КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Е.Н. Дорошкевич, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

В 2004 г. границы Курило-Охотского региона были изменены [1]: северо-восточная часть региона вошла в зону ответственности Камчатского филиала ГС РАН, юго-восточная часть (о. Хоккайдо и Японское море) была исключена из зоны ответственности СФ ГС РАН, т.к. эта территория входит в Японию.

На рис. 1 приведены старые и новые границы региона, а также три стационарные сейсмические станции Сахалинского филиала ГС РАН: «Северо-Курильск», «Курильск» и «Южно-Курильск», работавшие на территории Курильских островов в 2004 г. Как видно из рис. 1, внутренние границы отдельных сейсмоактивных районов были оставлены прежними, но в результате изменения границ от Парамуширского района (№ 1) и от района о. Хоккайдо (№ 6) остались лишь небольшие участки, несколько уменьшился Онекотон-Матуанский район (№ 2) и совсем исчез район Японского моря (№ 7).

Для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Сахалина [2], Приамурья и Приморья [3], а также бюллетени ГС РАН [4], ЈМА, Национального информационного центра по изучению землетрясений (NEIC, США), ISC [5]. Методика обработки данных [6–14] и параметры аппаратуры на сейсмических станциях региона, по сравнению с таковыми в 2003 г. [15], не изменились.

Региональный каталог землетрясений Курило-Охотского региона за 2004 г. [16] включает в себя основные параметры 453 землетрясений с $MLH \ge 4.0$ ($K_C \ge 9$), что в 1.37 раза меньше, чем в 2003 г. [15], карта их эпицентров приведена на рис. 1.

Гипоцентры 366 землетрясений (80.8 % общего числа) расположились в верхнем глубинном интервале $h \le 80 \ \kappa m$, 315 из них (69.5 %) находились в слое $h=31-70 \ \kappa m$ (табл. 1); 68 землетрясений (15.0 %) зарегистрировано в промежуточном интервале $h=81-300 \ \kappa m$; 19 землетрясений (4.2 %) – в нижнем интервале глубины $h>300 \ \kappa m$. Самое глубокое ($h=560\pm 12 \ \kappa m$) землетрясение региона с магнитудой *MLH*=3.7, *MSH*=5.5 (14 на рис. 1) произошло 20 февраля в 11^h18^m под акваторией Охотского моря [16].

h, км	N_{Σ}	h, км	N_{Σ}	h, км	N_{Σ}	h, км	$N_{\!\Sigma}$	
0 - 10	4	151 - 160	4	301 - 310		451 - 460	1	
11 - 20	4	161 - 170	4	311 - 320	1	461 - 470	1	
21 - 30	18	171 - 180	2	321 - 330		471 - 480	1	
31 - 40	72	181 - 190		331 - 340		481 - 490	1	
41 - 50	91	191 - 200		341 - 350		491 - 500	1	
51 - 60	99	201 - 210		351 - 360		501 - 510	1	
61 - 70	53	211 - 220		361 - 370	1	511 - 520		
71 - 80	25	221 - 230		371 - 380	1	521 - 530	1	
81 - 90	13	231 - 240		381 - 390	2	531 - 540	2	
91 - 100	10	241 - 250		391 - 400	1	541 - 550		
101 - 110	8	251 - 260	1	401 - 410		551 - 560	1	
111 - 120	5	261 - 270		411 - 420		561 - 600		
121 - 130	3	271 - 280		421 - 430	1			
131 - 140	9	281 - 290		431 - 440	1			
141 - 150	9	291 - 300		441 - 450	1			

Таблица 1. Распределение землетрясений по интервалам глубины h

Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона в 2004 г.

1 – магнитуда *M*, равная *MLH* для землетрясений с *h* ≤ 80 км и *MSH* – с *h* > 80 км; 2 – глубина *h* гипоцентра, км; 3 – сейсмическая станция; 4 – граница и номер района соответственно; 5 – граница региона до 2004 г.; 6 – ось глубоководного Курило-Камчатского желоба.

Суммарная сейсмическая энергия (табл. 2), выделившаяся в 2004 г. в очагах мелкофокусных землетрясений ($h \le 80 \, \kappa m$), больше в 1.8 раза, а для глубокофокусных и промежуточных (*h*>80 км) – в 1.5 раза соответствующих величин энергии в 2003 г. [15].

h≤80 км										
N₂	№ Район <i>MLH</i>								N_{Σ}	ΣE ,
		4.0	4.5	5.0	5.5	6.0	6.5	7.0	-	10 ¹² Дж
1	Парамуширский	1	1						2	0.702
2	Онекотан-Матуанский	29	14	4	4		1		52	417.860
3	Симушир-Урупский	12	25	2	1				40	21.064
4	Северо-Итурупский	44	27	2	1	1			75	149.131
5	Кунашир-Шикотанский	52	50	13	1			1	117	2049.225
6	Остров Хоккайдо	37	34	4	1	1	1	1	79	1243.083
8	Охотское море	1							1	0.063
	Всего	176	151	25	8	2	2	2	366	3881.128
h>80 км										

Таблица 2. Распределение землетрясений по магнитудам MLH и MSH и суммарная сейсмическая энергия ΣЕ по районам Курило-Охотского региона

N⁰	Район	MSH							N_{Σ}	ΣE ,
		4.0	4.5	5.0	5.5	6.0	6.5	7.0		10 ¹² Дж
1	Парамуширский									
2	Онекотан-Матуанский			2	7	1	1		11	127.879
3	Симушир-Урупский			1	10	3		1	15	1630.356
4	Северо-Итурупский		2	3	5	2			12	83.239
5	Кунашир-Шикотанский	1		8	8	5	1		23	261.186
6	Остров Хоккайдо			1	2	1	1		5	392.588
8	Охотское море	2	3	6	8	1	1		21	131.950
	Всего	3	5	21	40	13	4	1	87	2627.199

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде MLH путем пересчета из классов К_с для землетрясений с *h*≤80 км и из магнитуд *MSH* − с *h*>80 км по следующим соотношениям: *MLH*=(*K*_C-1.2)/2 и *MLH*=(*MSH*-1.71)/0.75 [15].

Наибольшая сейсмическая энергия высвободилась в Кунашир-Шикотанском районе (№ 5), где 28 ноября в 18^h32^m зарегистрировано самое сильное землетрясение региона (51 на рис. 1) с магнитудой MLH=7.0, MSH=7.2. Эпицентр находился на юго-восточном побережье о. Хоккайдо, гипоцентр – на глубине *h*=59±4 км, макросейсмический эффект составил 4 балла в пос. Южно-Курильск (Д=118 км), 3 балла – в пос. Малокурильское (Д=148 км) и в г. Курильск (Д=317 км).

Всего в регионе отмечено 47 ощутимых землетрясений, распределение их по районам и интервалам глубины гипоцентра приведено в табл. 3. Наибольшее число ощутимых землетрясений (№24) зарегистрировано в районе о. Хоккайдо (№ 6), 20 ощутимых землетрясений отмечено в Кунашир-Шикотанском районе (№ 5). Наибольший макросейсмический эффект, достигший в Японии V баллов по шкале JMA [17], что соответствует 8 баллам по шкале MSK-64 [18], проявило землетрясение 53, зарегистрированное 6 декабря в $14^{h}15^{m}$. На территории России интенсивность сотрясений не превышала 4 баллов в пос. Южно-Курильск (Д=120 км).

По знакам первых смещений в продольных волнах, записанных мировой сетью сейсмических станций, определены механизмы очагов 40 землетрясений (рис. 2, табл. 4): 30 из них относятся к мелкофокусным с $h \le 80 \ \kappa m$, 8 – к промежуточному слою с $h = 81 - 300 \ \kappa m$, два – к глубокофокусным ($h > 300 \ \kappa m$). Каталог механизмов очагов землетрясений представлен в [19].

В Парамуширском районе (№ 1) зарегистрированы два близких мелкофокусных землетрясения (h=15 и 5 км) с энергетическим классом $K_{\rm C}=9.5$ и 10.5, произошедшие 18 декабря в 07^h24^m и 07^h50^m соответственно [16].

N⁰	Районы	<i>h</i> ,	N_{Σ}	N _{omvt.}	I _{max}	K _{Cmax}	M	nax
		КМ					MLH	MSH
1	Парамуширский	0–30	2			10.5		
		31-80						
		81-140						
2	Онекотан-Матуанский	0–30	11	1	2	12	6.5	6.2
		31-80	41			11.5	5.5	6.1
		81–164	11			11.3	4.3	5.7
3	Симушир-Урупский	0–30	2			10		
		31-80	38			12	4.9	5.8
		81-179	15			13.5	5.9	6.9
4	Северо-Итурупский	0–30	4			10		5.2
		31-80	71	2	2-3	13	6.2	6.1
		81-157	12			11	4.4	6.2
5	Кунашир-Шикотанский	0–30	6			11	4.4	5.7
		31-80	111	18	5	12	7.0	7.2
		81-162	23	2	3	12	3.8	5.9
6	Остров Хоккайдо	0–30	1			9		
		31-80	78	22	8	12.5	6.8	6.8
		81-118	5	2	5	11.5	4.2	5.8
8	Охотское море	0-30						
		31-80	1			10	4.0	
		81-560	21			12.1	4.5	6.3

Таблица 3. Распределение землетрясений по интервалам глубины *h*, максимальные значения интенсивности сотрясений *I*_{max}, энергетического класса *K*_{Cmax} и магнитуды *M*_{max}

В Онекотан-Матуанском районе (\mathbb{N} 2) мелкофокусная сейсмическая активность возросла: зарегистрировано 52 землетрясения на глубине $h \leq 80 \, \kappa M$, на одно больше, чем в 2003 г. [15], суммарная сейсмическая энергия, равная $\Sigma E=417.86 \cdot 10^{12} \, \mathcal{Д} \mathcal{K}$ (табл. 2), возросла в 3.7 раза. В интервале глубины $h=81-164 \, \kappa M$, зарегистрировано 11 землетрясений, что в 2.1 раза меньше, чем в 2003 г. (N=23 [15]), однако суммарная сейсмическая энергия возросла в 3.7 раза (в 2003 г. – $\Sigma E=113.03 \cdot 10^{12} \, \mathcal{Д} \mathcal{K}$).

Самое сильное (*MLH*=6.5) землетрясение района (55 на рис. 1, 2) произошло 18 декабря в $06^{h}46^{m}$ на глубине $h=24\pm5$ км. Оно единственное было ощутимым в районе (табл. 3) с интенсивностью 2 балла в г. Северо-Курильск ($\Delta=199$ км).

Определены механизмы очагов [19] семи землетрясений (1, 2, 4–6, 55, 56), которые произошли в верхнем интервале глубины (табл. 4). В очагах землетрясений 55 и 56 преобладали напряжения сжатия, которые обусловили подвижки типа взброса. В очагах 1, 2, 4 преобладали напряжения растяжения, которые обусловили подвижку типа поддвига. Для очагов землетрясений 5 и 6 преобладающими были напряжения сжатия, что привело к пологому надвигу в очаге 5 и сдвигу – в очаге 6 (рис. 1, 2).

В Симушир–Урупском районе (\mathbb{N} 3) зарегистрировано 40 землетрясений на глубине $h \leq 80 \ \kappa m$, что на три землетрясения больше, чем в 2003 г. [15], но суммарная сейсмическая энергия (табл. 2) уменьшилась в 1.5 раза. В интервале глубины $h=81-179 \ \kappa m$ произошло 15 землетрясений, что в 1.5 раза меньше, чем в 2003 г., но суммарная сейсмическая энергия возросла в 11.7 раза. Макросейсмический эффект ни одного землетрясения отмечен не был (табл. 3).

Сильнейшим (*MLH*=5.9, *MSH*=6.9, K_C =13.5) в районе было землетрясение 39 (рис. 1, 2), произошедшее 8 июля в 10^h30^m на глубине *h*=131±7 км.

Определены механизмы очагов землетрясений 27, 33, 35, 38, 39 (рис. 1, 2, табл. 4). Два из них (35 и 38) произошли в верхнем глубинном интервале, три (27, 33, 39) – в промежуточном. В очагах землетрясений 35 и 38 преобладали напряжения растяжения, что обусловило подвижки типа сброса (38) и поддвига (35). Очаги землетрясений 27, 33, 39 находились под преимущественным воздействием напряжений сжатия, для которых характерный тип подвижки – взброс, сдвиг, а для очага землетрясения 39 – сброс.

Рис. 2. Карта механизмов очагов землетрясений Курило-Охотского региона в 2004 г.

1-5 соответствуют рис. 1; 6 - стереограмма механизма очага в проекции на нижнюю полусферу, зачернена область сжатия.

В Северо-Итурупском районе (№ 4) мелкофокусная ($h \le 80 \ \kappa m$) сейсмическая активность несколько возросла: произошло 75 землетрясений, что на шесть больше, чем в 2003 г. [15], суммарная сейсмическая энергия, равная $\Sigma E=149.13 \cdot 10^{12} \ Дж$ (табл. 2), выше таковой в 2003 г. ($\Sigma E=105.74 \cdot 10^{12} \ Дж$) в 1.4 раза. В интервале глубины $h=81-157 \ \kappa m$ зарегистрировано

12 землетрясений, что в 1.7 раза больше, чем в 2003 г., суммарная сейсмическая энергия возросла в 2.1 раза.

Отмечено два ощутимых землетрясения: первое (9 на рис. 1, 2) произошло 26 января в $17^{h}02^{m}$, второе – 23 сентября в $12^{h}14^{m}$. Оба ощущались в г. Курильск (Δ =126 и 89 км) с интенсивностью сотрясений в 2–3 и в 2 балла соответственно (табл. 3).

Для трех мелкофокусных землетрясений 9, 10, 43 определены механизмы очагов [19]. В очагах землетрясений 9 и 25 преобладали напряжения сжатия, что определило тип подвижки – взброс и сдвиг. В очаге 10 наблюдался сбросо-сдвиг, с преобладанием сбросовой компоненты.

В Кунашир-Шикотанском районе (№ 5) сейсмическая активность резко возросла: зарегистрировано 117 землетрясений на глубине $h \le 80 \ \kappa m$, что в 1.4 раза больше, чем в 2003 г. [15], суммарная сейсмическая энергия (табл. 2) увеличилась в 30 раз. В промежуточном интервале глубины с $h=81-162 \ \kappa m$ зарегистрировано 23 землетрясения, что на одно меньше, чем в 2003 г., при этом суммарная сейсмическая энергия возросла в 2.2 раза. Район снова оказался самым сейсмоактивным в регионе, каким он обычно является.

Самое сильное (*MLH*=7.0, *MSH*=7.2) мелкофокусное ($h=59\pm4 \ \kappa m$) землетрясение 51 района, а также региона в целом, произошло 28 ноября в $18^{h}32^{m}$. Макросейсмический эффект составил 4 балла в пос. Южно-Курильск ($\Delta=118 \ \kappa m$), 3 балла – в пос. Малокурильское ($\Delta=148 \ \kappa m$) и в г. Курильск ($\Delta=317 \ \kappa m$). Это землетрясение реализовалось под преобладающим действием напряжений сжатия, ориентированных субширотно на юго-восток, и более крутых напряжений растяжения. Ось промежуточного напряжения близгоризонтальна и ориентирована субмеридионально. Тип движения по круто падающей $DP=72^{\circ}$ плоскости NP2 субмеридионального простирания – взброс с компонентами левостороннего сдвига. По пологой $DP=19^{\circ}$ плоскости NP1 югозападного простирания представлен пологий надвиг с компонентами правостороннего сдвига.

В промежуточном интервале глубины магнитуда трех самых сильных землетрясений района (7, 30, 31 на рис. 1, 2) составила *MSH*=5.9.

В районе отмечено 20 ощутимых землетрясений (табл. 3). Максимальный макросейсмический эффект в III (5) балла проявило землетрясение 57 с магнитудой MLH=5.5, MSH=6.1, зарегистрированное 21 декабря в $15^{h}34^{m}$ на глубине $h=56 \ \kappa m$; оно ощущалось в пос. Южно-Курильск с интенсивностью сотрясений I=2 балла. Макросейсмический эффект остальных землетрясений района не превышал 4 баллов.

В Кунашир-Шикотанском районе определены механизмы очагов [19] землетрясений 7, 11, 12, 13, 16, 18, 30, 32, 47, 51, 52, 57 (рис. 1, 2). Девять из них произошли в верхнем интервале глубины $h \le 80 \ \kappa m$, где систему напряжений характеризует преобладание сжатия, которое обусловило подвижки типа взброса в очагах 12, 47 и пологого надвига – для землетрясения 13.

В промежуточном интервале глубины *h*=81–300 км, где зарегистрированы землетрясения 7, 18, 30, преобладают близгоризонтальные напряжения растяжения, для которых характерный тип подвижки – сброс (7) и поддвиг (18, 30).

Большая часть территории **района о. Хоккайдо** (\mathbb{N} 6) была в 2004 г. исключена из зоны ответственности СФ ГС РАН, осталась лишь небольшая часть восточнее меридиана 144° (рис. 1). Здесь в верхнем интервале глубины с $h \leq 80 \ \kappa m$ было зарегистрировано 79 землетрясений, сейсмическая энергия которых составила 32 % от энергии мелкофокусных землетрясений Курило-Охотского региона (табл. 2). В интервале глубины $h=81-118 \ \kappa m$ зарегистрировано пять землетрясений.

Ощутимыми в населенных пунктах Японии и Курильских островов оказались 24 землетрясения. Максимальная интенсивность сотрясений достигла V (8) баллов в Японии при землетрясении (53 на рис. 1, 2), произошедшем 6 декабря в $14^{h}15^{m}$ на глубине $h=55 \ \kappa m$ с магнитудой *MLH*=6.8, *MSH*=6.8. На территории России это землетрясение ощущалось в пос. Южно-Курильск (Δ =120 κm) с интенсивностью сотрясений *I*=4 балла, и в пос. Малокурильское (Δ =160 κm) – 3 балла. Макросейсмический эффект остальных землетрясений составил от 2 до 5 баллов.

В районе о. Хоккайдо определены механизмы очагов десяти землетрясений [19], девять (3, 8, 19, 22, 23, 28, 29, 37, 53) из которых произошли на глубине *h*≤80 *км*, одно (34) – в промежуточном глубинном интервале.

Систему напряжений в верхнем глубинном слое характеризует преобладающее близгоризонтальное напряжение сжатия. В очагах землетрясений 3, 8, 19, 22, 28, 37, 53 наблюдались подвижки типа взброса, пологого надвига и сдвига; в очагах 23 и 29 подвижка носила характер сброса и поддвига соответственно. В очаге землетрясения 34 с промежуточной глубиной очага наблюдался сдвиг.

В Охотском море (№ 8) зарегистрировано одно мелкофокусное (*h*=32 км) землетрясение с *MLH*=4, два – с промежуточной (*h*=104 и 252 км) глубиной очага и 19 глубокофокусных (*h*=313–560 км). Суммарная сейсмическая энергия (табл. 2) увеличилась в 2.8 раза, по сравнению с таковой в 2003 г. [15]. Ощутимых землетрясений не отмечено.

Максимальным (*MSH*=6.3) в районе в 2004 г. оказалось землетрясение 50, зарегистрированное 18 ноября в $06^{h}09^{m}$ на глубине $h=252\pm21 \ \kappa m$ под акваторией Охотского моря (рис. 1).

В районе Охотского моря определены механизмы очагов землетрясений 14, 24, 50 (рис. 1, 2). Землетрясения 24 и 50 произошли под действием напряжений сжатия, которые обусловили подвижки пологого надвига и сдвига, а в очаге 14 наблюдался поддвиг.

Литература

- 1. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 г. Обнинск: ГС РАН, 2007. С. 139.
- 2. Фокина Т.А., Поплавская Л.Н., Паршина И.А., Рудик М.И., Коваленко Н.С., Сафонов Д.А. Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 4. Сейсмологический бюллетень (ежедекадный) за 2004 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2004–2005.
- 5. Bulletin of the International Seismological Centre for 2004. Berkshire: ISC, 2006-2007.
- 6. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). М.: Наука, 1989. С. 32–51.
- 7. **Миталева Н.А., Бойчук А.Н.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 8. Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- 9. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- 11. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 12. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 13. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 14. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 15. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 173–180.

- 16. Дорошкевич Е.Н. (отв. сост.), Брагина Г.И., Гладырь Ж.В., Пиневич М.В. Каталог землетрясений Курило-Охотского региона за 2004 год. (См. Приложение к наст. сб. на CD).
- 17. Hisada T., Nakagawa K. Present Japanese Development in Engincering Seismology and their Application to Buildinge. Japan: 1958.
- 18. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 19. Рудик М.И., Поплавская Л.Н. (отв. сост.). Каталог механизмов очагов землетрясений Курило-Охотского региона за 2004 год. (См. Приложение к наст. сб. на CD).