сжимающих и растягивающих напряжений, ориентированных в юго-западном и юго-восточном направлениях соответственно. Тип подвижки – сдвиг по круто-падающим плоскостям близширотного и близмеридионального направления с компонентами сброса.

Землетрясение (2) произошло 28 июня в 09^h49^m с *MS*=6.9, *Mw*=6.7 в районе о-вов Королевы Шарлотты вблизи берегов Северной Америки. Подвижка по обеим плоскостям крутого залегания северо-восточного и северо-западного простирания, произошла под действием близких по величине сжимающих и растягивающих напряжений, ориентированных на юг и запад соответственно (рис. 2). Тип подвижки – сдвиг.

Землетрясения (3, 4) в районе о. Хонсю, зарегистрированные 5 сентября в $10^{h}07^{m}$ с MS=7.2, Mw=7.3 и 23 октября в $08^{h}56^{m}$ с MS=6.9, Mw=6.7, имеют механизмы очагов, типичные

[12–14] для этих областей. Землетрясения возникли под действием сжимающих напряжений. Тип подвижки по обеим плоскостям – взброс с компонентами сдвига: для землетрясения (3) – правостороннего по *NP1* и левостороннего по *NP2*; для (4) – левостороннего по *NP1* и правостороннего по *NP2*. Но простирания нодальных плоскостей различные – для землетрясения (3) обе плоскости ориентированы близширотно, для (4) – в северо-восточном направлении.

Рис. 2. Стереограммы механизмов очагов землетрясений 2004 г. в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернены области волн сжатия.

Землетрясения (6, 7) в районе о. Хоккайдо, произошедшие 28 ноября в $18^{h}32^{m}$ с MS=7.1, Mw=7.4 и 6 декабря в $14^{h}15^{m}$ с MS=7.0, Mw=7.0, а также землетрясение (8) 18 декабря в $06^{h}46^{m}$ с MS=6.4, Mw=6.3 в Курило-Камчатской зоне возникли под действием сжимающих напряжений, ориентированных на юго-юго-восток. Обе нодальные плоскости NP2 крутого залегания имеют северо-восточное простирание в (6, 7, 8), подвижка по ним – типа взброс с компонентами левостороннего сдвига в (6, 7) и правостороннего – в (8). По пологим плоскостям NP1 северо-восточного простирания подвижка типа надвиг с компонентами правостороннего сдвига в (6, 7) и левостороннего – в (8).

Эпицентр землетрясения (5) (11 ноября в $21^{h}26^{m}$ с MS=7.1, Mw=7.2) расположен в районе о. Тимор, вблизи сейсмического Индийского пояса, где 26 декабря в $00^{h}58^{m}$ произошло сильнейшее (MS=8.7, Mw=7.9) землетрясение (9) на о. Суматра. Механизмы событий (5, 9), представленные по HRVD, подобны. Тип движения – взброс по крутопадающим плоскостям и надвиг – по пологим. Движение произошло под превалирующим действием напряжений сжатия. Ориентация нодальных плоскостей для (5) – близширотная, для (9) – северо-западная.

Динамические параметры очагов землетрясений (1–4, 6, 7, 9) в табл. 3 рассчитаны по спектрам продольных волн, зарегистрированных цифровой аппаратурой IRIS–STS-1 на телесейсмических расстояниях по записям станции «Обнинск» (OBN). Интервал эпицентральных расстояний для рассматриваемых землетрясений оказался равным Δ =31–69°. Землетрясения (5) и (8) рассмотрены по записям станций «Арти» и «Талая» соответственно. Станционные спектры, приведенные к очагу, показаны на рис. 3. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота f_{π} точки перелома спектра, частота угловой точки f_0 . Далее рассчитывались динамические параметры: сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах [15]. Для получения значений $L, \bar{u}, \Delta \sigma$ использовалась дислокационная модель Брюна [16], которая нашла широкое применение в сейсмологической практике.

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов семи землетрясений 2004 г. по записям цифровых широкополосных сейсмометров STS-1 на станциях «Обнинск», «Арти», «Талая»

№	Дата, ∂ м	t ₀ , ч мин с	С/ст	Mw	MS	Δ°	$\Omega_0, 10^{-4}$ MC	f _n , 10 ⁻² Гц	f ₀ , 10 ⁻² Гц	М ₀ , 10 ¹⁹ <i>Н:м</i>	$L, 10^3$	$\Delta \sigma, 10^{5} \ H/M^{2}$	$\overline{\eta}\sigma, 10^5$ H/M^2	и, м
1	07.02	02 42 33.5	OBN	7.1	7.4	98.1	0.40	4.2	11.0	5.0	44	20	56	0.94
2	28.06	09 49 44.9	OBN	6.7	6.9	70.1	0.28	2.7	22.9	1.2	22	39	41	0.90
3	05.09	10 07 09.8	OBN	7.3	7.2	68.9	1.90	2.7	12.6	9.8	40	54	14	2.23
4	23.10	08 56 03.6	OBN	6.7	6.9	66.3	0.32	3.5	20.9	1.3	24	33	38	0.82
5	11.11	21 26 43.6	ARU	7.2	7.1	84.0	2.51	12.0		6.6				
6	28.11	18 32 14.4	OBN	7.4	7.1	64.9	2.14	2.3	13.5	16.0	44	66	14	1.32
7	06.12	14 15 11.9	OBN	7.0	7.0	65.0	1.00	2.5	11.5	4.1	42	19	17	0.85
8	18.12	06 46 18.1	TLY	6.3	6.4	33.1	0.27	7.8		0.3				
9	26.12	00 58 52.8	OBN	7.9	8.7	70.1	17.75	6.3	11.2	79.0	74	68	3	5.25

Рис. 3. Очаговые спектры *Р*-волн землетрясений (1–4, 6, 7, 9), (5), (8), записанных в 2004 г. на станциях «Обнинск», «Арти» и «Талая»

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2004 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2004–2005.
- 2. Bulletin of the International Seismological Centre for 2004. Berkshire: ISC, 2006-2007.

- 3. Шаторная Н.В. (отв. сост.), Бабкина В.Ф., Аторина М.А., Болдырева Н.В., Щербакова А.И., Рыжикова М.И. Каталог землетрясений Земли за 2004 год. (См. Приложение к наст. сб. на CD).
- 4. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 5. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 6. Dzievonski A., Chou T. and Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. 86. N B4. P. 2825–2852.
- 7. Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- Hanks T.C., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. N 135. P. 2348– 2350.
- 9. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях ЕССН СССР. М.: Наука, 1982. 272 с.
- 10. Малянова Л.С., Чепкунас Л.С. (отв. сост.). Каталог механизмов очагов землетрясений Земли по методу 1-х вступлений *P*-волн за 2004 год. (См. Приложение к наст. сб. на CD).
- Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я., Бармин М.П. Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. – М.: Наука, 1983. – С. 86–91.
- 12. Захарова А.И., Чепкунас Л.С. Очаговые параметры сильных землетрясений мира // Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 129–133.
- Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2002 г. – Обнинск: ГС РАН, 2008. – С. 274–282.
- 14. Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 15. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – № 2. – С. 66–79.
- Brune J.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. – 75. – N 26. – P. 4997–5009.