# <u> IV. СЕЙСМИЧЕСКИЙ МОНИТОРИНГ ВУЛКАНОВ</u>

УДК 550.348.438(517.66)

### ВУЛКАНЫ КАМЧАТКИ

## С.Л. Сенюков, И.Н. Нуждина, С.Я. Дрознина, В.Т. Гарбузова, Т.Ю. Кожевникова

Камчатский филиал ГС РАН, г. Петропавловск-Камчатский, ssl@emsd.iks.ru

Камчатка является зоной активного вулканизма, и по современным представлениям здесь выделено 29 действующих вулканов (рис. 1) [1]. В 2004 г. был продолжен мониторинг их сейсмической и вулканической активности с целью своевременного предупреждения населения и административных органов о возможности извержения, для уменьшения последствий катастрофических событий, для обеспечения безопасности авиаполетов в районе п-ва Камчатка [1–3].

Мониторинг проводился по данным следующих трех наблюдений:

– сейсмический мониторинг по данным радиотелеметрических сейсмических станций в режиме, близком к реальному времени;

 визуальные и видеонаблюдения (три видеосистемы наблюдали за вулканами Ключевской, Шивелуч и Безымянный);

– спутниковый мониторинг термальных аномалий и пепловых выбросов. Обработка данных сенсора AVHRR спутников NOAA16 и NOAA17 проводилась сотрудниками лаборатории ИСВА. Прием данных осуществлял Камчатский центр связи и мониторинга. Данные спутников NOAA12, NOAA14, NOAA15, TERRA и MODIS предоставлялись Аляскинской вулканологической обсерваторией.

Ежедневная информация о состоянии вулканов публикуется в Интернете (*http://emsd.iks.ru/~ssl/monitoring/main.htm*).

Наиболее информативны и надежны наблюдения за сейсмической активностью. Их качество не зависит от погодных условий, а высокая информативность доказана многочисленными исследованиями как на Камчатке, так и в мире.

В 2004 г. сеть сейсмических станций в вулканических районах (рис. 1) и ее характеристика [4, 5] не изменились. Сейсмический мониторинг, как и в предыдущие годы, для разных вулканов проводился с разной степенью детальности. Наиболее детальные наблюдения проводились для Авачинской (вулканы Авачинский и Корякский) и Северной (вулканы Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский и Крестовский) групп вулканов. На вулканах Шивелуч, Карымский, Горелый работало только по одной станции, поэтому слабые близкие землетрясения лишь фиксировались, но не локализовались. Для остальных вулканов регистрировались только относительно сильные ( $K_{\rm S} \ge 7$ ) сейсмические события по удаленным станциям. Здесь  $K_{\rm S}$  – энергетический класс землетрясений  $K_{\rm S1,2}^{\Phi68}$ , определяемый по номограмме С.А. Федотова [6], для пересчета которого в локальную магнитуду, приведенную в обоих каталогах вулканических землетрясений [7, 8], использована формула А.А. Гусева

# $ML = K_{\rm S}/2 - 0.75$ [9].

В 2004 г. применялись такие же методы обработки сейсмических данных, как и в предыдущие годы [10–13]. Определение кинематических параметров землетрясений в вулканических районах выполнялось на основе одномерных скоростных моделей [10, 14] с помощью программы Ю.Ю. Мельникова [15]. Ниже приведены данные о сейсмической активности в 2004 г. в районах Северной (рис. 1, район № 1) и Авачинской групп вулканов (рис. 1, район № 2).

Северная группа вулканов (№ 1). Записи землетрясений в районах вулканов отличаются от тектонических землетрясений большим разнообразием. Согласно классификации П.И. Токарева [16], все вулканические землетрясения делятся на пять типов – I–V. Землетрясения I-III типов имеют вступления P- и S-волн и обрабатываются, как правило, стандартно: определяются времена t<sub>P</sub> и t<sub>S</sub> вступлений P- и S-волн, максимальные амплитуды A<sub>max</sub> S-волн и соответствующие периоды Т, рассчитываются их энергетические классы и координаты гипоцентров. Более сильные землетрясения, зарегистрированные тремя и более станциями, локализуются и заносятся в каталог. Каталог, содержащий стандартные кинематические и энергетические параметры за текущий год, ежедневно дополняется и доступен всем пользователям Интернета по адресу: http://data.emsd.iks.ru/klyquake/index.htm. Для более слабых землетрясений I-III типа, записанных одной или двумя станциями, и всех землетрясений IV типа (в IV типе S-волну выделить невозможно) измеряется отношение  $A_{max}/T$ , которое характеризует их энергию (для велосиграфов измеряется только A<sub>max</sub>). Для вулканического дрожания (тип V) измеряются амплитуда A<sub>max</sub>, период T и продолжительность т цугов колебаний в секундах. Результаты измерений заносят в таблицы и вычисляют производные параметры  $(A/T)_{cp}$ ,  $\Sigma A/T$  и др.).



Рис. 1. Карта активных вулканов Камчатки, радиотелеметрических станций и изолинии энергетической представительности K<sub>min</sub> землетрясений

1 – телеметрическая сейсмическая станция; 2 – вулкан; 3 – изолиния К<sub>тіп</sub>.

Код и название вулканов; SL – Шивелуч, KL – Ключевской, US – Ушковский, BZ – Безымянный, TL – Плоский Толбачик, NT – Новые Толбачинские вулканы, IH – Ичинский, КZ – Кизимен, GM – Гамчен, КМ – Комарова, КС – Кроноцкий, КК – Крашенинникова, КН – Кихпиныч, UZ – Узон, BS – Большой Семячик, MS – Малый Семячик, КІ – Карымский, DZ – Дзензур, JP – Жупановский, КК – Корякский, AV – Авачинский, GR – Горелый, МТ – Мутновский, OP – Опала, KS - Ксудач, JL - Желтовский, IL - Ильинский, KO - Кошелевский, KB - Камбальный. Код и название телеметрических станций: SVL - «Шивелуч», KLY - «Ключи», SRD - «Срединный», KRS - «Крестовский», CIR - «Цирк», LGN - «Логинов», КРТ - «Копыто», КZY - «Козыревск», ZLN - «Зеленая», КМN - «Каменистая», КRY - «Карымский», КRK - «Коряка», AVH - «Авача», SDL - «Седловина», SMA - «Сомма», UGL - «Угловая», GRL - «Горелый».



*Рис. 2.* Карта эпицентров (а) и вертикальный разрез вдоль линии А–В (б) для землетрясений района № 1

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность вокруг вулкана оконтуривает область выборки землетрясений, для которой построены графики параметров сейсмичности. Радиусы областей для разных вулканов равны: Шивелуч – 12 км, Ключевской – 7 км, Крестовский и Ушковский – 10.1 км, Безымянный – 6 км, Плоский Толбачик – 20 км.

Все землетрясения I–III типов, зарегистрированные тремя и более станциями, включены в каталог [7], содержащий 9357 землетрясений (табл. 1). Минимальный класс  $K_S$ =2.3 имеет землетрясение, локализованное 29 февраля в 06<sup>h</sup>14<sup>m</sup> на глубине *h*=6.9 км, максимальный –  $K_S$ =8.5 и *h*=12.5 км у события 22 ноября в 09<sup>h</sup>17<sup>m</sup> [7]. Отсутствие землетрясений с  $K_S$ >8.5 привело к значительному уменьшению суммарной сейсмической энергии, составившей  $\Sigma E$ =2.211·10<sup>9</sup> Дж, что примерно в 3.7 раза меньше, по сравнению с таковой в 2003 г. ( $\Sigma E$ =8.284·10<sup>9</sup> Дж). Распределение землетрясений по классам дано в табл. 1. Был построен график повторяемости с помощью широко известного в мире пакета программ ZMAP [17], в котором по методу максимального правдоподобия автоматически определяется представительный класс, а потом угол наклона графика повторяемости. В результате получено: представительными в каталоге являются землетрясения с  $K_S$ ≥4.0, значение его угла наклона  $\gamma$ =0.57±0.01.

*Таблица 1.* Распределение землетрясений в районе № 1 по энергетическим классам *K*<sub>S</sub> в 2004 г.

| Ks                 | 2       | 3       | 4       | 5       | 6       | 7       | 8       | $N_{\Sigma}$ | ΣΕ,                | γ    |
|--------------------|---------|---------|---------|---------|---------|---------|---------|--------------|--------------------|------|
| $\Delta K_{\rm S}$ | 1.6–2.5 | 2.6-3.5 | 3.6-4.5 | 4.6-5.5 | 5.6-6.5 | 6.6–7.5 | 7.6-8.5 |              | 10 <sup>9</sup> Дж |      |
| N(K)               | 2       | 540     | 4115    | 3291    | 711     | 40      | 5       | 9357         | 2.211              | 0.57 |

Ниже описаны шесть вулканов Северной группы (Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский, Крестовский) по инструментальным и визуальным наблюдениям за 2004 г.

Вулкан Шивелуч – самый северный действующий вулкан Камчатки (координаты активного кратера – 56°38' N, 161°19' Е, абсолютная высота нового купола, обнаруженного 12.05.2001 г., составила  $h_y \sim 2500 \ mmmode m$ ). Вулкан находится в 45 км северо-восточнее пос. Ключи (рис. 2, а). Ближайшая телеметрическая станция – «Шивелуч» – расположена в 8.5 км от активного кратера вулкана и регистрирует землетрясения с  $K_s \ge 3.1$ . Традиционная обработка результатов наблюдений этой станции за 2004 г. представлена в табл. 2. Теоретический уровень надежной регистрации по трем станциям соответствует  $K_{\rm Smin}$ =5.5. В 2004 г. были определены стандартные параметры для 834 землетрясений.

В 2004 г. на вулкане Шивелуч наблюдалась интенсивная вулканическая деятельность, связанная с продолжением роста нового купола [18]. Рост нового купола сопровождался высокой сейсмической активностью, имеющей пульсирующий характер (рис. 3, а). Наибольшая активность регистрировалась в январе и мае 2004 г. [7]. В течение всего года наблюдалась термальная аномалия, свидетельствующая о постоянном выходе на поверхность горячего магматического материала (рис. 4, б). На рис. 4, а представлены данные о газопепловых выбросах. При отсутствии видимости предположение о возможности газопеплового выброса делалось на основании изучения спектральных особенностей сейсмического сигнала, а возможная высота выброса определялась по амплитуде и продолжительности сейсмического сигнала, в уталонов [19]. В течение всего года регистрировалось вулканическое дрожание (рис. 4, в).

Самым значительным событием по сейсмическим данным была зарегистрированная 9 мая 2004 г. с  $06^{h}14^{m}$  до  $20^{h}10^{m}$  серия поверхностных землетрясений с амплитудой до  $15 \,\mu/c$ , вероятно, сопровождавшая мощную парогазовую эмиссию до  $8000-10000 \, m$  над уровнем моря с отдельными пепловыми выбросами. По данным видеонаблюдений, до  $16^{h}30^{m}$  было темное время суток, а с  $16^{h}30^{m}$  до  $22^{h}40^{m}$  наблюдалась парогазовая эмиссия с отдельными пепловыми выбросами до  $7500 \, m$  над куполом. Также наблюдалось парение у подножия склона вулкана, что свидетельствовало о возможном сходе грязевых потоков. По спутниковым данным удалось проследить распространение пеплового облака на восток на расстояние более  $300 \, \kappa m$ .

Вулкан Ключевской – координаты вершины: 56°04' N, 160°38' E; абсолютная высота вулкана  $h_y$ =4750 м. Диаметр вершинного кратера, венчающего конус, – около 700 м. Ближайшая телеметрическая станция – «Логинов», регистрирующая землетрясения с  $K_S \ge 2.2$ , расположена в 4 км от кратера. Сеть станций позволяет локализовать при благоприятных условиях землетрясения, начиная с  $K_S \ge 4.0$ . Уровень надежной регистрации для землетрясений, локализованных на глубинах от 20 до 35 км, совпадает с теоретическим, угол наклона графика повторяемости  $\gamma = -0.77 \pm 0.1$ . В 2004 г. были определены параметры для 7361 землетрясения, из них 6464 с  $K_S \ge 4.0$ . Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 2,а графики изменения во времени параметров активности вулкана на рис. 5. Также был выполнен традиционный подсчет землетрясений с разбиением по типам, приведенный в табл. 3.

| Месяцы   | Типы вулканических землетрясений |                 |                   |              |         |                 |                   |              |         |         |              |                   |                    |        |                   |                    |        |
|----------|----------------------------------|-----------------|-------------------|--------------|---------|-----------------|-------------------|--------------|---------|---------|--------------|-------------------|--------------------|--------|-------------------|--------------------|--------|
|          |                                  | т               |                   |              |         | п               | ш                 |              |         | n       | 7            | V                 |                    |        |                   |                    |        |
|          |                                  | 1               |                   |              | 11, 111 |                 |                   |              | 1 V     |         |              | Низкочастотные Е  |                    |        | Вул               | Вулканическое      |        |
|          |                                  |                 |                   |              |         |                 |                   |              |         |         |              |                   |                    |        |                   | дрожание           |        |
|          | 1                                | V               | $K_{\text{Smax}}$ | $\Sigma A/T$ | 1       | V               | $K_{\text{Smax}}$ | $\Sigma A/T$ | 1       | V       | $\Sigma A/T$ | $\Sigma A/T_{cp}$ | $\Sigma A/T_{max}$ | Στ,    | $\Sigma A/T_{cp}$ | $\Sigma A/T_{max}$ | Στ,    |
|          | A/T<0.2                          | <i>A/T</i> ≥0.2 |                   |              | A/T<0.2 | <i>A/T</i> ≥0.2 |                   |              | A/T<0.5 | A/T≥0.5 |              |                   |                    | час    |                   |                    | час    |
| Январь   |                                  | 2               | 6.7               | 2.95         |         | 1169            | 8.8               | 963.7        | 979     | 1325    | 2090.4       | 1.45              | 39.62              | 40.07  | 0.2               | 6.14               | 189.47 |
| Февраль  |                                  | 3               | 7                 | 4.48         |         | 200             | 6.8               | 94.13        | 552     | 1327    | 1376.1       | 1.69              | 46.49              | 28.08  | 0.21              | 1.4                | 538.8  |
| Март     | 19                               | 16              | 6.5               | 36.66        | 17      | 621             | 7.4               | 462.4        | 547     | 4301    | 3779.76      | 1.75              | 45.78              | 31.93  | 0.2               | 0.82               | 539.1  |
| Апрель   |                                  | 3               | 5                 | 3.12         | 41      | 809             | 7.4               | 373.3        | 1927    | 1934    | 1536.72      | 1.25              | 37.93              | 39.12  | 0.14              | 0.88               | 249.81 |
| Май      | 27                               | 28              | 8.1               | 235.17       | 8       | 534             | 7.2               | 346.7        | 1456    | 2015    | 2384.95      | 2.06              | 69.6               | 34.54  | 0.3               | 14.79              | 461.3  |
| Июнь     | 4                                | 11              | 8.1               | 102.98       |         | 302             | 7.5               | 241.6        |         | 13164   | 83361.9      | 4.8               | 21.47              | 2.59   | 0.95              | 5.08               | 720    |
| Июль     |                                  | 45              | 8.6               | 257.21       | 146     | 1547            | 7.4               | 654.1        |         | 11816   | 34356.8      | 3.42              | 9.78               | 1.35   | 0.28              | 1.27               | 690.5  |
| Август   |                                  | 7               | 7.7               | 26.21        | 597     | 2951            | 6.1               | 847.5        |         | 6577    | 11371.5      | 1.82              | 9.26               | 19.76  | 0.18              | 0.91               | 368.3  |
| Сентябрь |                                  | 8               | 7.8               | 41.93        |         | 2314            | 6.7               | 738.9        | 28      | 7065    | 13658.3      | 1.83              | 58.19              | 23.51  | 0.14              | 0.52               | 349    |
| Октябрь  |                                  |                 |                   |              | 101     | 592             | 7.4               | 260.02       | 235     | 6296    | 13776.9      | 1.79              | 42.32              | 34.51  | 0.18              | 0.82               | 548.4  |
| Ноябрь   |                                  | 2               | 6.6               | 2.13         | 3       | 142             | 7.4               | 138.43       | 2578    | 1147    | 812.98       | 1.64              | 43.07              | 25.48  | 0.11              | 0.9                | 94.64  |
| Декабрь  |                                  | 3               | 5.6               | 1.8          |         | 102             | 6.9               | 71.99        | 908     | 468     | 390.41       | 1.07              | 44.06              | 31.99  | 0.1               | 0.36               | 74.73  |
| Всего    | 50                               | 128             |                   | 714.64       | 913     | 11283           |                   | 5192.77      | 9210    | 57435   | 168896.7     |                   |                    | 312.93 |                   |                    | 4824.1 |

*Таблица* 2. Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=12 км) вулкана Шивелуч на одноименной станции «Шивелуч» в 2004 г.

Примечание. Здесь и в подобных таблицах ниже N с A/T<0.2 равно числу землетрясений с отношением амплитуды к периоду меньше, чем 0.2, соответственно N с A/T>0.2 – больше чем 0.2.



*Рис. 3.* Изменение во времени энергетического класса  $K_s$  (а) и глубины гипоцентров h (б) совокупности вулканических землетрясений, произошедших в радиусе 12 км от вулкана Шивелуч в 2004 г.



Рис. 4. Графики распределения во времени различных параметров активности вулкана Шивелуч в 2004 г.

а – высота (км) газо-пепловых выбросов над куполом по визуальным и видеоданным сотрудников сейсмической станции «Ключи» и видеоданным выделена черным цветом, высота возможных газо-пепловых выбросов по сейсмическим данным выделена серым цветом; б – число пикселей в термальной аномалии по данным спутников NOAA16 и NOAA17; в – максимальная амплитуда и продолжительность вулканического дрожания по станции «Шивелуч».



**Рис. 5.** Изменение во времени энергетического класса  $K_S$  (а) и глубины гипоцентров h (б) вулканических землетрясений, произошедших в радиусе 7 км от вулкана Ключевской в 2004 г.

| Таблица 3. | Параметры    | вулканических   | землетрясений    | разных    | типов,  | записанных | вблизи |
|------------|--------------|-----------------|------------------|-----------|---------|------------|--------|
|            | (∆=7 км) вул | ікана Ключевско | ой на станции «L | Цирк» в 2 | 2004 г. |            |        |

| Месяцы   |           |               |                   |              | Ти        | ипы вулк      | аниче             | ских зе      | млетрясе  | ний     |              |                       |                        |         |  |
|----------|-----------|---------------|-------------------|--------------|-----------|---------------|-------------------|--------------|-----------|---------|--------------|-----------------------|------------------------|---------|--|
|          |           | Ι             |                   |              |           | II, II        | Ι                 |              |           | IV      |              |                       | V                      |         |  |
|          |           |               |                   |              |           |               |                   |              |           |         |              | Вулканическое         |                        |         |  |
|          |           |               |                   |              |           |               |                   |              |           |         |              | дрожание              |                        |         |  |
|          | Λ         | V             | $K_{\text{Smax}}$ | $\Sigma A/T$ | 1         | V             | $K_{\text{Smax}}$ | $\Sigma A/T$ | Ì         | V       | $\Sigma A/T$ | $\Sigma A/T_{\rm cp}$ | $\Sigma A/T_{\rm max}$ | Στ,     |  |
|          | A/T < 0.2 | $A/T \ge 0.2$ |                   |              | A/T < 0.2 | $A/T \ge 0.2$ |                   |              | A/T < 0.5 | A/T≥0.5 |              |                       |                        | час     |  |
| Январь   |           | 20            | 7.6               | 59.96        |           | 1216          | 8                 | 2842.58      |           | 4478    | 43407.3      | 2.73                  | 20.47                  | 744.0   |  |
| Февраль  | 7         | 139           | 8.1               | 294.11       | 53        | 2270          | 7.3               | 1227.37      | 983       | 4883    | 5954.44      | 0.24                  | 2.12                   | 453.1   |  |
| Март     | 75        | 347           | 7.8               | 169.86       | 16        | 126           | 6.1               | 49.88        | 2571      | 1232    | 965.92       | 0.11                  | 0.42                   | 86.6    |  |
| Апрель   | 21        | 296           | 8.6               | 172.75       | 26        | 88            | 6.4               | 46.49        | 1446      | 659     | 490.82       | 0.09                  | 0.42                   | 65.66   |  |
| Май      | 23        | 127           | 6.7               | 75.4         | 50        | 44            | 6                 | 15.32        | 670       | 237     | 170.08       | 0.07                  | 0.25                   | 28.92   |  |
| Июнь     | 300       | 754           | 6.8               | 267.26       | 7         | 13            | 5.5               | 2.39         | 187       | 12      | 8.79         | 0.05                  | 0.16                   | 171.4   |  |
| Июль     | 208       | 520           | 7.8               | 187.06       | 9         | 18            | 5.9               | 8.29         | 89        | 34      | 26.25        | 0.06                  | 0.35                   | 592     |  |
| Август   | 102       | 305           | 7.8               | 143.46       | 37        | 11            | 6.8               | 11.49        | 57        | 6       | 3.84         | 0.05                  | 0.17                   | 183     |  |
| Сентябрь | 96        | 397           | 7.9               | 250.22       | 11        | 16            | 5.2               | 3.66         | 111       | 12      | 14.87        |                       |                        |         |  |
| Октябрь  | 501       | 1974          | 7.7               | 1087.5       | 49        | 14            | 6.7               | 20.8         | 52        | 5       | 3.4          | 0.07                  | 0.13                   | 3.7     |  |
| Ноябрь   | 132       | 586           | 8.1               | 448.22       | 75        | 16            | 7                 | 17.26        | 20        |         |              |                       |                        |         |  |
| Декабрь  | 192       | 1149          | 7.3               | 840.62       | 86        | 15            | 5.8               | 5.22         | 7         | 2       | 1.92         |                       |                        |         |  |
| Всего    | 1657      | 6614          |                   | 3996.42      | 419       | 3847          |                   | 4250.75      | 6193      | 11560   | 51047.63     |                       |                        | 2328.38 |  |

В 2004 г. вулкан Ключевской находился в неспокойном состоянии только в январефеврале. В это время на вулкане регистрировались поверхностные события и вулканическое дрожание. По спутниковым данным фиксировалась термальная аномалия, свидетельствующая о присутствии магмы в центральном кратере. В январе были зафиксированы пепловые выбросы по визуальным и видеоданным. Обычно выбросы были кратковременные (несколько минут) и слабо нагруженные пеплом. Максимальная зарегистрированная высота пепловых выбросов –  $1000 \ m$  над кратером. В феврале–марте число поверхностных землетрясений стало постепенно уменьшаться и начали регистрироваться землетрясения сначала с глубин  $h=0-15 \ \kappa m$ , а затем и с больших глубин – около 30  $\ \kappa m$ . Все это свидетельствовало о постепенном отступлении магмы и прекращении вулканической активности. Начиная с середины мая и до конца года в районе Ключевского вулкана регистрировались практически только землетрясения с глубины около 30  $\ \kappa m$ . Вулкан был спокоен.

**Вулкан Безымянный** – координаты вершины: 55°58' N, 160° 35' E; абсолютная высота вулкана  $h_v = 2869 \text{ }$ *м*. Ближайшие телеметрические станции «Логинов» и «Зеленая» в 13.5 *км* от

кратера вулкана (рис. 2, а) и регистрируют землетрясения с  $K_{\rm S} \ge 3.6$ . Уровень надежной регистрации, рассчитанный по программе ZMAP [17], соответствует  $K_{\rm min}$ =3.2, угол наклона графика повторяемости  $\gamma$ = -1.1±0.06. Традиционная обработка землетрясений с разделением по типам, определением их числа и суммарного отношения A/T представлена в табл. 4.

| Месяцы   |               | Типы вулканических землетрясений |              |               |                   |              |               |              |                   |                        |      |                        |                        |       |  |  |
|----------|---------------|----------------------------------|--------------|---------------|-------------------|--------------|---------------|--------------|-------------------|------------------------|------|------------------------|------------------------|-------|--|--|
|          |               | т                                |              | 1             | тш                |              |               | 7            | V                 |                        |      |                        |                        |       |  |  |
|          | 1             |                                  |              | 11, 111       |                   |              | 1 V           |              | Низкочастотные    |                        |      | Вулканическое дрожание |                        |       |  |  |
|          | N             | $K_{\text{Smax}}$                | $\Sigma A/T$ | Ν             | $K_{\text{Smax}}$ | $\Sigma A/T$ | N             | $\Sigma A/T$ | $\Sigma A/T_{cp}$ | $\Sigma A/T_{\rm max}$ | Στ,  | $\Sigma A/T_{\rm cp}$  | $\Sigma A/T_{\rm max}$ | Στ,   |  |  |
|          | $A/T \ge 0.1$ |                                  |              | $A/T \ge 0.1$ |                   |              | $A/T \ge 0.1$ |              |                   |                        | час  | *                      |                        | час   |  |  |
| Январь   |               |                                  |              | 2             | 6.9               | 5.64         |               |              | 1.77              | 3.81                   | 0.5  |                        |                        |       |  |  |
| Февраль  |               |                                  |              |               |                   |              |               |              |                   |                        |      |                        |                        |       |  |  |
| Март     |               |                                  |              | 1             | 3.9               | 0.06         |               |              |                   |                        |      |                        |                        |       |  |  |
| Апрель   |               |                                  |              | 8             | 6.4               | 3.86         |               |              |                   |                        |      |                        |                        |       |  |  |
| Май      |               |                                  |              | 58            | 4.9               | 5.15         | 27            | 4.32         |                   |                        |      |                        |                        |       |  |  |
| Июнь     |               |                                  |              | 386           | 7.1               | 49.91        | 1076          | 409.5        | 6.27              | 24.45                  | 0.67 | 0.08                   | 0.43                   | 85    |  |  |
| Июль     |               |                                  |              |               |                   |              | 8             | 2.92         |                   |                        |      |                        |                        |       |  |  |
| Август   |               |                                  |              | 3             | 6.6               | 1.57         | 7             | 1.84         | 0.21              | 0.32                   | 0.1  | 0.08                   | 0.18                   | 1     |  |  |
| Сентябрь |               |                                  |              | 19            | 5.8               | 3.5          | 12            | 3.5          |                   |                        |      | 0.11                   | 0.3                    | 0.96  |  |  |
| Октябрь  |               |                                  |              | 1             | 4.6               | 0.17         |               |              |                   |                        |      |                        |                        |       |  |  |
| Ноябрь   |               |                                  |              |               |                   |              | 1             | 0.26         |                   |                        |      |                        |                        |       |  |  |
| Декабрь  |               |                                  |              | 37            | 7.9               | 8.86         | 23            | 2.46         |                   |                        |      |                        |                        |       |  |  |
| Всего    |               |                                  |              | 515           |                   | 78.72        | 1154          | 424.8        |                   |                        | 0.77 |                        |                        | 86.96 |  |  |

*Таблица 4.* Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=6 км) вулкана Безымянный на станции «Зеленая» в 2004 г.

В течение исследуемого периода вулкан Безымянный извергался два раза. Наличие на вулкане постоянной термальной аномалии свидетельствовало о том, что горячий материал находится близко к поверхности и извержение может начаться без сильной предварительной сейсмической подготовки. 9 января перед извержением вулкана удалось зафиксировать только одно землетрясение с  $K_s$ =6.0 (рис. 6). Более слабые землетрясения из-за сильного вулканического дрожания Ключевского вулкана обработать было невозможно. Это связано с тем, что ближайшие к вулкану Безымянный телеметрические станции расположены на склоне вулкана Ключевской. По данным сейсмического мониторинга, извержение началось 13 января в 22<sup>h</sup>53<sup>m</sup> и продолжалось несколько часов. По данным видеонаблюдений, с 11<sup>h</sup>55<sup>m</sup> на вулкане наблюдались газопепловые выбросы на высоту до 6000 *м* над уровнем моря. По спутниковым данным удалось проследить распространение пеплового облака на восток на расстояние более 500 *км*.





Второе извержение произошло в июне 2004 г. В это время вулкан Ключевской находился в спокойном состоянии, вулканическое дрожание не фиксировалось, что позволило зарегистрировать сейсмическую подготовку извержения Безымянного (рис. 6). Сейсмическая активность превысила фоновый уровень 2 июня, о чем было дано предупреждение. В дальнейшем наблюдалось постепенное увеличение числа и энергии поверхностных землетрясений. За три дня до извержения (15 июня) стало наблюдаться резкое увеличение амплитуды сейсмических сигналов, которые могли сопровождать сход обломочных лавин. На основании этих данных был дан прогноз о начале возможного извержения в течение ближайших пяти дней, который впоследствии оправдался. По данным извержение сейсмическим произошло 18 июня с  $19^{h}40^{m}$  до  $20^{h}20^{m}$ . На рис. 7 дана огибающая амплитуды сейсмического сигнала, имеющая форму резкого всплеска с последующим постепенным уменьшением по экспоненциальному закону, характерному для эксплозивных извержений с мощ-



Рис. 7. Амплитуда огибающей сеймического сигнала (безразмерная единица), осредненная в 10-секундном интервале для извержения вулкана Безымянный 18–19 июня 2004 г. (стрелка обозначает начало мощного пеплового выброса 18 июня в 19<sup>h</sup>40<sup>m</sup>)

ными газо-пепловыми выбросами. По визуальным данным с  $20^{h}30^{m}$  (до этого – темное время суток) на вулкане наблюдались газопепловые выбросы до высоты  $8000 \ m$  над уровнем моря. Спутниковые данные позволили проследить распространение пеплового облака на расстояние до  $2000 \ \kappa m$  в восточном направлении (рис. 8). Заметного роста термальной аномалии перед обоими извержениями зафиксировано не было.



Рис. 8. Распространение пеплового облака от извержения вулкана Безымянный 18-19 июня 2004 г.

Данные предоставлены Камчатским центром связи и мониторинга, обработка – лабораторией ИСВА; все снимки за 19 июня.

Вулкан Плоский Толбачик – координаты вершины: 55°49′ N, 160°22′ E; абсолютная высота вулкана  $h_y$ =3085 м. Ближайшая телеметрическая станция – «Каменистая» – расположена в 10 км от кратера вулкана и регистрирует землетрясения с  $K_S$ ≥3.3. Теоретический уровень надежной регистрации по трем станциям соответствует  $K_S$ =5.0. В табл. 5 представлены землетрясения, зарегистрированные этой станцией.

| Месяцы   | Типы вулканических землетрясений |         |                   |              |         |                          |                   |              |               |                          |              |          |       |      |
|----------|----------------------------------|---------|-------------------|--------------|---------|--------------------------|-------------------|--------------|---------------|--------------------------|--------------|----------|-------|------|
|          |                                  | Ι       |                   |              |         |                          | IV                |              | Вулканическое |                          |              |          |       |      |
|          | N                                |         | $K_{\text{Smax}}$ | $\Sigma A/T$ | N       |                          | $K_{\text{Smax}}$ | $\Sigma A/T$ | N             |                          |              | дрожание |       |      |
|          | A/T<0.2                          | A/T≥0.2 |                   |              | A/T<0.2 | <i>A</i> / <i>T</i> ≥0.2 |                   |              | A/T < 0.5     | <i>A</i> / <i>T</i> ≥0.2 | $\Sigma A/T$ | (A/N)    | (A/N) | τ,   |
|          |                                  |         |                   |              |         |                          |                   |              |               |                          |              | cp.      | max   | час  |
| Январь   |                                  | 7       | 6                 | 3.05         |         | 3                        | 4.4               | 0.75         | 2             |                          |              |          |       |      |
| Февраль  |                                  | 27      | 7.2               | 19.66        |         | 2                        | 4                 | 0.39         |               |                          |              |          |       |      |
| Март     |                                  | 15      | 5.4               | 2.24         |         | 2                        | 6.2               | 2.68         |               |                          |              |          |       |      |
| Апрель   | 3                                | 17      | 6.5               | 7.63         |         | 6                        | 5.7               | 2.35         |               |                          |              | 0.14     | 0.27  | 0.5  |
| Май      |                                  | 13      | 7.2               | 6.35         | 1       | 2                        | 3.6               | 0.18         |               |                          |              | 0.15     | 0.3   | 0.33 |
| Июнь     |                                  | 15      | 7.2               | 23.71        | 2       |                          |                   |              | 8             |                          |              |          |       |      |
| Июль     | 3                                | 11      | 6.8               | 4.8          | 2       | 4                        | 5.1               | 0.69         | 4             |                          |              |          |       |      |
| Август   | 2                                | 5       | 7.2               | 4.58         | 4       |                          |                   |              | 1             |                          |              |          |       |      |
| Сентябрь |                                  | 14      | 6.3               | 5.59         |         |                          |                   |              | 2             |                          |              |          |       |      |
| Октябрь  | 1                                | 5       | 5.4               | 1.37         |         | 1                        | 4.2               | 0.19         | 2             |                          |              | 0.24     | 0.36  | 0.58 |
| Ноябрь   | 6                                | 5       | 5                 | 1.17         | 5       | 3                        | 6.2               | 1.23         | 2             |                          |              | 0.13     | 0.26  | 0.93 |
| Декабрь  | 1                                | 4       | 6                 | 1.71         | 19      | 14                       | 5.3               | 2.67         | 3             |                          |              |          |       |      |
| Всего    | 16                               | 138     |                   | 81.86        | 33      | 37                       |                   | 11.13        | 24            |                          |              |          |       | 2.34 |

*Таблица* 5. Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=20 км) вулкана Плоский Толбачик на станции «Каменистая» в 2004 г.

На рис. 2 даны карта эпицентров и проекция гипоцентров на вертикальный разрез, на рис. 9 – графики изменения во времени параметров сейсмической активности вулкана. На протяжении 2004 г. в районе вулкана Плоский Толбачик наблюдалась «обычная, фоновая» сейсмичность.





Вулканы Ушковский и Крестовский образуют единый вулканический массив, осложненный вершинной кальдерой. Этот массив рассечен глубокими ледниковыми ущельями и эрозионными долинами. Вулкан Крестовский – координаты вершины: 56°07' N, 160°30'E, абсолютная высота вулкана  $h_y$ =4108 *м*; Ушковский – координаты вершины: 56°04' N, 160°28'E; абсолютная высота вулкана  $h_y$ =3943 *м*. Ближайшие телеметрические станции – «Крестовский» и «Логинов» – расположены в 12 км от вершины Крестовского и регистрируют землетрясения с  $K_S \ge 3.5$ . Теоретический уровень надежной регистрации по трем станциям соответствует  $K_{\rm S}$ =4.5, однако сеть позволяет обрабатывать землетрясения с занесением в каталог, начиная  $K_{\rm S}$ =4.0. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 2, графики изменения во времени параметров активности вулкана – на рис. 10, а традиционный подсчет землетрясений с разбиением по типам – в табл. 6.

| Месяны      |         |                 |                   | Тип          | ы вулканических землетрясений |           |                   |              |                 |    |              |  |  |  |
|-------------|---------|-----------------|-------------------|--------------|-------------------------------|-----------|-------------------|--------------|-----------------|----|--------------|--|--|--|
| 11100/11(21 |         |                 | Ι                 |              |                               | II        | L III             |              | IV              |    |              |  |  |  |
|             | i       | N               | K <sub>Smax</sub> | $\Sigma A/T$ | N                             |           | K <sub>Smax</sub> | $\Sigma A/T$ | l               | V  | $\Sigma A/T$ |  |  |  |
|             | A/T<0.2 | A/T<0.2 A/T≥0.2 |                   |              | A/T < 0.2                     | A/T ≥ 0.2 |                   |              | A/T<0.5 A/T≥0.5 |    |              |  |  |  |
| Январь      |         |                 |                   |              |                               | 1         | 5.2               | 0.51         |                 |    |              |  |  |  |
| Февраль     |         | 1               | 6.4               | 0.73         |                               | 1         | 4.2               | 0.41         |                 |    |              |  |  |  |
| Март        |         | 1               | 6.4               | 1.71         | 2                             | 11        | 4.8               | 1.03         |                 |    |              |  |  |  |
| Апрель      |         |                 |                   |              | 19                            | 25        | 5.1               | 3.5          |                 |    |              |  |  |  |
| Май         |         | 2               | 4.7               | 0.25         | 15                            | 45        | 6                 | 5.6          | 7               |    | 2.01         |  |  |  |
| Июнь        |         |                 |                   |              | 1                             | 58        | 4.8               | 4.58         | 6               | 1  | 1.08         |  |  |  |
| Июль        |         |                 |                   |              |                               | 48        | 5.5               | 5.7          | 50              | 5  | 9.81         |  |  |  |
| Август      |         |                 |                   |              | 14                            | 43        | 6                 | 4.7          | 39              | 11 | 7.05         |  |  |  |
| Сентябрь    |         |                 |                   |              | 1                             | 37        | 6.2               | 6.61         | 33              | 9  | 9.04         |  |  |  |
| Октябрь     |         |                 |                   |              | 5                             | 68        | 5.5               | 10.07        | 20              | 4  | 5.21         |  |  |  |
| Ноябрь      |         |                 |                   |              | 5                             | 75        | 5.7               | 10.52        | 14              | 4  | 3.67         |  |  |  |
| Декабрь     |         |                 |                   |              | 5                             | 82        | 5.5               | 12.02        | 1               |    | 0.15         |  |  |  |
| Всего       |         | 4               |                   | 2.69         | 67                            | 494       |                   | 65.25        | 170             | 34 | 38.02        |  |  |  |

*Таблица* 6. Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=10 км) вулканов Крестовский и Ушковский на станции «Цирк» в 2004 г.



*Рис. 10.* Изменение во времени энергетического класса K<sub>S</sub> (а) и глубины гипоцентров h (б) вулканических землетрясений, произошедших в радиусе 10.1 км от вулканов Крестовский и Ушковский в 2004 г.

В 2004 г. сейсмичность района вулканов Крестовский и Ушковский была фоновой и никаких проявлений вулканической активности, а также термальных аномалий на снимках из космоса отмечено не было.

Авачинская группа вулканов (№ 2). В Авачинскую группу вулканов входят два действующих вулкана – Авачинский и Корякский. Из всех вулканов они представляют наибольшую потенциальную опасность, так как расположены в 30 км от наиболее густонаселенных городов Камчатки – Петропавловск-Камчатский и Елизово.

Вулкан Авачинский – координаты вершины: 53°15' N, 158°50'E, абсолютная высота вулкана  $h_y$ =2741 *м*, диаметр кратера – около 350 *м*. Координаты вершины вулкана Корякский: 53°19' N, 158°43'E; абсолютная высота вулкана  $h_y$ =3456 *м*.

Координаты гипоцентров для Корякского и Авачинского вулканов рассчитывались, как и в предшествующие годы, по программе Ю.Ю. Мельникова [15] с использованием двух разных одномерных скоростных моделей среды [14, 20]. Общая карта распределения эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 11. Весь район  $\mathbb{N}$  2, изображенный на рис. 1, по теоретическим расчетам является областью надежной регистрации для событий с  $K_S \ge 4.0$ .



*Рис.* 11. Карта эпицентров (а) и проекция гипоцентров на вертикальный разрез вдоль линии А–В (б) для землетрясений района № 2.

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность возле вулкана соответствует радиусу (8 км) выборки исходных данных вокруг вулканов Авачинский и Корякский для построения графиков изменения во времени параметров их активности (рис. 12, 13).

В 2004 г. никакой заметной сейсмической или вулканической активности отмечено не было. Каталог землетрясений Авачинской группы [8] содержит параметры для  $N_{\Sigma}=103$  землетрясений с  $K_{\rm S}=1.4-5.6$  (табл. 7). Землетрясение с минимальным классом  $K_{\rm S}=1.4$  было локализовано 26 декабря в  $22^{\rm h}39^{\rm m}$ . Максимальный класс  $K_{\rm S}=5.6$  имеет землетрясение, произошедшее 8 января в  $20^{\rm h}29^{\rm m}$ . В сравнении с сейсмичностью за все годы детальных однородных наблюдений, начиная с 1994 г., сейсмичность исследуемого периода была относительно спокойной. Суммарная энергия всех землетрясений, включенных в каталог [8], составила  $\Sigma E=1.12 \cdot 10^6 \ Дж$ , что на два порядка меньше таковой в 2003 г. ( $\Sigma E=5.039 \cdot 10^8 \ Дж$ ). Причиной значительного снижения энергии является отсутствие землетрясений с  $K_{\rm S} \ge 5.6$ .

Графики распределения во времени различных параметров землетрясений для вулкана Авачинский представлены на рис. 12, а для вулкана Корякский – на рис. 13.



Таблица 7. Распределение землетрясений в районе № 2 по энергетическим классам K<sub>S</sub> в 2004 г.

**Рис. 12.** Изменение во времени энергетического класса  $K_s$  (а) и глубины гипоцентров h (б) вулканических землетрясений, произошедших в радиусе 8 км от вулкана Авачинский в 2004 г.



**Рис. 13.** Изменение во времени энергетического класса  $K_{\rm S}$  (а) и глубины гипоцентров h (б) вулканических землетрясений, произошедших в радиусе 8 км от вулкана Корякский в 2004 г.

### Литература

- 1. Действующие вулканы Камчатки / Под ред. С.А. Федотова, Ю.П. Масуренкова М.: Наука, 1991. 1. – С. 5–11.
- 2. Кирьянов В.Ю. Вулканические пеплы Камчатки как источник потенциальной вулканической опасности для пассажирских авиалиний // Вулканология и сейсмология. 1992. № 3. С. 16–36.
- Кирьянов В.Ю., Чубарова О.С., Сенюков С.Л., Евдокимова О.А., Гарбузова В.Т. Группа по обеспечению безопасности полетов от вулканических пеплов (КВЕРТ): 8 лет деятельности // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С. 408–423.
- 4. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.) М. Обнинск: ГС РАН, 2001. 86 с.
- 5. **Левина В.И., Иванова Е.И., Гусева Е.И.** Камчатка и Командорские острова // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 213–222.
- 6. **Федотов С.А.** Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 117 с.
- 7. **Нуждина И.Н. (отв. сост.)**, **Дрознина С.Я., Кожевникова Т.Ю., Толокнова С.Л.** Каталог землетрясений Северной группы вулканов за 2004 год. (См. Приложение к наст. сб. на CD).
- 8. **Нуждина И.Н. (отв. сост.)**, **Дрознина С.Я., Кожевникова Т.Ю., Толокнова С.Л.** Каталог землетрясений Авачинской группы вулканов за 2004 год. (См. Приложение к наст. сб. на CD).
- 9. Детальные сейсмологические исследования Камчатки и Командорских островов (01.01.– 31.12.1998 г.). – Петропавловск-Камчатский: Отчет КОМСП ГС РАН, 1999. – 259 с.
- Сенюков С.Л., Чебров В.Н., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Сейсмический мониторинг вулканов Камчатки // Землетрясения Северной Евразии в 1999 году. – Обнинск: ГС РАН, 2005. – С. 253–273.
- 11. Сенюков С.Л., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Сейсмический мониторинг вулканов Камчатки // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 321–336.
- 12. Сенюков С.Л., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Вулканы Камчатки // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 360–376.
- Сенюков С.Л., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Вулканы Камчатки // Землетрясения Северной Евразии, 2002. Обнинск: ГС РАН, 2008. С. 380–394.
- 14. Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений // Комплексные сейсмологические и геофизические наблюдения на Камчатке. – Петропавловск-Камчатский: КОМСП ГС РАН, 2004. – С. 279–291.
- 15. **Мельников Ю.Ю.** Пакет программ для определения координат гипоцентров землетрясений Камчатки на ЭВМ // Вулканология и сейсмология. – 1990. – № 5. – С. 103–112.
- 16. Токарев П.И. Вулканические землетрясения Камчатки. М.: Наука, 1981. 164 с.
- Weimer S. A software package to analyze seismicity: ZMAP // Seism. Res. Lett. 2001. 72 N 2. -P. 374-383.
- 18. Сенюков С.Л., Дрознина С.Я., Гарбузова В.Т., Нуждина И.Н., Дрознин Д.В., Кожевникова Т.Ю. Исследования активности вулканов Шивелуч и Безымянный в 2000–2003 гг. дистанционными средствами наблюдений // Комплексные сейсмологические и геофизические наблюдения на Камчатке. – Петропавловск-Камчатский: КОМСП ГС РАН, 2004. – С. 301–318.
- Сенюков С.Л., Дрознина С.Я., Дрознин Д.В. Опыт выделения пепловых выбросов и оценка их высоты по сейсмическим данным на примере вулкана Шивелуч (Камчатка) // Комплексные сейсмологические и геофизические наблюдения на Камчатке. – Петропавловск-Камчатский: КОМСП ГС РАН, 2004. – С. 292–300.
- 20. Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений в 2000–2004 гг. // Вулканология и сейсмология. 2006. № 3. С. 68–78.