ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

В течение 2004 г. Якутский филиал Геофизической службы СО РАН проводил исследования сейсмичности территории Республики Саха (Якутия) и соседних территорий на основе системы инструментальных наблюдений на 17 сейсмических станциях. Шесть из них располагались на северо-востоке, восемь – на юге региона, остальные пункты регистрации землетрясений действовали в Центральной Якутии (рис. 1). В 2004 г. фактически закончился период регистрации сейсмических событий аналоговым способом (фотозапись), т.к. все сейсмические станции были переведены на работу с использованием цифровых приборов и фиксацией землетрясений на компьютер. В течение года были закрыты сейсмическая станция «Столб» (январь 2004 г.) в дельте р. Лены из-за невозможности ее обслуживания и пункт регистрации «Усть-Нюкжа» (июль 2004 г.). Приборы из этого поселка были перенесены в более удобное место на станцию «Юктали», расположенную по трассе Байкало-Амурской железнодорожной магистрали. Дополнительно на юге Якутии 10 июля 2004 г. была открыта новая цифровая станция «Иенгра». Конфигурация сети станций Якутии в 2004 г. представлена на рис. 1, а сведения о них и параметры аппаратуры приведены в табл. 1, 2. Станции «Якутск» и «Тикси» являются опорными и задействованы в мировой системе наблюдений IRIS (Incorporated Research Institutions for Seismology), которая объединяет исследования научных институтов США в области сейсмологии. Остальные станции являлись региональными. Аппаратурную основу всей сети составляли цифровые приборы как отечественного производства (Байкал-11, SDAS с сейсмоприемниками СМЗ-ОС, СМЗ-КВ, СКМ-3), так и зарубежного (IRIS, PAR-24B, PAR-4CH с сейсмографами KS-2000, STS-1, GS-13).

N⁰	Станция			Дата	Дата Координаты					
	Название	К	од	открытия	φ°, N	λ°, Ε	$h_{\rm y}$,	АЦП		
		межд.	рег.		-		м			
1	Тикси	TIK	Ткс	02.03.1956	71.65	128.87	100			
				13.08.1995				IRIS		
2	Якутск	YAK	Як	04.10.1957	62.03	129.68	91			
				01.09.1993				IRIS		
				01.09.1999				SDAS		
3	Чульман	CLN	Члн	05.08.1962	56.84	124.89	747			
				25.03.2000				SDAS		
4	Усть-Нера	USN	Унр	21.11.1962	64.57	143.23	485			
				20.04.2002				PAR-24B		
5	Чагда	CGD	Чгд	04.10.1968	58.75	130.61	195			
				25.07.2004				SDAS		
6	Батагай		Бтг	12.03.1975	67.65	134.63	127			
				12.12.2002				SDAS		
7	Мома		Мом	05.03.1983	66.47	143.22	192			
				01.11.2002				PAR-4CH		
8	Артык		Атк	04.07.1988	64.18	145.13	700			
				25.04.2002				PAR-24B		
9	Алдан		Алд	01.09.1999	58.61	125.41	658	SDAS		
10	Усть-Мая		Усм	01.09.2000	60.42	134.54	170	SDAS		

Таблица 1. Сейсмические станции Якутии в хронологии их открытия в аналоговом и цифровом вариантах, работавшие в 2004 г.

N⁰	Стан Название	нция Код межд. рег.		Дата открытия	Координаты $\phi^{\circ}, N \lambda^{\circ}, E h_{y},$			Тип АЦП
							\mathcal{M}	
11	Тында		Тыд	20.06.2001	55.15	124.72	530	SDAS
12	Витим		Втм	25.06.2003	59.44	112.58	190	SDAS
13	Табага		Тбг	26.06.2003	61.82	129.64	98	Байкал-11
14	Кангалассы		Кнг	07.07.2003	62.21	129.58	100	Байкал-11
15	Депутатский		Деп	01.09.2003	69.39	139.90	320	PAR-4CH
16	Юктали		Юкл	04.07.2004	56.59	121.65	420	SDAS
17	Иенгра		Иен	10.07.2004	56.22	124.86	860	Байкал-11

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф-отсчет/(<i>м/c</i>), акселерограф-отсчет/(<i>м/c</i> ²)
Тикси	IRIS+STS-1	BH(N, Z, E)v	0.0028-5	20	24	$1.00 \cdot 10^{9}$
		LH(N, Z, E)v	0.0028-0.25	1	24	$3.98 \cdot 10^{9}$
		VH(N, Z, E)v	0.0028-0.025	0.1	24	$1.59 \cdot 10^{10}$
		VM(N, Z, E)a	0-0.0028	0.01	24	$1.21 \cdot 10^{10}$
	IRIS+GS-13	EH(N, Z, E)v	1-25	80	24	$4.08 \cdot 10^{9}$
		SH(N, Z, E)v	1-10	40	24	$4.08 \cdot 10^{9}$
Якутск	IRIS+STS-1	BH(N, Z, E)v	0.0028-5	20	24	1.00.109
2		LH(N, Z, E)v	0.0028-0.25	1	24	$4.00 \cdot 10^9$
		VH(N, Z, E)v	0.0028-0.025	0.1	24	$1.60 \cdot 10^{10}$
		VM(N, Z, E)a	0-0.0028	0.01	24	$1.20 \cdot 10^{10}$
	IRIS+GS-13	EH(N, Z, E)v	1-25	80	24	$2.08 \cdot 10^9$
		SH(N, Z, E)v	1-10	40	24	$2.08 \cdot 10^9$
	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$8.70 \cdot 10^8$
		BL(N, Z, E)v	0.02-6.7	20	16	$2.18 \cdot 10^8$
Чульман	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	5.29·10 ⁸
-		BL(N, Z, E)v	0.02-6.7	20	16	$1.32 \cdot 10^8$
Усть-Нера	PAR-24B+CKM-3	SH(N, Z, E)v	0.8-5.0	30	24	$2.47 \cdot 10^{10}$
Чагда	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	3.83·10 ⁹
		BL(N, Z, E)v	0.02-6.7	20	24	$1.20 \cdot 10^8$
Батагай	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	1.03.109
		BL(N, Z, E)v	0.02-6.7	20	24	$2.58 \cdot 10^8$
Мома	PAR-4CH+KS-2000	SH(N, Z, E)v	0.01-50	50	24	9.01·10 ⁸
Артык	PAR-24B+CM-3-KB	SH(N, Z, E)v	0.8-10	30	24	$4.03 \cdot 10^{10}$
Алдан	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$5.32 \cdot 10^{8}$
		BL(N, Z, E)v	0.02-6.7	20	16	$1.36 \cdot 10^8$
Усть-Мая	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	5.26·10 ⁸
		BL(N, Z, E)v	0.02-6.7	20	16	$1.32 \cdot 10^8$
Тында	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	9.01·10 ⁸
		BL(N, Z, E)v	0.02-6.7	20	16	$2.25 \cdot 10^8$
Витим	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	7.35·10 ⁹
		BL(N, Z, E)v	0.02-6.7	20	24	$2.29 \cdot 10^8$
Табага	Байкал-11+СМ-3-КВ	SH(N, Z, E)v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Кангалассы	Байкал-11+СМ-3-КВ	SH(N, Z, E)v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Депутатский	PAR-4CH+KS-2000	SH(N, Z, E)v	0.01-50	20	24	8.93·10 ⁸
Юктали	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	3.65·10 ⁹
		BL(N, Z, E)v	0.02-6.7	20	24	$1.14 \cdot 10^8$
Иенгра	Байкал-11+СМ-3-КВ	SH(N, Z, E)v	0.05-2.0	50	20	$2.86 \cdot 10^9$

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

Рис. 1. Карта энергетической представительности К_{тіп} землетрясений территории Якутии в 2004 г.

Изолиниями ограничены области с регистрацией без пропусков землетрясений с $M \ge 2.0$ ($K_P \ge 7$), $M \ge 2.5$ ($K_P \ge 8$), $M \ge 3.0$ ($K_P \ge 9$), $M \ge 3.5$ ($K_P \ge 10$), $M \ge 4.0$ ($K_P \ge 11$), $M \ge 4.5$ ($K_P \ge 12$); магнитуда M не измерена, а рассчитана по формуле $M = (K_P = 4)/1.8$ [1]; утолщенной линией показаны границы региона, треугольниками – сейсмические станции.

С учетом пространственного расположения пунктов наблюдений, чувствительности используемой аппаратуры, дальности регистрации землетрясений разных энергетических классов, частоты опроса данных (числа их отсчетов/c) в системе регистрации была построена карта энергетической представительности К_{тіп} землетрясений Якутии (рис. 1). Из рисовки изолиний видно, что наиболее надежная регистрация землетрясений имеет место на юге региона в районе станций «Хани», «Юктали», «Чульман», «Иенгра», «Чагда», «Алдан», «Витим», «Тында». Здесь, в междуречье Олекмы и Алдана, совместная обработка данных станций Якутии и соседнего Прибайкалья («Чара», «Средний Калар», «Тупик», «Бодайбо», принадлежащих Байкальскому филиалу ГС СО РАН) позволяет без пропусков записывать землетрясения на Алданском нагорье и Становом хребте (территория между руслами рек Алдана, Тимптона и Гонама) с К_Р≥8–9 (M≥2.5–3); в восточной части Алданского нагорья (бассейн р. Учур) – с К_Р≥9-10 (М≥3-3.5). К востоку от р. Учур до Охотского моря, где эпицентральные расстояния увеличиваются до 300 км и более, представительны сейсмические события более высоких энергетических классов с K_P≥10-11 (М≥3.5-4.0). В центральной части региона вблизи Якутска между реками Лена и Алдан, где действовала система из пяти сейсмических станций («Якутск», «Табага», «Кангалассы», а также данных наблюдений в пос. Чагда и Усть-Мая), в полном объеме фиксировались землетрясения с *К*_Р≥8 (*М*≥2.5). В восточной части Сибирской платформы (среднее течение рек Вилюя, Лены и Алдана) регистрировались все события с $K_{\rm P} \ge 9-10$ ($M \ge 3.0-3.5$). На северо-востоке Якутии в горной системе хр. Черского, где в верхнем и среднем течении р. Индигирки действовали три станции («Усть-Нера», «Артык», «Мома») и привлекались наблюдения цифровых станций из Магаданской зоны, без пропусков записывались местные землетрясения с $K_P \ge 8$ ($M \ge 2.5$).

В связи с редкой сетью сейсмических наблюдений («Тикси», «Батагай» и «Депутатский») в арктической части Якутии между реками Леной и Индигиркой, а также на побережье и шельфе моря Лаптевых сложились менее благоприятные условия для записи землетрясений. Здесь без пропусков регистрировались толчки с $K_P \ge 8$ ($M \ge 2.5$) лишь на небольшой площадке в низовьях р. Яны, а в районе Тикси и на шельфе моря Лаптевых от п-ва Таймыр до Новосибирских о-вов существующая система наблюдений могла регистрировать полностью сотрясения, начиная лишь с $K_P \ge 10-12$ ($M \ge 3.5-4.5$).

На всей территории Республики Саха (Якутия) в настоящее время не могут быть пропущены местные сейсмические события с $K_P \ge 12 - 13$ ($M \ge 4.5$).

Параметры эпицентров землетрясений определялись по совокупности данных наблюдений сети сейсмических станций ЯФ ГС СО РАН (Якутск), данных сводной обработки и наблюдений отдельных станций Байкальского филиала ГС СО РАН (Иркутск) и Магаданского филиала ГС РАН (Магадан), а также сведений из бюллетеня станций «Кировский» и «Бомнак», относящихся к Сахалинскому филиалу ГС РАН (Южно-Сахалинск). Координаты эпицентров землетрясений рассчитывались на основе специальной компьютерной программы, составленной К.Д. Маккей в отделе геологии и геофизики Университета штата Мичиган (США) с использованием времен пробега продольных Pg- и Pn- и поперечных Sg- и Sn-волн, которые наиболее четко прослеживаются на записях близких землетрясений.

В 2004 г. были несколько изменены границы некоторых сейсмоактивных регионов России, в том числе и границы Якутии. Согласно [2], они определяются теперь следующими координатами шестнадцати узловых точек: 56.0°–120.0°, 60.0–120.0, 60.0–108.0, 71.0–108.0, 71.0– 102.0, 76.0–102.0, 76.0–162.0, 68.0–162.0, 68.0–158.0, 66.0–158.5, 66.0–152.5, 64.0–152.5, 64.0– 145.2, 62.0–145.2, 62.0–141.0, 56.0–141.0, 56.0–120.0.

По данным сводной обработки составлен каталог землетрясений Якутии, включающий сведения о 276 землетрясениях с K_P =6–12. Их распределение по районам и энергетическим классам приведено в табл. 3, а пространственное положение показано на карте эпицентров землетрясений (рис. 2). Суммарная сейсмическая энергия ΣE , выделившаяся в 2004 г., составила 6.362·10¹² Дж, что превысило более чем в два раза ее величину в 2003 г. (ΣE =2.743·10¹² Дж [3]). Землетрясения с K_P ≥7.6, общим числом N=149, представлены в настоящем сб. в каталоге [4].

Анализ данных табл. 3 свидетельствует о том, что суммарная сейсмическая энергия ΣE по районам высвободилась в течение 2004 г. в процентном отношении следующим образом: Хребет Черского (район № 9) – 35.8 %, Лаптевский (№ 11) – 54.4 %, Становой хребет (№ 2) – 1.1 %, Олекминский (№ 1) – 5.2 %, Верхоянский хребет (№ 7) – 1.0 %, Восточная часть Сибирской платформы (№ 12) – 2.0 %. На долю остальных шести районов пришлось лишь 0.4 % от всей сейсмической энергии за год. Вне новых границ региона, но вблизи их, обработаны и включены в каталог 21 землетрясение Северо-Востока России и 2 землетрясения Приамурья, суммарная энергия которых составила 0.024·10¹² Дж. Эта энергия в подсчете годовой энергии по региону не учитывалась.

№	Район	K_{\min}	$K_{ m P}$						N_{Σ}	ΣE ,	
			6	7	8	9	10	11	12		Дж
1	Олекминский	7–8		20	15	1	2	1		39	$3.306 \cdot 10^{11}$
2	Становой хребет	8–9	14	39	13	3	3	1		73	$8.185 \cdot 10^{10}$
3	Алданское нагорье	8–9	7	33	12	3				55	$5.692 \cdot 10^9$
4	Учурский	10		4	11	1				16	$2.095 \cdot 10^9$
5	Охотский	10			1		1			2	$4.107 \cdot 10^9$
6	Хребет Сетте-Дабан	9–10			1	1				2	$2.075 \cdot 10.^{9}$
7	Верхоянский хребет	9–10		1	4			1		6	$1.209 \cdot 10^9$
8	Яно-Оймяконское нагорье	9–10	2	5	7	2	1			17	$7.411 \cdot 10^{10}$
9	Хребет Черского	8–9	3	12	8	9	5	3	1	41	$2.277 \cdot 10^{12}$

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарной сейсмической энергии Σ*E* по районам за 2004 г.

ЯКУТИЯ Б.М. Козьмин

№	Район	K_{\min}	K _{min} K _P					N_{Σ}	ΣE ,		
			6	7	8	9	10	11	12		Дж
10	Приморская низменность	10-11	1	2						3	$2.100 \cdot 10^7$
11	Лаптевский	11-12	1		4	1	1	2	1	10	$3.495 \cdot 10^{12}$
12	Восточная часть Сибирской	11		6	4	1		1		12	$1.279 \cdot 10^{11}$
	платформы										
	Всего		28	122	80	22	13	9	2	276	$6.401 \cdot 10^{12}$
	Вне региона:										
	Северо-Восток				8	12	1			21	$2.309 \cdot 10^{10}$
	Приамурье				1	1				2	$4.379 \cdot 10^{8}$
	Всего									23	$2.35 \cdot 10^{10}$

Рис. 2. Карта эпицентров землетрясений Якутии за 2004 г.

1 – энергетический класс K_P ; 2, 3 – сейсмическая станция, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [5], установленный и предполагаемый (пунктир); 6, 7 – граница района и региона соответственно.

Среди северных районов повышенная сейсмическая активность наблюдалась в районе **Хребта Черского** (№ 9), где величина выделившейся Σ*Е* возросла в 20 раз, в сравнении с таковой в 2003 г. [3]. Здесь впервые за последние 30 лет отмечен рой из пяти событий с K_P =9–12. Самый сильный (K_P =12.3) толчок из этой серии произошел 20 июня в 04^h48^m. Его гипоцентр располагался на глубине 17 км (табл. 4). Сведения о макропроявлениях данного толчка отсутствуют, т.к. он возник в ненаселенной горно-таежной местности. Все землетрясения роя располагались между Илин-Тасским и Мятисским разломами ближе к зоне сочленения Момского хребта с Момо-Зырянским прогибом, которые разграничивает Мятисский надвиг (рис. 2). По нему нижнемеловые толщи Момского хребта надвинуты на кайнозойские отложения Момо-Зырянского прогиба.

Натурными наблюдениями выявлено, что плоскость этого разрыва довольно круто падает на юго-запад (азимут падения – 250°, угол падения – 35–40°) [5, 6]. Это подтверждает также пространственное положение эпицентров роя, которые смещены относительно фронтальной части надвига к юго-западу на 10–15 км. Выявленная сейсмотектоническая активность Мятисского надвига может указывать на то, что в современное время здесь, вероятно, действует режим тектонического сжатия, ориентированного с юго-запада на северо-восток.

№	Дата	$t_{0,}$	Эпицентр		h,	Ms,	$m_{ m b}$	$K_{ m P}$
	д м	ч мин с	φ°, N	λ°, Ε	км [7]	[7]	[7]	
1	17.06	18 07 53.8	65.43	149.46			3.9	11.0
2	17.06	18 47 28.8	65.53	149.58				9.4
3	20.06	04 27 31.6	65.43	149.50				9.3
4	20.06	04 41 17.0	65.38	149.45				9.0
5	20.06	04 48 19.1	65.47	149.41	17^{*}	3.7	4.8	12.3

Таблица 4. Параметры роя землетрясений 2004 г. в зоне влияния Мятисского надвига

Примечание.^{*} Глубина очага определена по фазе *pP* [7].

Активным показал себя также юго-восточный фланг системы хр. Черского, где развита Индигиро-Колымская система разломов [6, 8]. Среди них наиболее мобильным был разлом Улахан [6]. «Цепочка» эпицентров землетрясений сопровождает на всем протяжении его трассу. В зоне его влияния в течение года возникли два события с K_P =10.6 (21 июля в 01^h54^m и 11 ноября в 15^h31^m), четыре толчка 10-го класса и более десятка – с K_P =8–9. Небольшие тектонические подвижки, вызвавшие слабые землетрясения, были также зафиксированы по разломам Иньли-Дебинском и Чай-Юреинском, следящимся юго-западнее и параллельно Улахану, а также Нерском – вблизи сейсмической станции «Артык» [6].

Лаптевский район (№ 11) лишь немного уступает району Хребта Черского по уровню высвобожденной в 2004 г. сейсмической энергии (табл. 3), но ее величина в сравнении с таковой в 2003 г. увеличилась в 1.5 раза (2.211·10¹² Дж в 2003 г. и 3.463·10¹² Дж в 2004 г.). По проявлениям сейсмичности в районе выделяются три наиболее активных участка. Первый относится к полосе эпицентров, которая следится от срединно-океанического хр. Гаккеля в Северном Ледовитом океане через шельф моря Лаптевых к устью р. Яны [6, 9]. В его пределах в июле 2003 г. вблизи о. Столбовой наблюдалась серия очагов землетрясений, которые тяготели к Широстонскому грабену Лаптевоморской окраинно-континентальной рифтовой системы [6]. В 2004 г. здесь продолжилась сейсмическая деятельность в виде двух моретрясений, также отмеченных около о. Столбовой, одно из которых возникло 28 июня 2004 г. в 02^h11^m с K_P=12.5; второе связано с Лено-Таймырской полосой землетрясений, вытянутой от дельты р. Лены к п-ву Таймыр. Внутри него зафиксировано несколько слабых сейсмических событий в дельте р. Лены и одно землетрясение с $K_P=11.0$ возникло 2 октября в $11^{h}06^{m}$ на западе шельфа моря Лаптевых недалеко от устья р. Анабар. В третьем сосредоточено несколько слабых (*K*_P=8–9) землетрясений в заливе Буор-Хая и дельте р. Лены. Кроме того, цифровой аппаратурой на сейсмической станции «Тикси» в радиусе 40–100 км зарегистрировано еще около 50 близких подземных толчков с $K_{\rm P}$ =5–7, но их координаты не определены, т.к. ближайшие к ним станции «Батагай» и «Депутатский» расположены на расстояниях до 500 км от Тикси и не регистрируют такие события.

Особо следует остановиться на землетрясении 4 мая в $16^{h}29^{m}$ с $K_{P}=11.2$, отмеченном в северной части акватории Восточно-Сибирского моря в 200 км к востоку от Новосибирских ост-

ровов. Оно было зарегистрировано 21 сейсмической станцией в России, Канаде, Аляске и Северной Европе на расстояниях Δ =8–52°. Ближайшая сейсмическая станция – «Билибино», принадлежащая Магаданскому филиалу ГС РАН, располагалась в 875 км к юго-востоку от его эпицентра. Примечательно, что за все время инструментальных наблюдений здесь еще не отмечались землетрясения с такой энергией [9].

Меньший уровень активности выявлен в районе **Верхоянского хребта** (\mathbb{N} 7). На его территории локализовано менее десяти небольших (K_P =8–9) землетрясений. Сильный толчок с энергетическим классом K_P =10.8 зарегистрирован лишь на восточном склоне Верхоянского хребта 22 сентября в 09^h48^m.

К слабоактивным в 2004 г. могут быть отнесены районы Охотский (\mathbb{N} 5), хребта Сетте-Дабан (\mathbb{N} 6), Яно-Оймяконского нагорья (\mathbb{N} 8) и Приморской низменности (\mathbb{N} 10). Сейсмическая энергия, выделившаяся в этих районах, едва превысила 0.3 % от ее суммарной годовой величины. В каждом из них произошло лишь по несколько слабых толчков с K_P =8–10.

На территории Южной Якутии, как и в 2003 г., отмечен минимум сейсмической активности. В четырех сейсмических районах (Олекминский, Становой хребет, Алданское нагорье и Учурский) в совокупности выделилось менее десятой части суммарной сейсмической энергии за год.

В Олекминском районе (№ 1) число зарегистрированных землетрясений уменьшилось (57 в 2003 г. и 40 в 2004 г.). Однако суммарная сейсмическая энергия возросла ($0.125 \cdot 10^{12} Дж$ в 2003 г. и $0.331 \cdot 10^{12} Дж$ в 2004 г.). Здесь практически полностью восстановился нормальный сейсмический фон, который был нарушен с 1997 г. [10] проявлениями Олдонгсинского роя на северо-восточном окончании хр. Удокан, действовавшего с перерывами до 2002 г. [11–15]. Суммарное за все годы число роевых землетрясений превысило 1600. Напротив, несколько оживилась в 2004 г. сейсмическая деятельность в среднем течении р. Олекмы (бассейн ее левых притоков Тас-Юрях и Имангра), где 1 декабря в $01^{h}02^{m}$ зарегистрировано достаточно крупное событие с K_{p} =11.5 и группа толчков с K_{p} =6–10. Следует отметить, что ранее, в 1958–1987 гг., здесь реализовались ряд сильных (Ms=5–7) землетрясений.

Уровень сейсмичности в районе Станового хребта ($\mathbb{N} 2$) оказался ниже такового в 2003 г. (ΣE =0.074·10¹² Дж в 2004 г. против 0.117·10¹² Дж в 2003 г.). Проявления сейсмичности тяготеют в основном к системе разрывных нарушений субширотного Станового структурного шва [6, 9], где произошло 78 землетрясений. Самое сильное (K_P =10.7) из них возникло 25 мая в 11^h09^m к востоку от Амуро-Якутской автомагистрали и железной дороги Тында–Нерюнгри на водоразделе между реками Тимптон и Гонам. Оно ощущалось с интенсивностью 3–4 балла в ближайших населенных пунктах Нагорный (Δ =45 км) и Золотинка (50 км). В пос. Беркаките (82 км) наблюдались сотрясения с *I*=3 балла, а в г. Тынде (110 км) Амурской области – 2 балла. Интервал энергетических классов для остальных местных сейсмических событий соответствовал K_P =6–10. В целом в пределах Станового хребта с запада на восток наблюдалось последовательное уменьшение числа толчков: 35 – на его западном фланге, 20–25 – в центре, и чуть больше 10 – на крайнем востоке (Токинский Становик вблизи оз. Б. Токо).

Для Алданского нагорья (№ 3) был характерен низкий уровень высвобожденной сейсмической энергии, равный $5.692 \cdot 10^9 Д ж$. Основное скопление землетрясений наблюдалось в центральной части нагорья. Это «облако» эпицентров оказалось заключенным в треугольник, ограниченный Западно-Алданским (с запада), Тыркандинским (с востока) и Становым (с юга) разломами [6], и представляет собой группу из более чем 20 слабых землетрясений с K_P =5.9– 7.7, возникшую в среднем течении р. Тимптон между 25 ноября и 22 декабря 2004 г.

Слабосейсмичным был **Учурский район** (**№** 4), где в 2004 г. выделилась только половина величины ΣE в 2003 г. (0.002·10¹² Дж и 0.005·10¹² Дж соответственно). Вся сейсмичность района была сосредоточена на территории севернее Токинской впадины и в пределах хр. Лурикан, который пересекает р. Учур в ее среднем течении.

Значительно активизировалась в 2004 г. территория Восточной части Сибирской платформы (\mathbb{N} 12) в междуречье Алдана и Лены, а также на левобережье р. Лены. Благодаря наблюдениям недавно открытых сейсмических станций в пос. Табага и Кангалассы были определены координаты 11 местных землетрясений в радиусе 300 км от г. Якутска. В частности, к западу от Якутска в бассейне р. Синяя (левый приток р. Лены) зафиксировано шесть слабых землетрясений с K_P =7.4–9.2. Однако самое крупное (K_P =11.1, m_b =3.5 [7]) событие в этом районе произошло 11 октября в 17^h22^m (в 03^h22^m местного времени) в Центральной Якутии на водоразделе между реками Алдан и его левым притоком Амгой, которое можно назвать Амгинским. Пространственно толчок пришелся на административную границу Таттинского и Чурапчинского районов Республики Саха (Якутия), в 220 км к востоку от г. Якутска. Землетрясение зарегистрировано большинством сейсмических станций Якутского региона и рядом станций в Магаданской области. Наиболее отчетливо волновые формы этого события в ближней зоне были записаны на станциях «Якутск», «Табага» и «Кангалассы». Обработка инструментальных данных показала, что координаты эпицентра определены с высокой точностью: ошибка δ в местоположении эпицентра составила $\delta \phi$ =±5 км по широте и $\delta \lambda$ =±4 км по долготе.

Амгинское землетрясение произошло ночью и ощущалось только в ближайших к эпицентру населенных пунктах: с. Дая-Амга Таттинского района и с. Мырыла Чурапчинского района Республики Саха (Якутии). В с. Дая-Амга (30 км к северу от эпицентра) землетрясение было замечено почти всем населением. Вот как описывает этот момент и.о. главы муниципального образования Таттинского района Г.И. Каприн: «... Люди проснулись от страшного глухого звука, казалось, будто строение разрывается на части, многие подумали, что их дом ломает бульдозер». Е.П. Харитонова сообщила: «... Я проснулась от сильного удара из-под земли и мне показалось, что мой дом накренился, а оконное стекло выпало на пол...». В доме А.В. Тимофеевой в момент землетрясения с печи упал кирпич, от звука падения которого на пол она проснулась. В момент землетрясения в здании местного маслозавода произошло замыкание электропроводки и возник пожар. Интенсивность сотрясений данного события составила здесь не менее 4-5 баллов. Во втором населенном пункте – с. Мырыла – в 20 км к северовостоку от эпицентра наблюдались четырехбалльные макроэффекты: спящие проснулись, скрипели полы и потолки, дребезжала посуда и дрожала мебель. У многих создалось впечатление, что рядом с их домами произошел взрыв большой силы, который сопровождался глухим гулом. Приведенные макросейсмические данные могут свидетельствовать, что интенсивность данного события в самом эпицентре могла достигать $I_0=5-6$ баллов.

Следует отметить, что землетрясения в Центральной Якутии имели место и раньше. Так, в пределах Лено-Алданского плато, в истоках правых притоков Суолы и Таммы р. Лены на границе Амгинского и Мегино-Кангаласского районов Якутии 29.01.1956 г. было отмечено ощутимое землетрясение с М=4.8 с интенсивностью в эпицентре до 5 баллов [16]. Его воздействия наблюдались в радиусе до 40 км от эпицентра на площади около 50 км². С интенсивностью от 3 до 5 баллов это событие проявилось в местных селах Хачо, Елечей и Телиги [17]. Расстояние между названным толчком и событием 2004 г. не превышает 120 км. Другие землетрясения с *К*_Р=11-12 имели место здесь также 09.08.1957 г. и 13.07.1979 г. [17, 18]. Распределение очагов землетрясений в междуречье Алдана, Амги и Лены за последние 50 лет указывает на активизацию сейсмотектонических процессов внутри Лено-Алданского плато. В частности, эпицентры местных землетрясений с K_P=8–12 сформировали линейную зону, вытянутую на северо-восток вдоль долины р. Амги. Скорее всего, эти проявления обусловлены тектоническими подвижками по Амгинскому разлому северо-восточного простирания, к которому приспособилось русло р. Амги. Представляется, что территория Лено-Алданского междуречья является областью современного активного взаимодействия дизъюнктивных и новейших морфоструктур Алданского щита Сибирской платформы на юге и Верхоянской складчатой системы на севере Якутии, когда в результате регионального сжатия с юга и севера происходит структурная перестройка (коробление) находящейся между ними восточного края Сибирской платформы [19].

Особенности проявления землетрясений в 2004 г. повторили пространственный рисунок их распределения в пределах известных сейсмических поясов: Арктико-Азиатском на северовостоке и Олекмо-Становой зоне, являющейся восточным флангом Байкало-Станового пояса, на юге Якутии [6]. Сейсмический мониторинг 2004 г. показал, что в регионе сохранялась спокойная сейсмическая обстановка без резких всплесков сейсмической энергии, хотя уровень сейсмичности в северо-восточных районах на границе Евразиатской и Североамериканской литосферных плит в 10 раз превосходил уровень сейсмичности южных районов Якутии на границе Евразиатской и Амурской литосферных плит [6, 20].

Литература

- 1. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 2. Габсатарова И.П. Границы сейсмоактивных регионов Росси с 2004 г. // Землетрясения России в 2004 г. Обнинск: ГС РАН, 2007. С. 139.
- 3. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2003 году. Обнинск: ГС РАН, 2009. С. 201–207.
- 4. Козьмин Б.М., Шибаев С.В. (отв. сост.), Марченко Т.И., Захарова Ж.Г., Саввинова Н.А., Петрова В.Е., Денега Е.Г. Каталог землетрясений Якутии за 2004 год. (См. Приложение к наст. сб. на CD).
- 5. Гусев Г.С. Складчатые структуры и разломы Верхояно-Колымской системы мезозоид. М.: Наука, 1979. 207 с.
- 6. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 7. Internet: // http:// www.isc.ac.uk/Bulletin/html
- 8. Гусев Г.С., Мокшанцев К.Б., Третьяков Ф.Ф. Разломы Верхояно-Чукотской складчатой области // Разломная тектоника территории Якутской АССР. Якутск: ЯФ СО АН СССР, 1976. С. 73–114.
- 9. Козьмин Б.М. Сейсмические пояса Якутии и механизм очагов их землетрясений. М.: Наука, 1984. 127 с.
- Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 151–155.
- 11. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 173–177.
- 12. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 181–189.
- 13. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 187–192.
- 14. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 233–239.
- 15. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2002 году. Обнинск: ГС РАН, 2008. С. 232–238.
- 16. Козьмин Б.М. (отв. сост.), Андреев Т.А. VI. Якутия и Северо-Восток [1735–1974 гг.; М≥4.5, I₀≥5] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 339–357.
- 17. Кочетков В.М. Сейсмичность Якутии. М.: Наука, 1966. 92 с.
- 18. Козьмин Б.М., Андреев Т.А., Югова Р.С. Землетрясения Якутии и Северо-Востока // Землетрясения в СССР в 1979 году. М.: Наука, 1982. С. 67–72.
- 19. Имаева Л.П., Козьмин Б.М., Имаев В.С., Слепцов С.В. Сейсмотектоника и современная геодинамика Нижнеалданской впадины // Отечественная геология. – 2006. – № 5. – С. 96–101.
- Mackey K.G., Hampton B., Fujita K., Koz'min B.M., Shibaev S.V., Gounbina L.V. Field studies of active fault zones in Eastern Russia // Seismicity of Nortern Eurasia. Materials of International Conference. – Obninsk: GS RAS, 2008. – P. 200–204.