САХАЛИН

Т.А. Фокина¹, Л.Н. Поплавская², И.А. Паршина¹, М.И. Рудик¹, Н.С. Коваленко¹, Д.А. Сафонов^{1,2}

¹Сахалинский филиал Геофизической службы РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, Россия, г. Южно-Сахалинск, safonov@imgg.ru

Параметры землетрясений региона, включающего территорию о. Сахалин с шельфом и восточную часть Приамурья, определены на основе материалов наблюдений, полученных на четырех стационарных сейсмических станциях Сахалина: «Южно-Сахалинск» (YSS), «Тымовское» (TYV), «Углегорск» (UGL) и «Оха» (OKH) (рис. 1). Кроме того, на юге Сахалина работала локальная сеть из одиннадцати полевых станций «Datamark» и DAT Японского производства (табл. 1), на севере острова – локальная сеть из семи станций DAT (табл. 2). В обработке использовались данные сейсмических сетей Приамурья и Приморья [1], Курильских островов [2], бюллетени ГС РАН [3], JMA, ISC [4]. Методы обработки данных [5–10], схема деления региона на отдельные сейсмоактивные районы и параметры аппаратуры сейсмических станций, по сравнению с [11], не изменились. Продолжено определение энергетического класса *К*_Р Т.Г. Раутиан [12], начатое с 2000 г. [13–16].

N⁰	Станция			Ко	Период		
	Название	Код	Тип	φ°, <i>N</i>	λ°, Ε	h,	наблюдений
			аппаратуры			\mathcal{M}	
1	Белые скалы	BSK	DM	46°50.368′	142°19.105′	170	10/VI - 19/X
2	Успенское	USP	DM	46°52.706′	142°36.203′	60	08/VI - 19/X
3	Старорусское	STR	DM	47°09.017′	142°45.977′	120	17/VI –09/VIII
			DAT	47°09.1411′	142°45.7373′	120	09/VIII –21/IX
4	Загорское	ZGR	DAT	47°18.1766′	142°29.579′	230	01/VI - 05/XII
5	Ожидаево	OJD	DAT	47°01.7163′	142°23.931′	20	30/X - 07/XII
6	Калинино	KLN	DAT	46°50.878′	142°00.626′	100	25/V - 20/X
7	маяк «Корсаковский»	KRS	DAT	46°36.5794′	142°48.066′	30	29/X - 06/XII
8	Лесное	LSN	DAT	46°57.4797′	143°01.868′	0	20/V - 19/X
9	Мальково	MLK	DAT	46°46.1692′	143°21.268′	0	12/XI - 08/XII
10	Охотское	OKT	DAT	46°50.3695′	143°09.474′	30	05/X - 08/XII
11	Острый	OSM	DAT	47°14.7101′	143°00.588′	170	10/XI – 16/XII

Таблица 1. Сведения о временных цифровых станциях «Datamark» (DM) и DAT на юге Сахалина в 2004 г.

Таблица 2. Сведения о временных цифровых станциях на севере Сахалина в 2004 г.

№	Станция			Ко	Период		
	Название	Код	Тип	φ°, <i>N</i>	ϕ°, N λ°, E		наблюдений
			аппаратуры			м	
1	Oxa	OKHA	DM	53°36.032′	142°57.027′	10	15/VI –31/XII
2	Пильтун	PLT	DAT	52°42.065′	143°06.696′	40	14/VI - 27/VIII
3	Блокпост 3	BP3	DAT	53°05.931′	142°33.081′	40	16/VI – 29/IX
4	Блокпост 5	BP5	DAT	52°48.875′	142°12.536′	70	16/VI – 27/IX
5	Сабо	SAB	DAT	53°09.144′	142°57.001′	55	18/VI – 29/IX
6	Некрасовка	NKR	DAT	53°40.910′	142°37.410′		24/VI - 08/X
7	Москальво	MSV	DAT	53°35.067′	142°31.316′	1	19/VI – 06/VII

Рис. 1. Карта эпицентров и механизмов очагов землетрясений Сахалина в 2004 г.

1 – энергетический класс K_C ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – граница и номер района, 5 – диаграмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия.

В региональный каталог Сахалина за 2004 г. [17] включены параметры 158 землетрясений: 144 мелкофокусных ($h \le 20 \ \kappa m$) и 14 – глубокофокусных с $h=260-478 \ \kappa m$; для 10 землетрясений имеются макросейсмические сведения. Для четырех землетрясений – трех коровых (30 мая в $02^{h}52^{m}$ и $04^{h}51^{m}$, 12 июня в $14^{h}49^{m}$) и одного глубокофокусного (7 ноября в $02^{h}02^{m}$) – определены механизмы очагов [18].

Коровая сейсмическая активность Сахалина была в 2004 г. невысока, еще ниже, чем в 2003 г. [11]: мелкофокусных землетрясений зарегистрировано в 1.2 раза меньше, суммарная

сейсмическая энергия (табл. 3) составила $\Sigma E=1.39 \cdot 10^{12} \ \text{Дж}$, что в 3.5 раза меньше, чем в 2003 г. Энергетические классы $K_{\rm C}$ двух сильнейших коровых землетрясений (2 и 4 на рис. 1) составили $K_{\rm C}=10.0~(K_{\rm P}=12.1)$ и 10.1 ($K_{\rm P}=12.0$) соответственно; в 2003 г. максимальный энергетический класс равнялся $K_{\rm C}=12.0~(K_{\rm P}=13.6)$ для землетрясения 8 февраля в 17^h36^m [16].

Глубокофокусная сейсмическая активность, напротив, возросла: зарегистрировано 14 землетрясений с MSHA=3.9-6.9. Минимальная магнитуда MSHA=3.9 получена для двух землетрясений: 3 июля в $15^{h}27^{m}$ и 7 августа в $09^{h}22^{m}$ с h=340 и $330 \ \kappa m$ соответственно; максимальная – для землетрясения 7 ноября в $02^{h}22^{m}$ с $h=480 \ \kappa m$. Последнее землетрясение явилось наиболее энергоемким, суммарная сейсмическая энергия глубокофокусных землетрясений (табл. 3) возросла в 371 раз, по сравнению с соответствующей энергией в 2003 г. [11].

Таблица	3.	Распределение	коровых	землетрясений	по	энергетическому	классу	Кс,	а
	Ι	лубокофокусных	к – по маг	тнитуде <i>MSH</i> , и	сум	марная сейсмичесн	сая энери	гия Σ	E
	Ι	ю районам Сахал	ина						

	$h \leq 30 \ \kappa M$							
N⁰	Районы	K _C					N_{Σ}	ΣΕ,
		≤6	7	8	9	10		10 ¹² Дж
1	Северный	8	24	19	5		56	0.3346
2	Охотоморский шельф		2	1			3	0.0098
3	Восточно-Сахалинский	5	2	1			8	0.0087
4	Западно-Сахалинский	15	28	14	5	3	65	1.0252
5	Юго-Восточный	1	3				4	0.0065
6	Восточная часть Южного Сахалина							0
7	Хабаровский приграничный	6	1	1			8	0.0115
	Bcero	35	60	36	10	3	144	1.3953
		<i>h</i> ≥3	20 км					
N⁰	Районы			MSH			N_{Σ}	ΣΕ,
		4.0)	5.0	7	7.0		10 ¹² Дж
4	Западно-Сахалинский			1			1	0.1514
5	Юго-Восточный	8		4		1	13	1514.37
	Всего	8		5		1	14	1514.52

Примечание. Энергия оценивалась по формуле Гуттенберга–Рихтера: lg*E*=11.8+1.5 *MLH* [19], для чего величина всех землетрясений приводилась к магнитуде *MLH* путем пересчета из классов *K*_C для землетрясений с глубиной *h*≤80 км и из магнитуд *MSH* с *h*≥81 км по следующим соотношениям: *MLH*=(*K*_C−1.2)/2 [20]; *MLH* = (*MSH*−1.71)/0.75 [21].

Десять землетрясений ощущались в населенных пунктах о. Сахалин и Японских островов с интенсивностью сотрясений от 2 до 5–6 баллов (табл. 4). Наибольшее число ощутимых землетрясений (N=7), а также наибольшая интенсивность сотрясений $I_{max}=5-6$ баллов отмечены в Западно-Сахалинском районе (N 4), так же, как и в 2003 г. [11].

Таблица 4. Распределение ощутимых землетрясений по районам Сахалина, максимальная величина класса $K_{\text{Стах}}$ или магнитуды MSH_{max} и максимальная интенсивность сотрясений I_{max}

N⁰	Район	Число ощутимых землетрясений	$K_{ m Cmax} \ (MSHA_{ m max})$	I _{max} , балл
1	Северный	2	8.8	3–4
2	Охотоморский шельф		7.8	
3	Восточно-Сахалинский		7.6	
4	Западно-Сахалинский	7	10.1	5–6
5	Юго-Восточный	1	(6.9)	3–4
6	Восточная часть Южного Сахалина			
7	Хабаровский приграничный		8.0	
	Всего	10		

На рис. 2 представлено распределение мелкофокусных землетрясений Сахалина по часам суток. Диаграмма, построенная для всех сейсмических событий (рис. 2 а), демонстрирует пик в 4^h утра местного времени, на который пришлось 10 событий (6.9 % от общего числа). Их эпицентры находились в Северном (№ 1) и Западно-Сахалинском (№ 4) районах. На диаграмме, построенной для событий с $K_C \ge 6.9$ (рис. 2 б), распределение более равномерное. Из-за недостаточного числа данных вывод о естественном или техногенном происхождении землетрясений сделать невозможно.

Рис. 2. Распределение числа сейсмических событий Сахалина по часам суток (время местное)

а – все зарегистрированные сейсмические события с К_С≥5.0, h≤20 км (N=144), б – то же для событий К_С≥6.9 (N=77).

В Северном районе (№ 1) наблюдалось заметное снижение сейсмической активности: зарегистрировано 56 коровых землетрясений, что в 1.5 раза меньше, чем в 2003 г. [11], суммарная сейсмическая энергия (табл. 3) уменьшилась в 2.7 раза.

Два самых заметных землетрясения района (7 и 12 на рис. 1) произошли 9 июня в $18^{h}17^{m}$ и 11 ноября в $19^{h}03^{m}$ на глубине $h=10 \ \kappa m$ с $K_{C}=8.8$, эпицентр второго землетрясения находился в 6 κm от эпицентра первого. Макросейсмический эффект первого землетрясения не отмечен, второго – составил 3–4 балла в пос. Сабо ($\Delta=16 \ \kappa m$).

Еще одно ощутимое землетрясение зарегистрировано 21 апреля в $23^{h}13^{m}$. Его энергетический класс K_{C} =7.6 (K_{P} =9.5), интенсивность сотрясений составила 3 балла в пос. Сабо (Δ =20 км) [17].

Охотоморский шельф ($\mathbb{N} 2$) представлен тремя землетрясениями, произошедшими 26 марта в 23^h55^m с $K_{\rm C}$ =6.7 ($K_{\rm P}$ =8.3), 17 мая в 21^h30^m с $K_{\rm C}$ =7.5 ($K_{\rm P}$ =9.2) и 2 сентября в 21^h48^m с $K_{\rm C}$ =7.8 ($K_{\rm P}$ =9.5) [12]. Макросейсмический эффект не отмечен.

В Восточно-Сахалинском районе (№ 3) зарегистрировано восемь землетрясений: 2 февраля в $01^{h}35^{m}$ с K_{C} =5.8 (K_{P} =7.4), в $02^{h}25^{m}$ с K_{C} =5.6 (K_{P} =7.3), $16^{h}37^{m}$ с K_{C} =7.6 (K_{P} =9.1); 15 марта в $21^{h}36^{m}$ с K_{C} =6.5 (K_{P} =8.4), 28 марта в $11^{h}13^{m}$ с K_{C} =6.3 (K_{P} =8.1), 18 апреля в $18^{h}34^{m}$ с K_{C} =5.7 (K_{P} =8.7), 4 июня в $20^{h}08^{m}$ с K_{C} =6.7 (K_{P} =8.7) и 23 декабря в $03^{h}17^{m}$ с K_{C} =7.3 (K_{P} =9.3) [12]. Из них ни одно не ощутимо.

В Западно-Сахалинском районе (\mathbb{N} 4), на территории которого в 2000 г. произошло Углегорско-Айнское землетрясение с *MLH*=7.0 [22], а в 2001 г. – рой землетрясений с *MLH*_{max}=5.2 [23], в 2004 г. сейсмическая активность продолжала снижаться: было зарегистрировано 65 коровых землетрясений, что в 1.3 раза меньше, чем в 2003 г. [11]. Суммарная сейсмическая энергия, равная ΣE =1.02·10¹² Дж (табл. 2), в 3.7 раза ниже уровня энергии в 2003 г.

Самое сильное (MLH=4.8) землетрясение района (4 на рис. 1), названное Костромским, произошло 30 мая в 02^h52^m на глубине h=13 км. Эпицентр землетрясения находился в 8 км от пос. Костромское, где интенсивность сотрясений достигала 5–6 баллов. Два самых сильных афтершока этого землетрясения (6 и 8 на рис. 1) зарегистрированы 30 мая в 04^h51^m с K_C =7.9 (K_P =9.2) и 12 июня в 14^h49^m с (K_P =9.2). Костромскому землетрясению и его афтершокам посвящена отдельная статья [24] в наст. сб.

Второе по магнитуде коровое ($h=10 \ \kappa m$) землетрясение с *MLH*=4.5 (2 на рис. 1) произошло в районе 8 мая в $16^{h}39^{m}$, ($K_{C}=10.0, K_{P}=12.1$ [12]). Данные о макросейсмическом эффекте, который достигал 5 баллов, представлены в табл. 5 и на рис. 3.

Таблица 5. Макросейсмические данные о землетрясении 8 мая 2004 г. в 16^h39^m с MLH=4.5

N⁰	Пункт	Δ, <i>км</i>	N⁰	Пункт	Δ, км
	<u>5 баллов</u>		9	пос. Краснополье	35
1	г. Углегорск	22		<u>3 балла</u>	
2	пос. Поречье	27	10	пос. Медвежье	40
	<u>4 балла</u>			<u>2-3 балла</u>	
3	г. Шахтерск	22	11	пос. Лесогорск	44
4	пос. Ольховка	24	12	пос. Солнцево,	66
5	пос. Ударный	25		2 балла	
6	пос. Никольское	27	13		65
7	пос. Ольшанка	31	14	г Красногорск	81
8	пос. Орлово	31	15	пос. Парусное	90

Рис. 3. Карта пунктов-баллов для землетрясения 8 мая в 16^h39^m с *MLH*=4.5 1 – интенсивность сотрясений по шкале MSK-64; 2 – инструментальный эпицентр.

Всего в районе было зарегистрировано семь ощутимых землетрясений (табл. 4), интенсивность сотрясений остальных не превышала 4 баллов. 25 апреля в $09^{h}55^{m}$ зарегистрировано единственное глубокофокусное землетрясение района: его гипоцентр располагался на глубине $h=390 \ \kappa m$, эпицентр находился в акватории Татарского пролива в $80 \ \kappa m$ к юго–юго-западу от г. Невельск, магнитуда MSHA=4.9.

Юго-Восточный район (№ 5) представлен в 2004 г. четырьмя коровыми и 13 глубокофокусными землетрясениями, суммарная сейсмическая энергия первых (табл. 3) в 7 раз меньше, чем в 2003 г. [11], вторых – в 371 раз больше.

177

Коровые землетрясения реализовались 15 февраля в $09^{h}23^{m}$ с K_{C} =6.9 (K_{P} =8.4), 25 апреля в $22^{h}21^{m}$ с K_{C} =7.3 (K_{P} =8.4), 2 мая в $16^{h}36^{m}$ с K_{C} =7.3 (K_{P} =7.8), 7 октября в $02^{h}18^{m}$ с K_{C} =6.5 (K_{P} =8.4) и характеризуются одинаковой глубиной h=10 км [17].

Глубокофокусные землетрясения зарегистрированы в интервале глубины $h=260-478 \ \kappa m$. Самое сильное (MSH=6.7) из них (11 на рис. 1), произошедшее 7 ноября в $02^{h}02^{m}$ на глубине $h=478\pm12 \ \kappa m$, ощущалось в Японии с интенсивностью II балла по шкале [25], или 3–4 балла по шкале [26]. Для этого землетрясения определен механизм очага, который представляет собой сдвиг. Ось промежуточного напряжения близвертикальна, одна из возможных плоскостей разрыва имела юго-западное простирание с крутым падением ($DP=67^{\circ}$) на северо-запад, вторая – северо-западное простирание и такое же крутое падение на северо-восток [18].

В Восточной части Южного Сахалина (№ 6) в 2004 г., как и в 2003 г. [11], не было зарегистрировано ни одного землетрясения.

В Хабаровском приграничном районе (\mathbb{N} 7) зарегистрировано восемь коровых землетрясений, максимальный энергетический класс составил $K_{\rm C}$ =8.0 ($K_{\rm P}$ =8.9), суммарная сейсмическая энергия (табл. 3) в 3.8 раза больше, чем в 2003 г. [11].

Литература

- 1. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Фокина Т.А., Дорошкевич Е.Н., Рудик М.И., Сафонов Д.А. Курило-Охотский регион. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за 2004 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2004–2005.
- 4. Bulletin of the International Seismological Centre for 2004. Berkshire: ISC, 2006–2007.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 6. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 7. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- 9. Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- Волкова Л. Ф., Поплавская Л.Н., Соловьёва О.Н. Шкалы MPVA, MSHA для определения магнитуд близких глубокофокусных землетрясений Дальнего Востока // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 81–85.
- 11. Фокина Т.А., Поплавская Л.Н., Паршина И.А., Рудик М.И., Сафонов Д.А. Сахалин // Землетрясения Северной Евразии, 2003 год. – Обнинск: ГС РАН, 2009. – С. 166–172.
- 12. Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; № 32(199)). – М.: Наука, 1964. – С. 88–93.
- 13. Паршина И.А., Фокина Т.А., Поплавская Л.Н (отв. сост.), Величко Л.Ф., Мулякаева Н.К., Прилуцкая Ю.А, Ким Чун Ун, Сен Рак Се, Нагорных Т.В., Рудик М.И. Сахалин // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. (На СD).
- 14. Паршина И.А., Фокина Т.А., Поплавская Л.Н. (отв. сост.), Мулякаева Н.К., Малашенко Ю.А., Сафонов Д.А., Юст А.А., Нагорных Т.В., Пермикин Ю.Ю., Поплавский А.А., Ким Чун Ун, Рудик М.И. Сахалин // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. (На CD).

- 15. **Паршина И.А. (отв. сост.), Кузнецова В.Н., Малашенко Ю.А.** Сахалин // Землетрясения Северной Евразии в 2002 году. Обнинск: ГС РАН, 2008. (На СD).
- 16. **Паршина И.А. (отв. сост.), Малашенко Ю.А.** Каталог землетрясений Сахалина за 2003 год. // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. (На СD).
- 17. **Паршина И.А. (отв. сост.), Малашенко Ю.А.** Каталог землетрясений Сахалина за 2004 год. (См. Приложение к наст. сб. на CD).
- 18. Поплавская Л.Н., (отв. сост.). Рудик М.И., Нагорных Т.В., Паршина И.А. Каталог механизмов очагов землетрясений Сахалина за 2004 год. (См. Приложение к наст. сб. на CD).
- 19. Гутенберг Б., Рихтер К.Ф. Магнитуда, интенсивность, энергия и ускорение как параметры землетрясений (II) // Слабые землетрясения. – М.: ИЛ, 1961. – С. 72–119.
- 20. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. – 1967. – № 2. – С. 13–23.
- 21. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 22. Поплавская Л.Н., Нагорных Т.В., Фокина Т.А., Поплавский А.А., Пермикин Ю.Ю., Стрельцов М.И., Ким Чун Ун, Сафонов Д.А., Мельников О.Я., Рудик М.И., Оскорбин Л.С. Углегорско-Айнское землетрясение 4 августа 2000 года, *MLH*=7.0, *I*₀=8–9 (Сахалин) // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 265–284.
- 23. Поплавская Л.Н., Фокина Т.А., Сафонов Д.А., Нагорных Т.В., Ким Чун Ун, Сен Рак Се, Урбан Н.А. Такойское землетрясение 1 сентября 2001 года с *M*=5.2, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – С. 331–344.
- 24. Нагорных Т.В., Фокина Т.А., Сафонов Д.А., Рудик М.И. Костромское землетрясение 30 мая 2004 года с *MLH*=4.8, *I*₀=5-6 (Сахалин). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 25. Hisada T., Nakagawa K. Present Japanese Development in Engincering Seismology and their Application to Buildinge. Japan: 1958.
- 26. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.