КАМЧАТКА И КОМАНДОРСКИЕ ОСТРОВА

А.Ю. Чеброва, В.И. Левина, В.Н. Чебров, Е.И. Иванова, С.В. Митюшкина, Е.М. Гусева

Камчатский филиал ГС РАН, г. Петропавловск-Камчатский, valeria@emsd.ru

Сеть сейсмических станций в 2004 г. претерпела дальнейшую модернизацию.

На базе имеющихся стационаров с аналоговой аппаратурой было установлено новое оборудование SDAS производства «Геотех» (Обнинск) и СЦСС собственной разработки КФ ГС [1]. При этом до 2–3 месяцев велась параллельная регистрация сейсмических сигналов цифровыми и гальванометрическими станциями.

В результате были установлены комплекты SDAS и велась цифровая регистрация на сейсмической станции «Беринг» с 21 января 2004 г., «Крутоберегово» – с 1 ноября 2004 г. Комплекты СЦСС запущены на станциях «Апача» с 26 июня и «Эссо» – с 16 декабря 2004 г. На станции «Ключи» в ноябре 2004 г. в экспериментальном режиме начал работу комплект оборудования фирмы GEOTECH (США) с широкополосным велосиметром KS-2000. В табл. 1 представлены основные сведения по аппаратуре новых станций. Их координаты остались теми же, что были у соответствующих гальванометрических [2]. Таким образом, вместе с открытыми по международным проектам станциями «Петропавловск» (1993 г., IRIS), «Каменское» (1994 г., POSEIDON) и «Карымшина» (1999 г., МНТЦ 1121) к концу 2004 г. в Камчатском регионе работало восемь цифровых широкополосных станций.

Название станции	Тип станции и сейсмоприемника	Перечень каналов	Частотный диапазон, Гц	Частота опросов данных, Гц	Разряд- ность АЦП	Чувствительность велосиграфа, <i>м/с/</i> отсчет
Апача	СЦСС – СМ-3–ОС	BH(Z, N, E)	0.02-10	100	24	$3 \cdot 10^{-10}$
с 26.06.2004 г.		SH(Z)	1-10			$3 \cdot 10^{-8}$
Беринг с 21.01.2004 г.	SDAS – CM-3–OC	BL(Z, N, E)	0.02–10	20	16	6·10 ⁻⁸
Крутоберегово с 01.11.2004 г.	SDAS – CM-3–OC	BL(Z, N, E)	0.02–10	20	16	6·10 ⁻⁸
Эссо	СЦСС – СМ-3–ОС	BH(Z, N, E)	0.02-10	100	24	$3 \cdot 10^{-10}$
с 16.12.2004 г.		SH(Z)	1-10			$3 \cdot 10^{-8}$
Ключи	GEOTECH – KS-2000	BH(Z, N, E)	0.01-10	50	23	$5.0 \cdot 10^{-10}$
с 01.11. 2004 Г.						

Таблица 1. Данные об аппаратуре цифровых станций КФ ГС РАН в 2004 г.

Сеть сейсмотелеметрических станций также несколько изменилась: еще 25 июля 2003 г. в работу вступила новая радиотелеметрическая станция «Тумрок» (TUMR, 55.283 N, 160.146 E, h_y =1213 м). На станции установлен стандартный комплект аппаратуры. Параметры почти всех телеметрических станций и сейсмических станций с гальванометрической регистрацией приведены в [2, 3].

Карта энергетической представительности землетрясений Камчатки в 2004 г. показана на рис. 1. Как видим, минимальный уровень энергетической представительности соответствует K_{min} =6.5 на двух участках региона с высокой плотностью сейсмических станций: вблизи Авачинско-Корякской и Северной группы вулканов. Существующая сеть станций способна зарегистрировать землетрясения с K_{min} =9.5 практически на всей сейсмоактивной территории Камчатки. Во всем же регионе внутри границ ответственности камчатской сети, указанных на рис. 1, уровень представительности составляет K_{min} =10.0.

Рис. 1. Карта энергетической представительности землетрясений *K*_{min} и сеть сейсмических станций Камчатки в 2004 г.

1 – радиотелеметрические сейсмические станции (SVLR – «Шивелуч», KLY – «Ключи», KRSR – «Крестовский», CIRR – «Цирк», LGNR – «Логинов», ZLN – «Зеленая», SRDR – «Срединный», KOZR – «Козырь», KPT – «Копыто», KMNR – «Каменистая», TUMR – «Тумрок», KBTR – «Крутоберегово-1», MKZ – «Мыс Козлова», KRYR – «Карымский», SPN – «Шипунский», GNL – «Ганалы», NLC – «Налычева», SDLR – «Седловина», KOK – «Коряка», AVH – «Авача», SMAR – «Сомма», UGLR – «Угловая», PET – «Петропавловск», GRL – «Горелый», RUS – «Русская», MIPR – «Малая Ипелька», ALID – «Алаид»); 2 – сейсмические станции с регистрацией на фотобумагу (OSSR – «Оссора», PAU – «Паужетка»); 3 – цифровые сейсмические станции (BKI – «Беринг», KBG – «Крутоберегово», ESO – «Эссо», APC – «Апача», KLY – «Ключи», KAMR – «Каменское», KRMR – «Карымшина», PET – «Петропавловск»); 4 – изобаты 6000 и 7000 м; 5 – изолинии K_{min}; 6 – границы региона, предлагаемые в работе [4]. На врезках показаны сети сейсмических станций Северной группы вулканов (вверху) и Авачинско-Корякской группы вулканов (внизу). Названия станций даны по [3].

Методика определения параметров землетрясений, изложенная в [5–7], не изменилась.

Анализ сейсмичности проведен для территории в пределах границ региона, указанных в [4] (рис. 1). Всего в 2004 г. определены эпицентры 5533 землетрясений с K_S =3.8–14.8 [8]. Их распределение по энергетическим классам K_S приведено в табл. 2.

	Ľ												N.F.	
1 од	4	5	6	7	8	R_S	10	11	12	13	14	15	N_{Σ}	$\Sigma E, \cdot$ 10 ¹⁴ Π ara
1002	-	5	0	(5	502	106	244	02	24	15	2	1.	1422	<u>10 -дж</u>
1992				03 (5	502	490	244	82	24	0	2	1	1422	0.3908
1002			2	03 72	502	490	244	82	24	0	2	1	1422	0.3908
1993			3	72	500	519	235	78	19	5	1	2	1434	15.4883
			3	72	500	519	235	78	19	5	1	2	1434	15.4883
1994			3	104	456	379	199	63	18	6	0	0	1228	1.1220
			3	104	456	379	199	63	18	6	0	0	1228	1.1220
1995			18	227	621	419	176	60	12	4	0	0	1539	0.5868
			18	227	621	419	176	55	12	3	0	0	1533	0.5315
1996		1	67	657	1564	1028	448	157	50	11	2	0	3985	4.8652
		1	67	657	1564	1022	436	155	47	9	2	0	3960	4.6706
1997		11	151	974	1552	1070	590	328	117	20	6	1	4820	39.7282
		11	151	974	1552	1070	589	327	117	20	6	1	4818	39.7272
1998		45	570	2035	1899	772	273	100	22	5	1	0	5722	1.6621
		45	570	2035	1898	770	269	99	22	5	1	0	5714	1.6583
1999			123	1041	1325	667	295	103	34	14	3	0	3605	5.6542
			123	1041	1325	666	293	101	34	13	2	0	3598	5.1016
2000		34	366	1260	1159	577	224	63	25	5	0	0	3713	0.8831
		34	366	1260	1158	568	214	60	24	5	0	0	3689	0.8740
2001		33	375	1205	1214	620	217	100	31	8	4	0	3807	5.4857
		33	375	1205	1214	610	208	90	23	6	4	0	3768	5.1147
2002	5	50	395	1185	1193	520	190	70	30	10	1	0	3649	2.4509
	5	50	395	1185	1190	512	181	66	29	7	1	0	3621	1.9975
2003	23	157	885	1900	1516	778	304	103	38	11	1	2	5718	13.4688
	23	157	885	1900	1515	764	294	99	36	10	0	2	5685	12.9675
2004	39	244	1211	1875	1250	584	215	77	26	11	0	1	5533	8.0628
	39	244	1211	1874	1245	558	199	68	22	7	0	1	5468	7.4454

Таблица 2. Распределение числа землетрясений по энергетическим классам K_S в 1992–2004 гг.

Примечание. Таблица содержит два ряда чисел за каждый год: первый указывает число и суммарную энергию всех землетрясений, которые удалось обработать в группе обработки, второй – только тех, что внутри «законных» границ региона, показанных на рис. 1.

Суммарная энергия, выделившаяся в очагах землетрясений в 2004 г. внутри границ региона, составляет $\Sigma E=7.4 \cdot 10^{14} \ Дж$, что несколько ниже среднегодового значения $\Sigma E_{cp}=8.1 \cdot 10^{14} \ Дж$ за 1962–2003 гг.

В каталог [8] в наст. сб. включены землетрясения с $K_5 \ge 8.6$. Общее их число составило 914, из которых 855 находятся внутри зоны ответственности КФ ГС РАН, 59 – вне ее. Сильных землетрясений с $K_S \ge 11.6$ произошло 38, из них 30 – внутри зоны ответственности. Карта эпицентров всех землетрясений с $K_S \ge 8.6$ приведена на рис. 2. Традиционно на карте показаны два вертикальных разреза поля гипоцентров – продольный В–В' (рис. 2 б) и поперечный А–А' (рис. 2 в).

На рис. 3 а представлен график распределения во времени суточных чисел землетрясений, на рис. 3 б – график накопления во времени высвобожденной в их очагах сейсмической энергии. Как видим, максимум числа землетрясений зафиксирован 26 июня, максимальный скачок в высвобождении энергии – 10 июня. Высокая ступень на графике рис. 3 б вызвана сильным (K_s =14.8, Mw=6.8) Тумрокским-II землетрясением (15) 10 июня в 15^h19^m на глубине h=208 км [8] с эпицентром в пределах хр. Тумрок (см. рис. 2 а).

Значительное увеличение суточного числа толчков 26 июня на рис. 3 а вызвано возникновением роя землетрясений. Величина максимального толчка (19) роя, произошедшего 26 июня в 19^h04^m, характеризуется значениями K_S =12.4, MS=4.9. Рой локализован в небольшом диапазоне глубин h=0–40 км в Кроноцком заливе, северо-восточнее эпицентральной зоны известного Кроноцкого землетрясения 05.12.1997 г. с Mw=7.8, I_0 =8 [9].

Рис. 2. Карта эпицентров землетрясений Камчатки за 2004 г. (*K*_S ≥ 8.6) (а) и глубинные разрезы на вертикальные плоскости А–А' (б) и В–В' (в)

1 – энергетический класс K_S ; 2 – глубина гипоцентра *h*, *км*; 3 – границы региона; 4 – линии плоскостей разрезов вдоль (А–А') и вкрест (В–В') фокальной зоны; 5 – изобаты 6000 и 7000 *м*.

На врезке приведены эпицентры очагов землетрясений роя, обозначенного стрелкой на основной карте.

Рис. 3. Графики изменения суточных чисел *N* землетрясений с *K*_S≥8.6 (а) и высвобожденнойсейсмической энергии Σ*E* (б) за 2004 г.

Ощутимых землетрясений отмечено 36 с интенсивностью сотрясений I от 2 до 6 баллов [8]. Минимальная и максимальная интенсивности сотрясений отмечены в г. Северо-Курильск и вызваны землетрясениями равных классов K_s =13.3 (18 декабря в 06^h46^m и 30 августа в 12^h33^m), но на разных эпицентральных расстояниях – 239 и 171 км соответственно.

С максимальной интенсивностью I=5-6 баллов в населенных пунктах ощущались три землетрясения, а именно: самое масштабное в 2004 г. по макросейсмическим проявлениям на территории Камчатского края Тумрокское-II землетрясение 10 июня (см. отдельную статью [10] в наст. сб.) и землетрясения (22, 29), произошедшие юго-восточнее о. Парамушир 16 июля в $08^{h}24^{m}$ с $K_{s}=12.1$, I=5-6 баллов в Северо-Курильске (100 км,) и 30 августа в $12^{h}23^{m}$ с $K_{s}=13.3$, I=6 баллов в Северо-Курильске (171 км), 4–5 баллов – в Паужетке (236 км), 2–3 балла – в Институте (419 км) [8].

Сотрясения с I=5 баллов отмечены на ГМС Водопадная (37 км) и мысе Шипунском (86 км) от землетрясений, зарегистрированных 31 января в $14^{h}26^{m}$ с $K_{s}=11.8$ и 20 марта в $08^{h}53^{m}$ с $K_{s}=13.0$ соответственно.

В Петропавловске-Камчатском наибольшие сотрясения в 2004 г. имели интенсивность *I*=4–5 баллов и вызваны относительно близким (Δ =162 км) землетрясением 20 марта в 08^h53^m с K_s =13.0 [8].

Механизмы очагов определены по знакам первых вступлений *P*-волн для 22 из 38 сильных событий [11]. Они рассчитывались по программе FA2002 [12, 13]. Распределение землетрясений по типам подвижки за 2004 г. приведено в табл. 3, из которой виден преобладающий тип подвижки на Камчатке – взбросо-сдвиг (45% событий). Значительно меньше сдвигов (8%) и сбросо-сдвигов (5%), чисто сбросовых и взбросовых подвижек в очагах не наблюдалось.

Тип подвижки	Номера землетрясений из [8]	N_{i}	$N_{i}/N_{\Sigma},$ %
Сброс	_	0	0
Сбросо-сдвиг	15, 36	2	5
Взброс	_	0	0
Взбросо-сдвиг	2, 4, 6, 7, 10, 11, 13, 14, 25–29, 32, 34, 37, 38	17	45
Сдвиг	3, 9, 23	3	8
Не определен	1, 5, 8, 12, 16–22, 24, 30, 31, 33, 35	16	42

Таблица 3. Распределение землетрясений Камчатки и Командорских островов по типам подвижек

Рассмотрим особенности сейсмического процесса региона по отдельным зонам, представленным на рис. 4 из [14]. Принципы деления территории Камчатки и прилегающих областей на зоны, а также их границы подробно описаны в [4, 14].

В табл. 4 даны абсолютные и относительные числа землетрясений на двух энергетических срезах $K_{\rm S} \ge 8.6$ и $K_{\rm S} \ge 11.6$, а также средние значения этих чисел за весь период инструментальных наблюдений с 1962 по 2003 г. При этом учитывались лишь землетрясения, входящие в зону ответственности Камчатского филиала.

Как и в 2003 г. [14], суммарная энергия, высвобожденная в очагах землетрясений в промежуточном слое сейсмофокальной зоны с $h=70-350 \ \kappa m$, превысила более чем в шесть раз значение энергии, высвобожденной в поверхностном слое с $h=0-70 \ \kappa m$. Это связано с тем, что в 2003–2004 гг. в средней части сейсмофокальной зоны произошли очень похожие сильные Тумрокское-I и Тумрокское-II землетрясения: 16.06.2003 г. на глубине $h=190 \ \kappa m$ с $K_{\rm S}=14.7, \ Mw=6.9$ [14] и 10.06.2004 г. на глубине $h=208 \ \kappa m$ с $K_{\rm S}=14.8, \ Mw=6.8$ [8]. В остальных зонах значения выделенной энергии были ниже среднего за 1962–2003 гг. (табл. 4).

В наиболее активной **Камчатской сейсмофокальной зоне** (**№** 1) в 2004 г. произошло 711 (83.2%) землетрясений с $K_{\rm S} \ge 8.6$. По трем глубинным слоям они распределились следующим образом: 521 (61%) – поверхностных ($0 \le h \le 70 \ \kappa n$), 171 (20%) – промежуточных ($70 < h \le 350 \ \kappa n$), 19 (2.2%) – глубоких ($h > 350 \ \kappa n$). Статистика сильных событий с $K_{\rm S} = 11.6 - 14.8$ выглядит следующим образом: поверхностных – 27, промежуточных – 1, глубоких – 0. Карта эпицентров землетрясений фокальной зоны, а также диаграммы механизмов в проекции нижней полусферы с указанием типа подвижки показаны на рис. 5. Ниже дано описание проявлений сейсмичности в 2004 г. в зоне № 1 по каждому слою в отдельности.

Рис. 4. Карта зон сейсмической активности на территории Камчатки и прилегающих районов в плане (а) и на вертикальных разрезах по линиям А–А' (б) и В–В' (в) соответственно из [14]

№ 1 – Камчатская сейсмофокальная; № 2 – континентальная часть п-ва Камчатка; № 3 – Северные Курилы; № 4 – Командорский сегмент Алеутской дуги; № 5 – северо-Западная часть Тихого океана; № 6 – Корякия и западная часть Берингова моря; № 7 – Камчатский перешеек; № 8 – Утхолок; № 9 – Западная Камчатка.

Зона	№	Слой	Средние	значе	ния за 1962	2003 гг. 2004 г.				
			N	N/N_{Σ} ,	N	ΣΕ,	N	N/N_{Σ} ,	N	ΣΕ,
			(<i>K</i> ≥8.6)	%	$(K_{\rm S} \ge 11.6)$	10 ¹³ Дж	(<i>K</i> ≥8.6)	%	$(K_{\rm S} \ge 11.6)$	10 ¹³ Дж
Камчатская	1	Α	543	61.1	22	29.36	521	61	27	10.57
сейсмофокальная зона		В	123	13.8	4	29.72	171	20	1	63.29
		C_S	3	0.3	<1	0.49	19	2.2	0	0.02
Континентальная часть	2	Α	45	5.1	1	1.26	8	0.9	0	< 0.01
п-ва Камчатка										
Командорский сегмент	4	Α	110	12.4	5	13.65	93	10.9	2	0.49
Алеутской дуги		В	1	0.1	<1	0.05	1	0.1	0	< 0.01
Северо-Западная	5	Α	51	5.7	1	1.11	35	4.1	0	0.05
часть Тихого океана										
Корякия и Берингово море	6	Α	9	1.0	<1	5.49	7	0.8	0	< 0.01
Всего в регионе			889	99.5	34	81.44	855	100	30	74.42

Таблица 4. Распределение числа землетрясений с *К*_S≥8.6 и выделенной энергии по зонам в 2004 г. в сопоставлении с их средними оценками за 1962–2003 гг.

Примечания. 1 – буквами А, В, С_S обозначены слои: поверхностный (0≤ *h* ≤70 км), промежуточный (70 <*h*≤ 350 км) и глубокий (*h* >350 км) соответственно. Более подробно информация о делении Камчатки на зоны представлена в работах [4, 14].

2 – в таблице приведены средние значения энергии и числа землетрясений только для тех зон и слоев, в которых в 2004 г. было зарегистрировано хотя бы одно землетрясение с $K_S \ge 8.6$. В зонах №№3, 7–9, имеющих среднегодовые значения $N(K_S \ge 8.6) < 1$ и $\Sigma E \le 10^{12} \ Дж$, в 2004 г. землетрясений с $K_S \ge 8.6$ не наблюдалось.

Рис. 5. Карта эпицентров землетрясений Камчатской сейсмофокальной зоны за 2004 г.

1–4 – эпицентры сильных ($K_S \ge 11.6$) землетрясений и типы подвижки (1 – сбросо-сдвиг; 2 – сдвиг; 3 – взбрососдвиг; 4 – механизм очага не определен); 5 – диаграмма механизма очага (числа около диаграмм механизмов обозначают номер землетрясения по каталогу [8]); 6 – изобаты 6000 и 7000 *м*. Маленькими кружками показаны эпицентры всех землетрясений зоны.

На врезке приведены эпицентры и диаграммы механизмов очагов землетрясений из района, обозначенного квадратом на основной карте.

В поверхностной части сейсмофокальной зоны (№ 1) выделены два значительных роя землетрясений с главными толчками (13) и (27); шесть небольших роев с главными толчками (9, 11, 22, 29, 32, 35); девять одиночных сильных землетрясений (1, 4–6, 8, 10, 12, 21, 30) [8]. Сведения о группируемости предоставлены сотрудником КФ ГС РАН Н.М. Кравченко.

Самый заметный рой землетрясений возник в Камчатском заливе (рис. 2). Активизация этой области началась в апреле. Самое сильное (K_S =13.4, Mw=6.1) событие (13) роя зарегистрировано 14 апреля в 01^h54^m с *h*=48 км. Толчки различной величины продолжались в этом районе до конца 2004 г. Всего в этом рое зарегистрировано 269 землетрясений с K_s=5.7-13.4, из которых 95 имели *K*_S≥8.6. Наиболее сильные (*K*_S≥11.6) землетрясения сгруппировались в два коротких временных интервала: 14 апреля произошло главное землетрясение (13), а 26 июня южнее него на 10 км – 61 землетрясение с $K_{s} \ge 8.6$ (рис. 3 а, [8]), из которых землетрясения (16–20) – с $K_{\rm S}$ =11.6–12.4 (см. врезку рис. 2 а, рис. 5). Эпицентральную зону роя можно оконтурить эллипсом (с осями 85х35 км), ориентированным в восток-северо-восточном направлении. Гипоцентры располагались на глубинах 0-60 км. Суммарная сейсмическая энергия, выделившаяся в рое, составила 3.2·10¹³ Дж. Тип подвижки в очаге удалось определить только для главного события (13): взбросы по обеим нодальным плоскостям с правосторонним сдвигом по плоскости *NP1* и левосторонним – по *NP2*. Одна из возможных плоскостей разрыва круто падает в северозападном направлении, другая простирается в субширотном. Ось напряжения сжатия близгоризонтальна (рис. 5). Землетрясение (13) ощущалось с интенсивностью до 4 баллов на побережье Камчатки в следующих населенных пунктах: Мыс Африка (Δ =114 км), Усть-Камчатск (122 км), Крутоберегово (124 км), Ключи (185 км), Никольское (192 км).

Помимо этого в Камчатском заливе произошло еще три сильных землетрясения (1, 9, 30). Они реализовались последовательно 4 января в $13^{h}29^{m}$ с $K_{s}=11.6$ на глубине $h=40 \ \kappa m$, 25 февраля в $08^{h}56^{m}$ с $K_{s}=12.3$, $h=29 \ \kappa m$, и 23 сентября в $07^{h}20^{m}$ с $K_{s}=11.7$, $h=39 \ \kappa m$ (рис. 2 а, 5). В очаге события (9) обе нодальные плоскости имеют крутое падение, одна из возможных плоскостей разрыва простирается в субмеридиональном направлении, другая – в субширотном. Тип движения – сдвиг с элементами сброса.

Заслуживает внимание также рой <u>в Авачинском заливе</u>, произошедший 4 августа. За один день здесь, на площадке размером 15х20 *км*, зарегистрировано шесть сильных землетрясений (23–28) с *Мw* до 5.6. Суммарная энергия роя составила 2.5·10¹³ Дж. Землетрясения возникли под действием превалирующих напряжений сжатия. Самое сильное (K_S =13.0, *Mw*=5.6) землетрясение (27) в рое произошло 4 августа в 21^h15^m с *h*=12 *км* и ощущалось в Петропавловске-Камчатском с интенсивностью *I*=3–4 балла. Обе возможные плоскости разрыва простираются в субмеридиональном направлении, ось напряжения сжатия близгоризонтальна и близширотна. Взброс осложнен сдвиговой компонентой по обеим нодальных плоскостей произошел взброс с существенной сдвиговой компонентой, по другой – сдвиг с элементами взброса. Оси напряжения сжатия близгоризонтальны, направлены на юго-восток. Движение в очаге (23) происходило под действием близких по величине напряжений сжатия и растяжения. Тип подвижки – сдвиг по обеим нодальным плоскостям, ось напряжения сжатия также направлена на юго-восток. В очаге землетрясения (28) сдвиговая подвижка по обеим плоскостям разрыва сочетается с элементами взброса.

На западном склоне Курило-Камчатского глубоководного желоба в южной части Авачинского залива 3 марта в $00^{h}20^{m}$ было зарегистрировано землетрясение (10) с K_{s} =11.6, Mw=4.8, h=18 км. Обе нодальные плоскости в его очаге круто падают в субмеридиональном направлении. По одной из плоскостей произошел взброс с компонентой правостороннего сдвига, по другой – левосторонний сдвиг с элементами взброса. Ось напряжения сжатия близгоризонтальна, направлена на восток. Немного южнее 27 июня в $01^{h}29^{m}$ произошло событие (21) с K_{s} =11.7 на глубине h=40 км.

Небольшой рой землетрясений был зарегистрирован <u>в Кроноцком заливе</u> (рис. 2, 4). Главное событие (11) реализовалось 20 марта в $08^{h}53^{m}$ с K_{S} =13.0, Mw=5.6, h=12 км. Согласно решению механизма очага [11], произошел сдвиг с элементами взброса по нодальной плоскости, простирающейся на север, по другой – взброс с правосторонним сдвигом. Землетрясение (32), отмеченное 16 ноября в $11^{h}57^{m}$ напротив п-ова Шипунский с K_{S} =12.6, Mw=5.4 и h=31 км, имеет аналогичную подвижку в очаге: сдвиг с элементами взброса по нодальной плоскости юговосточного простирания, взброс с элементами левостороннего сдвига – по другой плоскости.

Южнее <u>Авачинского залива</u> у берега Камчатского п-ова 31 января в $14^{h}26^{m}$ зарегистрировано одиночное землетрясение (6) с $K_{5}=11.8$, Mw=4.8 и h=40 км. Обе нодальные плоскости в его очаге простираются в северо-восточном направлении. По NP1 произошел взброс с компонентой левостороннего сдвига, по NP2 – правосторонний сдвиг с элементами взброса.

Как всегда, сейсмически активной была часть фокальной зоны, находящаяся между островами Северных Курил и Курило-Камчатским глубоководным желобом, где были зафиксированы семь (4, 5, 8, 12, 22, 29, 35) сильных (K_s =11.6–13.3) землетрясений. Механизм очага определен только для (4) и (29). На западном склоне желоба 30 августа в 12^h23^m зарегистрировано землетрясение (29) с K_s =13.3, Mw=5.4, h=40 км. Обе возможные плоскости разрыва имеют северо-северо-западное простирание, вкрест геолого-тектонических структур желоба. Тип подвижки в очаге – взбросо-сдвиг. Подвижка в очаге землетрясения (4), локализованного 23 января в 17^h03^m, с K_s =12.1, h=34 км – взбросо-сдвиг. Обе нодальные плоскости круто падают в субмеридиональном направлении, по обеим произошел сдвиг с компонентой взброса. Ось напряжения сжатия близгоризонтальна, направлена на запад.

Характер подвижки в землетрясениях поверхностного слоя достаточно однороден и представляет собой взброс с элементами правостороннего сдвига по плоскости, ориентированной вдоль сейсмофокольной зоны.

В промежуточном слое зоны (№ 1) зафиксировано 171 землетрясение, или 20% всех событий. Среди них 10 июня в $15^{h}19^{m}$ зарегистрировано самое сильное (K_{s} =14.8, Mw=6.8) событие года (15) на глубине h=208 км, названное Тумрокское-II (его эпицентр находится на расстоянии 40 км северо-западнее от Тумрокского-I, 2003 г. [14]). Землетрясение (15) сопровождалось серией афтершоков и ощущалось на территории Камчатки с интенсивностью до 6 баллов [8]. Оно возникло под действием растягивающих напряжений, действующих в восточном направлении [11]. Тип подвижки в его очаге – сбросо-сдвиг (так же как и в очаге Тумрокского-I землетрясения в 2003 г. [14]).

В глубоком слое зоны (№ 1) отмечено лишь 19 землетрясений, или 2.2% всех событий. Сильных землетрясений, находящихся в пределах зоны ответственности сети Камчатского филиала в 2004 г., зафиксировано не было.

В Командорском сегменте Алеутской дуги (№ 4) в 2004 г. произошло 94 землетрясения с $K_S \ge 8.6: 93 - в$ поверхностном слое и 1 – в промежуточном. Два события (2, 31) в поверхностном слое Командорского сегмента Алеутской дуги имели $K_S \ge 11.6$ (рис. 6). Событие (2) с $K_S = 12.4, Mw = 5.4$, зарегистрированное 11 января в $19^{h}31^{m}$ на глубине $h = 36 \ \kappa m$, является одним из афтершоков Командорского землетрясения 05.12.2003 г. с $K_S = 14.8, Mw = 6.6$ [15], локализованного к северо-западу от о-ва Беринга. Афтершок 2004 г. (2), как и главный толчок Командорского землетрясения 2003 г. [15], имеет взбросо-сдвиговую подвижку в очаге. По плоскости NP1, простирающейся с запада на восток, наблюдается правосторонний сдвиг с элементами взброса, по NP2 – левосторонний сдвиг с элементами взброса. Ось напряжения сжатия близгоризонтальна, направлена на запад.

Рис. 6. Карта эпицентров землетрясений всех зон Камчатки и прилегающих территорий, кроме зоны, представленной на рис. 5.

Статистика землетрясений в остальных зонах представлена следующим образом. В зоне № 2 (Континентальная часть п-ва Камчатки) зарегистрировано 8 землетрясений, в зоне № 6 (Корякия и западная часть Берингова моря) – 7, в зоне № 5 (Северо-западная часть Тихоокеанской плиты) – 35. Сильных землетрясений в этих зонах не было. В остальных зонах (№№ 3, 7–9) землетрясений с $K_{S} \ge 8.6$ отмечено не было.

За пределами границ ответственности сети КФ ГС РАН обработаны восемь землетрясений (3, 7, 14, 33, 34, 36, 37, 38) с $K_{\rm S} \ge 11.6$. Механизмы очага определены для всех событий (рис. 6), кроме (33).

Сильные движения записаны в 2004 г. для семи землетрясений (табл. 5). Приводятся материалы регистрации колебаний грунта трехкомпонентным акселерографическим каналом LG широкополосной цифровой сейсмической станции «Петропавловск». Используются форсбалансные (FBA) акселерографы с обратной связью с собственной частотой 46 Γu и затуханием D=0.77. Частота опроса равна 80 *отсчет/с.* Записи получены от ощутимых камчатских землетрясений с

Mw=5.2-6.8. В табл. 5 даны зарегистрированные максимальные ускорения и скорости грунта, корректированные за АЧХ прибора. На рис. 7 показаны корректированные за прибор акселерограммы землетрясений (11) с Mw=5.5 и (15) с Mw=6.8, произошедших 20 марта в $08^{h}53^{m}$ и 10 июня в $15^{h}19^{m}$, и их спектры Фурье. Спектры Фурье полной записи в основном отражают спектр энергии S-волн. Спектр события (11) заметно смещен в сторону высоких частот относительно ожидаемого при магнитуде 5.5, указывая на необычно короткий очаговый процесс. Форма спектра события (15) примерно соответствует ожидаемой при магнитуде 6.8 и гипоцентральном расстоянии около 350 км.

Условные обозначения те же, что на рис. 5; линиями обозначены границы зон сейсмической активности

N⁰	Дата	t_0 .	Эпиг	центр	h,	Δ,	K_S	Ι,	Mw	Состав-	υ _{max} ,	$a_{\rm max}$,
	д м	ч мин с	φ°, N	λ°, Ε	КМ	КМ		балл		ляющая	см/с	см/с²
1	20.03.	08 53 14.8	53.74	160.76	40	162	13.0	4–5	5.5	Е	0.42	8.81
										Ν	0.31	4.89
										Z	0.11	2.68
2	14.04.	01 54 8.4	55.16	162.97	48	369	13.4	2-3	6.1	Е	0.053	0.48
										Ν	0.042	0.41
										Z	_	_
3	10.06.	15 19 54.9	55.68	160.25	208	314	14.8	3–4	6.8	Е	0.27	1.79
										Ν	0.28	1.28
										Z	0.21	0.87
4	04.08.	09 48 28.0	52.09	159.97	16	140	12.7	2-3	5.2	Е	0.031	0.60
										Ν	0.042	0.68
										Z	0.029	0.32
5	04.08.	11 03 30.1	52.18	159.90	11	140	12.9	3–4	5.4	Е	0.051	0.71
										Ν	0.079	0.82
										Z	0.052	0.41
6	04.08.	21 15 11.6	52.13	159.89	12	129	13.0	3–4	5.6	Е	0.048	0.86
										Ν	0.061	1.01
										Z	0.029	0.44
7	16.11.	11 57 26.3	53.00	160.44	31	119	12.6	3–4	5.4	Е	0.081	1.90
										Ν	0.069	1.39
										Z	0.049	0.90

Таблица 5. Максимальные «истинные» скорости и ускорения грунта по записям землетрясений за 2004 г. на станции «Петропавловск»

Рис. 7. Записи землетрясений 20 марта (11) и 10 июня (15) 2004 г. широкополосной сейсмической станцией «Петропавловск» (вверху) и их спектры Фурье (внизу)

Авторы выражают глубокую благодарность Раисе Степановне Михайловой за ценные замечания и тщательное редактирование статьи.

Литература

- 1. Чебров В.Н., Воропаев В.Ф., Дрознин Д.В., Сергеев В.А., Шевченко Ю.В. Развитие сети цифровых сейсмических станций Камчатки // Геофизический мониторинг Камчатки. Материалы научнотехнической конференции, 17–18 января 2006 г., г. Петропавловск-Камчатский. – Петропавловск-Камчатский: КФ ГС РАН, 2006. – С. 13–20.
- 2. Левина В.И., Иванова Е.И., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 213–222.
- 3. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва–Обнинск: ГС РАН, 2001. 86 с.
- 4. Левина В.И., Иванова Е.И., Ландер А.В., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2002 г. Обнинск: ГС РАН, 2008. С. 215–225.
- 5. Федотов С.А., Зобин В.М., Гордеев Е.И., Иванова Е.И., Лепская Т.С., Митякин В.П., Синельникова Л.Г., Чиркова В.Н. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1985 году. – М.: Наука, 1988. – С. 155–169.
- 6. Гусев А.А. Определение гипоцентров близких землетрясений Камчатки на ЭВМ // Вулканология и сейсмология. 1979. № 1. С. 74–81.
- 7. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. – М.: Наука, 1972. – 117 с.
- 8. Левина В.И., Лепская Т.С. (отв. сост.), Антипова О.Г., Бахтиарова Г.М., Карпенко Е.А., Кривогорницына Т.М., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Раевская А.А., Шевченко Н.А. Каталог землетрясений Камчатки и Командорских островов за 2004 год. (См. Приложение к наст. сб. на CD).
- 9. Левина В.И., Гусев А.А., Павлов В.М., Иванова Е.И., Левин В.Е., Рябинин Г.В., Хаткевич Ю.М., Гусева Е.М., Салтыков В.А., Зобин В.М. Кроноцкое землетрясение 5 декабря 1997 года с *Mw*=7.8, *I*₀=8 (Камчатка) // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 250–271.
- 10. Левина В.И., Митюшкина С.В., Чеброва А.Ю., Иванова Е.И. Тумрокское-I землетрясение 16 июня 2003 года с *Mw*=6.9, *I*₀=6 и Тумрокское-II землетрясение 10 июня 2004 года с *Mw*=6.8, *I*₀=5-6 (Камчатка). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 11. **Иванова Е.И. (отв. сост.).** Каталог механизмов очагов землетрясений Камчатки и Командорских островов за 2004 год. (См. Приложение к наст. сб. на CD).
- 12. Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (отчет за 01.01.2003–31.12.2003). Петропавловск-Камчатский: Фонды КФ ГС РАН, 2004. 350 с.
- Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (отчет за 01.01.2005–31.12.2005). – Петропавловск-Камчатский: Фонды КФ ГС РАН, 2006. – 478 с.
- 14. Левина В.И., Иванова Е.И., Ландер А.В., Чеброва А.Ю., Гусев А.А., Гусева Е.М. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2003 год. – Обнинск: ГС РАН, 2009. – С. 181–182.
- 15. Левина В.И., Чеброва А.Ю., Ландер А.В., Иванова Е.И., Митюшкина С.В., Титков Н.Н. Командорское-II землетрясение 5 декабря 2003 года с *MS*=6.8, *I*₀=7 (Командорские острова) // Землетрясения Северной Евразии, 2003 год. – Обнинск: ГС РАН, 2009. – С. 374–381.