## СЕВЕРО-ВОСТОК РОССИИ

## Е.И. Алёшина, Л.В. Гунбина, Р.С. Комарова, Б.М. Седов

Магаданский филиал ГС РАН, г. Магадан, evgeniya@memsd.ru

В 2004 г. сейсмический мониторинг территории Северо-Востока России, включающей Магаданскую область, Чукотский автономный округ (ЧАО) и шельф прилегающих морей, осуществлялся сетью сейсмических станций Магаданского филиала ГС РАН: в Магаданской области действовали девять станций, в ЧАО – две и в Хабаровском крае – одна. После замены 13 октября 2004 г. на станции «Стекольный» фотогальванометрической регистрации на цифровую все станции, входящие в сеть МФ ГС РАН, – цифровые. На станции «Омсукчан» для сравнения работы оборудования параллельно ведется фотогальванометрическая регистрация землетрясений. Работа станции «Анадырь» в ЧАО приостановлена с сентября 2003 г. из-за неисправности аппаратуры, доступ к ней затруднен, поэтому в 2004 г. восстановить станцию не удалось. Расположение станций МФ ГС РАН представлено на рис. 1 и 2. Сведения о типах и параметрах регистрирующей аппаратуры приведены в табл. 1 и 2.

| N⁰  | ف Станция  |      | Дата       |            | Координаты |          |               | Аппаратура |           |          |            |
|-----|------------|------|------------|------------|------------|----------|---------------|------------|-----------|----------|------------|
| п/п | Название   | Код  | открытия   | закрытия   | φ°,N       | λ°, Ε    | $h_{\rm y}$ , | Тип        | Тип       |          |            |
|     |            |      |            |            |            |          | м             | датчика    |           | ΑЦΠ      |            |
| 1   | Омсукчан   | OMS  | 01.12.1967 |            | 62.515     | 155.774  | 527           | CM-3       |           |          |            |
|     |            |      | 04.07.2001 |            |            |          |               |            | PAR-24B   | – цифров | ая станция |
| 2   | Сеймчан    | SEY  | 03.04.1969 |            | 62.933     | 152.382  | 218           |            |           |          |            |
|     |            |      | 19.09.1999 |            |            |          |               | STS-1      | PAR-24B   | – цифров | ая станция |
| 3   | Сусуман    | SUUS | 01.08.1969 |            | 62.781     | 148.149  | 640           | CM-3       |           |          |            |
|     |            |      | 01.06.1999 |            | 62.779     | 148.167  |               |            |           |          |            |
|     |            |      | 17.08.1999 |            |            |          |               |            | PAR-24B   | – цифров | ая станция |
| 4   | Стекольный | MA1  | 26.03.1971 |            | 60.046     | 150.730  | 221           | CM-3       |           |          |            |
|     |            |      | 13.10.2004 |            |            |          |               |            | PAR-24B   | – цифров | ая станция |
| 5   | Талая      | TLAR | 20.11.1989 |            | 61.129     | 152.392  | 730           | CM-3       |           |          |            |
|     |            |      | 29.07.1999 |            |            |          |               |            | PAR-24B   | – цифров | ая станция |
|     |            |      | 22.09.2000 |            | 61.30      | 152.398  |               |            |           |          |            |
| 6   | Магадан    | MA2  | 22.10.1993 | 17.07.1995 | 59.575     | 150.768  | 339           | STS-1      | IRIS — ци | фровая с | ганция     |
|     |            |      | 31.10.1995 |            |            |          |               | GS-13      |           |          |            |
| 7   | Билибино   | BILL | 01.08.1995 |            | 68.039     | 166.271  | 299           | STS-1      | IRIS — ци | фровая с | ганция     |
|     |            |      |            |            |            |          |               | GS-13      |           |          |            |
| 8   | Омчак      | OCHR | 01.10.1999 |            | 61.665     | 147.867  | 820           | CM-3       | PAR-24B   | – цифров | ая станция |
| 9   | Охотск     | OHTR | 06.07.2000 |            | 59.369     | 143.331  | 40            | CMG-40T    | PAR-24B   | – цифров | ая станция |
| 10  | Кубака     | GOLD | 14.01.2003 |            | 63.678     | 159.957  | 726           | CMG-40T    | PAR-24B   | – цифров | ая станция |
| 11  | Синегорье  | SNG  | 26.04.2003 |            | 62.08      | 150.521  | 300           | CM-3       | PAR-24B   | – цифров | ая станция |
| 12  | Нешкан     | NSH  | 11.09.2003 |            | 67.036     | -172.960 | 0.8           | CM-3       | PAR-24B   | – цифров | ая станция |

*Таблица* 1. Сейсмические станции Северо-Востока России (в хронологии их открытия), действовавшие в 2004 г.

Энергетическая представительность землетрясений  $K_{\min}$ , обеспечиваемая данной сетью, показана на рис. 1.

Минимальный уровень энергии представительных землетрясений составляет  $K_{\min}=7$ , хотя в 2003 г. он соответствовал  $K_{\min}=6$ . В 2004 г. в Охотском море и на территории Магаданской области (районы № 1, № 2) не локализованы землетрясения с  $K_P=6$ , но и в 2003 г. таких землетрясений было всего пять. Конфигурация изолиний  $K_{\min}$  и ограниченные ими площади в 2004 г. изменились, по сравнению с 2003 г. [1]. Площадь регистрации сейсмических событий всех

энергетических классов незначительно увеличилась, возможно, благодаря установке цифрового оборудования на станции «Стекольный». Так как на территории ЧАО работали только две станции «Билибино» и «Нешкан», изолинии  $K_{min}$  на Чукотке построить невозможно (координаты землетрясений определялись по данным одной или двух станций).



*Рис.* 1. Карта энергетической представительности *К*<sub>min</sub> землетрясений Северо-Востока России по данным наблюдений за 2004 г.

1 – изолиния K<sub>min</sub>; 2 – сейсмическая станция; 3–4 – граница района и региона соответственно; 5 – номер района.

| Название<br>станции | Тип АЦП и<br>сейсмометра | Перечень<br>каналов | Частотный<br>диапазон,<br>Гц | Частота<br>опроса<br>данных, | Разряд-<br>ность<br>АЦП | Чувствительность,<br>велосиграф – отсчет/ ( <i>м/c</i> ),<br>акселерограф – отсчет/ ( <i>м/c</i> <sup>2</sup> ) |
|---------------------|--------------------------|---------------------|------------------------------|------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
|                     |                          |                     |                              | Гų                           |                         | 0                                                                                                               |
| Омсукчан            | PAR-24B – CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                           | 24                      | 2.8·10°                                                                                                         |
| Сеймчан             | PAR-24B – STS-1          | BH(N, E, Z)v        | 0.1–100                      | 50                           | 24                      | $9.73 \cdot 10^{10}$                                                                                            |
| Сусуман             | PAR-24B - CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                           | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Стекольный          | PAR-24B - CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                           | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Талая               | PAR-24B - CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                           | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Магадан             | IRIS – STS-1             | BH(N, E, Z)v        | 0.0028-3.0                   | 20                           | 24                      | $9.89 \cdot 10^{10}$                                                                                            |
|                     |                          | LH(N, E, Z)v        | 0.0028-0.25                  | 1                            | 24                      | $2.47 \cdot 10^{10}$                                                                                            |
|                     |                          | VH(N, E, Z)v        | 0.0028-0.02                  | 0.1                          | 24                      | $6.18 \cdot 10^{11}$                                                                                            |
|                     |                          | VM(N, E, Z)a        | 0-0.0028                     | 0.01                         | 24                      | $8.14 \cdot 10^{11}$                                                                                            |
|                     | IRIS – GS-13             | EH(N, E, Z)v        | 0.05-20.0                    | 80                           | 24                      | $7.76 \cdot 10^{12}$                                                                                            |
|                     |                          | SH(N, E, Z)v        | 0.05-20.0                    | 40                           | 24                      | $7.76 \cdot 10^{12}$                                                                                            |
| Билибино            | IRIS – STS-1             | BH(N, E, Z)v        | 0.0028-3.0                   | 20                           | 24                      | 9.89·10 <sup>10</sup>                                                                                           |
|                     |                          | LH(N, E, Z)v        | 0.0028-0.25                  | 1                            | 24                      | $2.47 \cdot 10^{10}$                                                                                            |
|                     |                          | VH(N, E, Z)v        | 0.0028-0.02                  | 0.1                          | 24                      | $6.18 \cdot 10^{11}$                                                                                            |
|                     |                          | VM(N, E, Z)a        | 0-0.0028                     | 0.01                         | 24                      | $8.14 \cdot 10^{11}$                                                                                            |
|                     | IRIS – GS-13             | EH(N, E, Z)v        | 0.05-20.0                    | 80                           | 24                      | $7.76 \cdot 10^{12}$                                                                                            |
|                     |                          | SH(N, E, Z)v        | 0.05-20.0                    | 40                           | 24                      | 7.76·10 <sup>12</sup>                                                                                           |

Таблица 2. Сведения об аппаратуре цифровых станций Магаданского филиала ГС РАН

| Название<br>станции | Тип АЦП и<br>сейсмометра | Перечень<br>каналов | Частотный<br>диапазон,<br>Гц | Частота<br>опроса<br>данных,<br>Гц | Разряд-<br>ность<br>АЦП | Чувствительность,<br>велосиграф – отсчет/ ( <i>м/c</i> ),<br>акселерограф – отсчет/ ( <i>м/c</i> <sup>2</sup> ) |
|---------------------|--------------------------|---------------------|------------------------------|------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Омчак               | PAR-24B - CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                                 | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Охотск              | PAR-24B-CMG-40T          | SH(N, E, Z)v        | 0.06-100                     | 50                                 | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Кубака              | PAR-24B-CMG-40T          | SH(N, E, Z)c        | 0.06-100                     | 50                                 | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Синегорье           | PAR-24B - CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                                 | 24                      | $2.8 \cdot 10^8$                                                                                                |
| Нешкан              | PAR-24B - CM-3           | SH(N, E, Z)v        | 0.2–10                       | 50                                 | 24                      | $2.8 \cdot 10^8$                                                                                                |

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

В каталог землетрясений Северо-Востока России 2004 г. [2] включены 330 событий с  $K_P \ge 5.6-11.5$ . Максимальным из них было ощутимое землетрясение 16 сентября в  $15^h 35^m$  с  $K_P = 11.5$  с координатами  $\varphi = 63.38^\circ$ N,  $\lambda = 150.42^\circ$ E, вызвавшее сотрясения с I=3-4 балла в Сеймчане (112 км). Минимальное значение  $K_P$  в каталоге соответствует  $K_P = 5.6$  и характеризует девять событий на Чукотке в диапазоне  $\varphi = 66.86-67.22^\circ$ E,  $\lambda = (-173.57) - (-172.64)^\circ$ W. Очаги всех землетрясений расположены в пределах земной коры на глубинах до 33 км. Карта эпицентров землетрясений региона представлена на рис. 2.



Рис. 2. Карта эпицентров землетрясений Северо-Востока России за 2004 г.

1 – энергетический класс *K*<sub>P</sub>; 2 – сейсмическая станция; 3, 4 граница района и региона соответственно; 5 – номер района; 6 – число эпицентров одного класса *K*<sub>P</sub> и с одинаковыми координатами; 7 – номер сильного (*K*<sub>P</sub>≥10.6) землетрясения в соответствии с графой 1 каталога [2].

Методика определения основных параметров землетрясений не изменилась, обработка станционных данных производилась с помощью программы HYP2DT (версия 7.1), предоставленной К. Дж. Мяки (Мичиганский университет, США).

| N⁰ | Район             |    |    |     | $N_{\Sigma}$ | $\Sigma E$ , |    |    |     |                     |
|----|-------------------|----|----|-----|--------------|--------------|----|----|-----|---------------------|
|    |                   | 6  | 7  | 8   | 9            | 10           | 11 | 12 |     | 10 <sup>11</sup> Дж |
| 1  | Охотское море     |    | 1  | 4   | 3            | 1            | 1  |    | 10  | 1.416               |
| 2  | Колыма            |    | 28 | 111 | 45           | 20           | 2  |    | 206 | 6.757               |
| 3  | Западная Чукотка  |    |    |     |              | 1            | 1  |    | 2   | 0.627               |
| 4  | Восточная Чукотка | 34 | 23 | 21  | 8            |              |    |    | 86  | 0.083               |
| 5  | Чукотское море    | 9  | 2  | 7   | 3            | 2            |    |    | 23  | 0.124               |
| 6  | Берингово море    |    |    | 1   | 1            |              |    |    | 2   | 0.021               |
| 7  | Корякия           |    |    |     | 1            |              |    |    | 1   | 0.016               |
|    | Всего             | 43 | 54 | 144 | 61           | 24           | 4  |    | 330 | 9.044               |

*Таблица 3.* Распределение числа землетрясений по энергетическим классам *K*<sub>P</sub> и суммарная сейсмическая энергия Σ*E* по районам и приграничным территориям

Рассмотрим особенности сейсмичности по отдельным районам.

В Охотском море (**N** 1) локализовано десять землетрясений с  $K_P$ =6.8–11.1. Наиболее сильное ( $K_P$ =11.1) из них произошло 3 ноября в 22<sup>h</sup>18<sup>m</sup>. Его эпицентр располагался в Тауйской губе Охотского моря, вблизи мысов Среднего и Чирикова на п-ове Старицкого (рис. 3). Жители г. Магадан (20 км), пос. Стекольный (68 км) и пос. Радист (40 км) ощущали его с интенсивностью I=5 баллов. Землетрясение произошло утром, в начале рабочего дня, поэтому было отмечено на всех предприятиях города. Люди в испуге покидали помещения, многие слышали нарастающий подземный гул, звук, похожий на взрыв. Здания в результате землетрясения не пострадали.

Структурно эпицентр находится вблизи пересечения двух ортогональных друг к другу разломов (рис. 3), выделенных по геофизическим данным [3].



*Рис. 3.* Схема расположения разломов акватории Примагаданья (по материалам треста «Дальнефтегеофизика»)

1 – эпицентр землетрясения 3 ноября в  $22^{h}18^{m}$  с  $K_{P}$ =11.1; 2 – разлом.

На участках с густой сетью сейсмических профилей МОГТ установлено, что разломы являются горизонтальными, правосторонними сдвигами [4]. Отсутствие в смещениях вертикальной составляющей, вероятно, является причиной того, что произошедшее в акватории Охотского моря землетрясение не сопровождалось цунами.

В районе Колымы (№ 2) зарегистрировано наибольшее число землетрясений - 206, что составляет 62% от общего числа. Суммарная сейсмическая энергия в их очагах составила 63.7 % от всей выделившейся сейсмической энергии. Особенностью сейсмичности в 2004 г. на Колыме является возникновение двух роев в восточной части района № 2. Первый из них, названный Наяханским, включает 17 землетрясений с К<sub>Р</sub>=7.2–10.0, произошедших в период с 21 января по 5 марта 2004 г. (табл. 4). Он локализован вблизи побережья, в районе Гижигинской губы. Ближайшая сейсмическая станция - «Омсукчан» - удалена от зоны эпицентров на расстояние около 80 км (рис. 2).

Землетрясения располагаются в пределах Охотско-Чукотского вулканогенного пояса (ОЧВП) и приурочены к северному краю Наяханского магматогенного поднятия [5].

Область эпицентров вытянута в субмеридиональном направлении, ее длина – около 40 км, ширина – 12 км (рис. 4). Следует отметить, что все эпицентры форшоков располагаются севернее очага основного события (табл. 4).

| № | Дата,           | <i>t</i> <sub>0</sub> , | Эпи   | h,     | $K_{\mathrm{P}}$ |      |  |  |  |  |  |
|---|-----------------|-------------------------|-------|--------|------------------|------|--|--|--|--|--|
|   | дм              | ч мин с                 | φ°, Ν | λ°, Ε  | км               |      |  |  |  |  |  |
|   | Форшоки         |                         |       |        |                  |      |  |  |  |  |  |
| 1 | 21.01           | 00 14 12.4              | 62.14 | 157.13 |                  | 9.5  |  |  |  |  |  |
| 2 | 21.01           | 20 52 22.8              | 62.23 | 157.03 | 4                | 8.1  |  |  |  |  |  |
| 3 | 24.01           | 12 48 11.1              | 62.12 | 157.14 |                  | 7.9  |  |  |  |  |  |
| 4 | 26.01           | 14 02 18.6              | 62.11 | 157,00 | 33               | 7.2  |  |  |  |  |  |
| 5 | 26.01           | 22 05 55.7              | 62.03 | 157.15 |                  | 8.9  |  |  |  |  |  |
| 6 | 26.01           | 23 24 23.4              | 62.1  | 157.09 | 15               | 8.0  |  |  |  |  |  |
|   |                 |                         |       |        |                  |      |  |  |  |  |  |
|   | Основной толчок |                         |       |        |                  |      |  |  |  |  |  |
|   | 29.01           | 00 46 39 4              | 62.03 | 157 13 |                  | 10.0 |  |  |  |  |  |

*Таблица 4.* Землетрясения Наяханского роя вблизи Гижигинской губы на побережье Охотского моря





*Рис. 4.* Карта эпицентров 17 землетрясений Наяханского роя, произошедших с 21 января по 5 марта в районе Гижигинской губы на побережье Охотского моря

<sup>1 –</sup> энергетический класс землетрясений K<sub>P</sub>; 2 – форшок, основное событие и афтершок соответственно; 3 – кайнозойские молассы неотектонических впадин; 4 – нижнее и верхнемеловые вулканиты ОЧВП и наложенных впадин (верхний мезозой); 5 – терригенный комплекс чехла срединных массивов (верхнепалеозойско-мезозойский структурный этаж); 6 – меловые гранитоиды активизационного (субдукционного) этапа; 7 – контуры Наяханского тектономагматического поднятия; 8 – крупный разлом (установленный, предполагаемый); 9 – прочее тектоническое нарушение (установленное, предполагаемое).

Второй рой, названый Маратским, расположен примерно в 110 км к северо-западу от пос. Омсукчан (см. рис. 2) и включает 76 толчков с K<sub>P</sub>=7.1–10.8 (табл. 5).

| №                | Дата, | $t_0$ ,    | Эпи    | центр    | h, | $K_{\rm P}$ | N₂    | Дата,      | $t_0,$     | Эпи    | центр  | h,  | $K_{\rm P}$ |
|------------------|-------|------------|--------|----------|----|-------------|-------|------------|------------|--------|--------|-----|-------------|
|                  | дм    | ч мин с    | φ°, Ν  | λ°, Ε    | км |             |       | дм         | ч мин с    | φ°, Ν  | λ°, Ε  | км  |             |
|                  |       | Фо         | лиоки  |          |    |             | 22    | 09.04      | 21 59 56.1 | 63.51  | 155.10 | 25  | 7.8         |
| 1                | 20.02 | <u> </u>   | (2.1.4 | 1.5.5 41 | 1  | 7.2         | 23    | 24.04      | 08 18 20.3 | 63.53  | 155.24 | 33  | 8.0         |
| 1                | 20.02 | 06 26 02.9 | 63.14  | 155.41   | 21 | /.3         | 24    | 27.04      | 13 41 55.0 | 63.59  | 155.27 |     | 7.1         |
| 2                | 14.03 | 22 42 15.1 | 63.51  | 155.08   | 21 | 9.2         | 25    | 27.04      | 13 42 02.8 | 63.6   | 155.24 | 33  | 7.8         |
| 3                | 14.03 | 22 47 13.2 | 63.55  | 155.07   | 10 | 8.6         | 26    | 27.04      | 13 50 42.9 | 63.46  | 155.08 | 17  | 7.9         |
| 4                | 14.03 | 23 45 59.5 | 63.53  | 155.15   |    | 8.5         | 27    | 27.04      | 14 04 02.3 | 63.44  | 155.10 |     | 8.1         |
| 2                | 14.03 | 23 46 29.4 | 63.49  | 155.13   | 0  | 9.3         | 28    | 27.04      | 16 17 34.6 | 63.48  | 155.13 |     | 8.0         |
| 6                | 15.03 | 00 22 48.0 | 63.42  | 155.14   | 11 | 10.4        | 29    | 27.04      | 16 48 30.7 | 63.44  | 155.26 |     | 8.2         |
| /                | 15.03 | 00 35 47.4 | 63.49  | 155.12   |    | 8.0         | 30    | 27.04      | 17 23 39.1 | 63.57  | 155.18 | 33  | 7.4         |
| 8                | 15.03 | 00 39 03.3 | 63.46  | 155.14   | 4  | 8.1         | 31    | 27.04      | 17 26 22.8 | 63.56  | 155.18 | 33  | 8.4         |
| 9                | 15.03 | 00 43 22.6 | 63.47  | 155.13   | 4  | 9.8         | 32    | 28.04      | 05 24 05.1 | 63.46  | 155.11 | 31  | 8.4         |
| 10               | 15.03 | 01 05 37.3 | 63.52  | 155.06   |    | 7.4         | 33    | 28.04      | 08 41 37.4 | 63.45  | 155.01 | 33  | 8.4         |
| 11               | 15.03 | 02 05 05.8 | 63.49  | 155.17   |    | /.8         | 34    | 28.04      | 10 09 32.6 | 63.5   | 155.13 |     | 7.9         |
| 12               | 15.03 | 04 49 34.5 | 63.49  | 155.13   |    | 8.1         | 35    | 28.04      | 12 04 36.3 | 63.43  | 154.98 |     | 8.2         |
| 13               | 15.03 | 06 20 31.3 | 63.4/  | 155.14   |    | 8./         | 36    | 11.05      | 07 45 57.8 | 63.28  | 155.08 | 33  | 8.5         |
| 14               | 15.03 | 06 36 22.5 | 63.50  | 155.11   |    | 8.1         | 37    | 11.05      | 10 53 23.1 | 63.45  | 155.23 |     | 8.7         |
| Основное событие |       |            |        |          |    | 38          | 11.05 | 10 57 07.3 | 63.32      | 154.87 | 33     | 7.8 |             |
| -                | 16.03 | 06 52 58.3 | 63.47  | 155.1    | 18 | 10.8        | 39    | 11.05      | 12 36 23.9 | 63.35  | 154.96 | 33  | 7.8         |
|                  | 10100 | A 1-       |        | 10011    | 10 | 1010        | 40    | 11.05      | 12 55 03.9 | 63.38  | 154.92 | 33  | 8.2         |
|                  |       | Αψτ        | ершоки |          |    | ·           | 41    | 11.05      | 14 56 08.2 | 63.34  | 154.85 | 33  | 7.8         |
| 1                | 16.03 | 07 00 50.3 | 63.46  | 155.09   | 33 | 7.9         | 42    | 11.05      | 21 04 59.7 | 63.48  | 155.03 | 10  | 7.9         |
| 2                | 16.03 | 08 16 30.3 | 63.46  | 155.15   | 4  | 8.4         | 43    | 11.05      | 21 36 25.8 | 63.49  | 155.16 |     | 7.8         |
| 3                | 16.03 | 08 55 34.7 | 63.46  | 155.13   | 11 | 8.1         | 44    | 11.05      | 21 49 45.7 | 63.46  | 154.99 |     | 7.8         |
| 4                | 16.03 | 09 21 26.1 | 63.50  | 155.12   | 33 | 7.6         | 45    | 11.05      | 22 08 36.0 | 63.38  | 155.07 |     | 7.6         |
| 5                | 16.03 | 11 36 19.8 | 63.46  | 155.11   | 4  | 8.8         | 46    | 12.05      | 00 13 20.3 | 63.28  | 155.06 | 33  | 8.4         |
| 6                | 16.03 | 14 56 56.6 | 63.49  | 155.14   | 13 | 8.1         | 47    | 12.05      | 06 18 35.1 | 63.52  | 155.24 | 33  | 8.2         |
| 7                | 16.03 | 19 27 23.2 | 63.40  | 155.15   | 33 | 8.0         | 48    | 12.05      | 18 57 58.3 | 63.56  | 155.01 | 1   | 7.8         |
| 8                | 17.03 | 09 13 42.6 | 63.49  | 155.09   | 5  | 9.2         | 49    | 26.05      | 12 55 12.3 | 63.49  | 155.05 | 27  | 8.5         |
| 9                | 17.03 | 10 54 49.7 | 63.47  | 155.19   | 13 | 8.1         | 50    | 02.06      | 23 52 57.2 | 63.49  | 154.66 | 17  | 8.8         |
| 10               | 17.03 | 17 09 57.6 | 63.47  | 155.12   |    | 8.4         | 51    | 12.06      | 21 29 47.4 | 63.52  | 155.07 | 8   | 9.4         |
| 11               | 17.03 | 17 10 11.7 | 63.48  | 155.17   | 31 | 8.3         | 52    | 28.06      | 21 17 17.9 | 63.59  | 155.04 |     | 8.4         |
| 12               | 17.03 | 17 14 10.4 | 63.48  | 155.10   | 33 | 8.4         | 53    | 29.06      | 02 32 37.1 | 63.51  | 155.04 | 13  | 9.1         |
| 13               | 17.03 | 17 17 21.8 | 63.54  | 155.11   | 33 | 7.4         | 54    | 10.07      | 01 24 58.1 | 63.51  | 155.04 | 9   | 8.7         |
| 14               | 17.03 | 17 52 10.1 | 63.51  | 155.18   |    | 7.7         | 55    | 10.07      | 02 32 59.1 | 63.47  | 155.02 | 7   | 9.2         |
| 15               | 17.03 | 18 33 48.5 | 63.48  | 155.13   | 13 | 8.6         | 56    | 13.07      | 15 34 34.7 | 63.6   | 155.10 |     | 8.2         |
| 16               | 17.03 | 18 51 32.2 | 63.48  | 155.11   | 33 | 7.8         | 57    | 13.07      | 15 36 49.2 | 63.5   | 155.07 | 9   | 8.3         |
| 17               | 17.03 | 18 54 10.1 | 63.50  | 155.12   | 33 | 7.3         | 58    | 14.07      | 07 21 58.8 | 63.48  | 155.00 |     | 8.1         |
| 18               | 18.03 | 00 57 32.1 | 63.47  | 155.09   | 12 | 9.5         | 59    | 15.10      | 19 40 25.3 | 63.51  | 155.09 | 11  | 8.9         |
| 19               | 22.03 | 13 43 46.3 | 63.52  | 155.15   | 26 | 7.7         | 60    | 23.10      | 14 18 10.7 | 63.49  | 155.09 | 33  | 8.5         |
| 20               | 24.03 | 09 21 00.3 | 63.46  | 155.13   | 33 | 7.6         | 61    | 03.11      | 05 02 16.0 | 63.47  | 155.12 | 11  | 8.5         |
| 21               | 05.04 | 04 04 39.0 | 63.56  | 155.13   |    | 9.0         |       |            |            |        |        |     |             |

Таблица 5. Землетрясения Маратского роя северо-западнее пос. Омсукчан

Эпицентры этих землетрясений располагаются между Сугойским и Насучанским синклинориями, в пределах Балыгычано-Сугойской зоны тектономагматической активизации, вблизи выходов меловых гранитоидов, между крупными разломами – Маратским и Ветровским (рис. 5). Продольная ось овального облака роя протяженностью около 40 км вытянута в север– северо-восточном направлении.

На Колыме 16 сентября в  $15^{h}35^{m}$  произошло самое сильное ощутимое землетрясение с  $K_{P}$ =11.5 в 112 км северо-западнее пос. Сеймчан. Жители этого поселка, находящегося в 30 км от эпицентра, ощущали его с интенсивностью I=3–4 балла: многие спавшие проснулись, дребезжали посуда и стекла окон, колебались висячие предметы, был слышен глухой подземный гул. Структурно эпицентр землетрясения находится в непосредственной близости (около 7 км) от крупнейшего глубинного разлома Улахан, имеющего северо-западное простирание, его протяженность более 3000 км [5]. Землетрясение сопровождалось двумя форшоками и двумя афтершо-ками с  $K_{P}$ =6.8–7.5, однако они не локализованы, так как записаны одной или двумя станциями.



*Рис.* 5. Карта эпицентров 76 землетрясений Маратского роя, произошедших с 20 февраля по 3 ноября северо-западнее пос. Омсукчан

1 – энергетический класс землетрясений K<sub>P</sub>; 2 – форшок, основное событие и афтершок соответственно; 3 – кайнозойские молассы неотектонических впадин; 4 – нижнее и верхнемеловые вулканиты ОЧВП и наложенных впадин (верхний мезозой); 5 – апт-альбские континентальные («предвулканогенные») терригенные молассы (верхний мезозой); 6 – терригенный комплекс чехла срединных массивов (верхнепалеозойско-мезозойский структурный этаж); 7 – меловые гранитоиды активизационного (субдукционного) этапа; 8 – контуры Балыгычано-Сугойской зоны тектоно-магматической активизации; 9 – крупный разлом; 10 – прочее тектоническое нарушение.

Другое ощутимое землетрясение произошло 5 апреля в  $17^{h}50^{m}$  с  $K_{P}=10.4$  в пределах Аян-Юряхского антиклинория, в русле р. Аян-Юрях [5]. Некоторые жители г. Сусуман (51 км) ощущали его с интенсивностью I=2-3 балла.

Также ощутимое, но более слабое землетрясение с  $K_P$ =9.6 произошло 28 декабря в 14<sup>h</sup>46<sup>m</sup>. Его эпицентр расположен на побережье Охотского моря на расстоянии 72 км от г. Магадан и приурочен к крупному Кава-Ямскому разлому субширотного простирания, скрытому кайнозойскими отложениями Ольской впадины [5]. Ощущалось оно немногими магаданцами с интенсивностью *I*=2 балла. Отметим, что ранее, в декабре 2003 г., здесь также произошло сильное землетрясение с  $K_P$ =11.9, которое ощущалось как в Магадане, так и в близлежащих поселках (Ола, Клёпка, Радист) с интенсивностью до четырех баллов [1].

На Западной Чукотке ( $\mathbb{N}$  3) зарегистрировано два землетрясения (рис. 2), произошедшие 5 сентября в 11<sup>h</sup>05<sup>m</sup> и 1 ноября в 16<sup>h</sup>16<sup>m</sup> с  $K_P$ =10.7 и 10.1 соответственно. Их эпицентры располагаются вдали от населенных пунктов, видимо, поэтому сведений об их макросейсмических проявлениях нет.

В районах Восточной Чукотки ( $\mathbb{N}$  4) и Чукотского моря ( $\mathbb{N}$  5) в 2004 г. были локализованы 109 землетрясений с  $K_P$ =5.6–9.7. Не стихает сейсмическая активность в районе пос. Нешкан ЧАО, начавшаяся еще в декабре 2002 г. [6]. В 2004 г. самым сильным ощутимым (*I*=4 балла) событием здесь было землетрясение с  $K_P$ =8.8. Здесь же в 2002 г. [6] и в 2003 г. [1] возникли землетрясения с  $K_P$ =11.0 и 12.0 соответственно. Следует отметить, что в 2004 г. были трудности в определении координат эпицентров землетрясений ЧАО, которые вычислялись в основном по одной станции «Нешкан» по программе «Dimas»: эпицентральные расстояния рассчитывались по разнице времен  $t_P$ - $t_S$  вступлений Pg- и Sg-волн, азимут определялся по полярности первых вступлений. Сейсмическая станция «Билибино» находится на значительном (850 км) расстоянии от Нешкана и поэтому регистрирует из района Нешкана землетрясения только при  $K_P \ge 8.5$ . Станция «Анадырь» не работала с сентября 2003 г., а станции Магаданской области регистрируют землетрясения Восточной Чукотки только при  $K_P \ge 11.0$ .

Районы Беренгово море (№ 6) и Корякия (№ 7) в 2004 г. были малосейсмичны. В первом из них локализованы два землетрясения (11 января в  $02^{h}17^{m}$  с  $K_{P}=9.3$  и 17 апреля в  $05^{h}53^{m}$  с  $K_{P}=8.2$ ), во втором – одно (29 июля в  $06^{h}06^{m}$  с  $K_{P}=9.2$ ) [2].

## Литература

- 1. Алёшина Е.И., Гунбина Л.В., Комарова Р.С., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии в 2003 году. Обнинск: ГС РАН, 2009. С. 193–200.
- 2. Алёшина Е.И., Комарова Р.С. (отв. сост.). Каталог землетрясений Северо-Востока России за 2004 год. (См. Приложение к наст. сб. на CD).
- Седов Б.М. Использование материалов морской сейсморазведки МОГТ для выделения сейсмодислокаций // Геология и полезные ископаемые Камчатской области и Корякского АО // Тезисы докладов региональной конференции. – Петропавловск-Камчатский: КОМСП, 1999. – С. 33–37.
- 4. Седов Б.М., Гунбина Л.В. Критерии, оценка сейсмической и цунамигенной опасности Североохотского шельфа // Материалы Международной конференции «Современная геодинамика, глубинное строение и сейсмичность». – Воронеж: ВГУ, 2001. – С. 37–40.
- 5. Кузнецов В.М., Алевская Н.Л. Схема тектонического районирования Колымо-Охотского водораздела, масштаб 1: 1 000 000. Магадан: ФГУП «Магадангеология», 2001.
- 6. Алёшина Е.И., Гунбина Л.В., Лещук Н.М., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии, 2002. Обнинск: ГС РАН, 2008. С. 226–231.