<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348.436

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ <u>А.И. Захарова</u>, Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Для 14 землетрясений земного шара, удаленных от станции «Обнинск» на расстояние Δ =30–70° (рис. 1), исследованы основные (табл. 1) и динамические (табл. 2, 3) параметры очагов.

N⁰	Дата,	Вариант	$t_0,$	Г	ипоцент	р		Магн	итуды		Район
	д м		ч мин с	φ°	λ°	<i>h</i> ,	Mw/n	MPSP/n,	MPLP/n	MS/n	
						км		$m_{\rm b}$		Ms/n	
1	2	3	4	5	6	7	8	9	10	11	12
1	15.03	Ι	19 41 29.3	52.28	160.36	33f	6.3/1	5.6/47		5.8/59	У восточного по-
		II	19 41 30.0	52.23	160.35	41		5.6/248		6.0/160	бережья Камчатки
		III	19 41 28.7	52.25	160.39	30	6.0				
2	17.03	Ι	16 36 17.6	51.35	177.86	33f	7.1/1	6.2/44	6.9/12	7.1/39	Крысьи острова
		II	16 36 17.3	51.24	177.92	32		6.0/323		6.9/127	
		III	16 36 26.7	51.33	177.58	27	7.0/79				
3	24.04	Ι	10 56 22.7	48.82	154.93	52	6.4/1	5.7/70	6.2/4	5.8/52	Курильские острова
		II	10 56 21.8	48.75	154.98	41		5.5/232		5.7/184	
		III	10 56 21.9	48.76	154.99	44	6.1				
4	26.05	Ι	09 24 32.7	39.04	141.45	58	7.2/1	7.0/68	7.4/7	6.9/40	Остров Хонсю
		II	09 24 33.9	38.87	141.53	71		6.5/324			
		III	09 24 33.4	38.85	141.57	68	7.0				
5	23.06	Ι	12 12 363	51.54	176.69	33f	7.1/1	6.5/70	7.2/11	7.1/39	Крысьи острова
		II	12 12 31.5	51.45	176.71	1		6.4/332		7.0/152	
		III	12 12 34.5	51.55	176.60	29	6.9/80				
6	15.07	Ι	20 27 50.3	-2.59	68.31	10f	7.0/1	6.1/26	6.8/10	7.2/41	Хребет Карлсберга
		II	20 27 50.7	-2.64	68.36	10f		5.8/233		7.5/133	
		III	20 27 50.5	-1.42	69.47	15f	7.5/75				
7	27.07	Ι	06 25 31.1	47.12	139.24	462		6.5/60		5.8/11	Восточное побережье
		II	06 25 31.8	47.11	139.22	468		6.3/303			Восточной России
		III	06 25 32.0	46.99	139.23	477	6.7/66				
8	25.09	Ι	19 50 08.7	42.07	143.81	35	8.1/1	6.7/45	7.5/6	8.3/24	Район Хоккайдо
		II	19 50 07.3	41.75	143.87	33f		6.8/310		8.1/166	
		III	19 50 06.4	42.21	143.84	28	8.3/78				
9	27.09	Ι	11 33 26.5	50.01	87.74	24	6.9/1	6.6/55	7.0/7	7.3/33	Центральная Россия
		II	11 33 25.1	50.01	87.78	16		6.5/329		7.4/156	
		III	11 33 25.1	50.02	87.86	15f	7.3/79				
10	27.09	Ι	18 52 47.1	50.06	87.79	10f	6.2/1	6.2/66	6.7/6	6.6/45	Центральная Россия
		II	18 52 46.1	50.09	87.76	4		6.0/283		6.6/155	
		III	18 52 47.0	50.09	87.75	15f	6.4/78				
11	01.10	Ι	01 03 25.0	50.13	87.70	10f	6.3/1	6.5/43	6.710	6.9/49	Центральная Россия
		II	01 03 26.3	50.16	87.71	18		6.3/329		7.0/166	
		III	01 03 25.2	50.24	87.59	15f	6.6/76				

Таблица 1. Сведения о рассмотренных землетрясениях 2003 г.

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ <u>А.И. Захарова</u>, Л.С. Чепкунас, Л.С. Малянова

N⁰	Дата,	Вариант	$t_0,$	Гі	ипоцент	р		Магн	итуды	Район	
	дм		ч мин с	φ°	λ°	<i>h</i> ,	Mw/n	MPSP/n,	MPLP/n	MS/n	
						км		$m_{\rm b}$		Ms/n	
1	2	3	4	5	6	7	8	9	10	11	12
12	17.11	Ι	06 43 07.7	51.29	178.64	38	7.7/1	6.4/45	7.5/7	7.5/27	Крысьи острова
		II	06 43 06.0	51.10	178.64	27		6.1/286		7.3/127	
		III	06 43 06.8	51.14	177.86	22	7.8/76				
13	05.12	Ι	21 26 11.5	55.54	165.69	25	6.7/1	6.3/60	6.9/10	6.8/49	Район Командорских
		II	21 26 09.8	55.59	165.76	10		6.0/311		6.6/148	островов
		III	21 26 09.5	55.68	165.53	18	6.6/75				
14	10.12	Ι	04 38 15.6	23.12	121.29	33f	6.9/1	6.3/64	6.8/10	7.0/38	Тайвань
		II	04 38 14.8	23.10	121.38	28		6.0/239		6.8/158	
		III	04 38 11.6	22.94	121.43	25	6.8/71				

Примечание. В графе 3 вариант I дан по [1], II, III – по [2]; в графе 7 символом f отмечены фиксированные глубины по [1–3].

Рис. 1. Карта эпицентров землетрясений за 2003 г., для которых построены спектры по цифровым сейсмограммам станции «Обнинск»

В табл. 1 очаги тринадцати землетрясений (1–6, 8–14) расположены в земной коре, одного – в мантии на глубине 462 км. Восемь из них имеют *MS*, *MPLP*, *MPSP*≥7.0 [1] в различных регионах мира на расстоянии Δ =30–70° от станции «Обнинск». Выбор Δ связан с методикой расчета спектров *P*-волн [4, 5]. Шесть землетрясений имеют *MS*, *MPLP*, *MPSP*<7.0, из них четыре с *MS*=5.8–6.8 являются ощутимыми землетрясениями Курило-Камчатского региона, Приморья и Командорских островов: землетрясение 15 марта в 19^h41^m с *MS*=5.8 ощущалось в Петропавловске-Камчатском с *I*=3 балла, 24 апреля в 10^h56^m с *MS*=5.8 – в Северо-Курильске с *I*=3 балла, 27 июля в 06^h25^m с *MS*=5.8 и *h*=462 км – в Невельске, Аниве, Южно-Сахалинске, Луговом с *I*=2 балла, 5 декабря в 21^h26^m – в Петропавловске-Камчатском с I=2 балла. Два землетрясения с *MS*=6.6–6.9 – 27 сентября в 18^h52^m и 1 октября в 01^h03^m – сильнейшие афтершоки разрушительного землетрясения 27 сентября в 11^h33^m с *MS*=7.3 [6].

Основные параметры очагов землетрясений (время возникновения t_0 , координаты гипоцентра φ , λ , h, магнитуды) даны в табл. 1 из двух бюллетеней в трех вариантах: I – Сейсмологического бюллетеня ГС РАН (MOS) [1]; II – бюллетеня Международного сейсмологического центра (ISC) [2]. Параметры землетрясений варианта III определены в Гарвардском центре США [2, HRVD] по методу тензора момента центроида (ТМЦ) [7], использующего при расчетах волновые формы всей сейсмограммы. Значения гипоцентров в I и II получены по временам первых вступлений *P*-волн на основе одного и того же годографа Джеффриса–Буллена [8], но по разным системам наблюдений. Различия значений t_0 , φ , λ , *h* по варианту III от I и II связаны с тем, что решения по I и II локализуют начальную фазу процесса в очаге, а III – максимальную. Параметры t_0 , φ , λ , *h* по I и II в большинстве случаев различаются в пределах погрешности их определений.

В варианте I представлены магнитуды *MPSP*, *MPLP* по продольным волнам и MS – по поверхностным. Кроме того, здесь приведены моментные магнитуды Mw, рассчитанные на основе величины сейсмического момента M_0 (табл. 3), определенного по цифровым сейсмограммам станции «Обнинск». Расчет Mw выполнен по формуле Х. Канамори [9]:

$$Mw = \frac{2}{3} \lg M_0 - 10.7$$

для сейсмического момента в единицах « $duha \cdot cm$ ». В варианте II даны магнитуды m_b по продольным волнам и M_s – по поверхностным; в III – моментные магнитуды Mw, полученные по методу ТМЦ.

Относительно магнитуд m_b и *MPSP* следует отметить, что для двенадцати землетрясений значения $m_b < MPSP$, для одного – $m_b > MPSP$, для одного – $m_b = MPSP$. Разница этих значений объясняется методикой их расчета: для m_b выбирается интервал записи *P*-волн в пределах 5 *c* от вступления, для MPSP – до 40–60 *c* [10]. Максимальное различие магнитуд MPSP и m_b составляет 0.5 единицы магнитуды для землетрясения (4). Различия магнитуд MS(MOS) и M_s (ISC) по поверхностным волнам заключены в интервале 0.1–0.2 единицы магнитуды. Максимальная разница в 0.3 единицы получена только для землетрясения (6), что, возможно, связано с разной выборкой данных для расчета. Сравнение магнитуд Mw(MOS) и Mw(HRVD) показывает, что для землетрясений (6, 8–12) – Mw(MOS)<Mw(HRVD), для землетрясений (1–5, 13, 14) – Mw(MOS)>Mw(HRVD). При этом наибольшие различия Mw(MOS)<Mw(HRVD на 0.4–0.5 единицы Mw отмечены для землетрясений (6, 8, 9). Вероятно, это связано с тем, что Mw(MOS) определены по одному типу волн и лишь на одной станции, в то время как при расчете Mw(HRVD) рассматривалась вся сейсмограмма и на многих станциях. Для землетрясения (1) спектры *P*-волн на станции «Обнинск» не рассчитывались, т.к. Δ >100°.

Параметры механизма очагов, определенные по знакам первых вступлений *P*-волн на ряде сейсмических станций для модели двойной пары сил по программе А.С. Ландера и Ж.Я. Аптекман приведены в табл. 2 для землетрясений (1, 2, 4, 5, 7–13) из [1, 11]. Эта программа написана для персонального компьютера и представляет собой удобную для пользователя версию программы [12]. Для землетрясений 1–3, 4–5, 7–13 даны второй строкой решения по ТМЦ [2].

N⁰	Дата,	t_0 ,	h,	М	агни	туды	Oc	и гла	вных	к напј	эяже	ний	Нодальные плоскости						Источ-
	д м	ч мин с	км	Mw	MS	MPSP		Т		N		P		NP1			NP2		
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	15.03	19 41 29.3	33	6.3	5.8	5.6	50	297	9	39	38	136	274	11	146	38	84	81	[1]
							65	309	2	44	25	135	229	21	96	43	70	88	[2]
2	17.03	16 36 17.6	33	7.1	7.1	6.2	64	319	4	56	26	148	246	20	101	55	71	86	[1]
							57	308	16	64	28	163	289	22	137	60	75	73	[2]
3	24.04	10 56 22.7	52	6.4	5.8	5.7	75	306	1	213	15	123	211	30	88	33	60	91	[2]
4	26.05	09 24 32.7	58	7.2	6.9	7.0	64	126	5	27	26	294	13	20	76	208	71	95	[1]
							62	113	6	11	27	277	352	19	70	193	72	97	[2]
5	23.06	12 12 36.3	33	7.1	7.1	6.5	48	308	18	59	36	163	309	19	161	57	84	72	[1]
							55	306	20	68	27	169	298	25	142	62	75	69	[2]
7	27.07	06 25 31.1	462		5.8	6.5	58	25	29	180	11	276	38	42	137	163	62	56	[1]
							44	36	40	180	19	287	61	44	158	167	75	48	[2]
8	25.09	19 50 08.7	35	7.9	8.3	6.7	64	306	5	207	26	114	193	20	76	28	71	95	[1]
							53	289	7	29	36	124	250	11	132	28	82	83	[2]

Таблица 2. Параметры механизмов очагов для землетрясений 2003 г. из табл. 1

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ А.И. Захарова, Л.С. Чепкунас, Л.С. Малянова

			_	r			_						1						
№	Дата,	$t_0,$	h,	М	агни	туды	Оси главных напряжений							Нодальные плоскости					
	дм	ч мин с	км	Mw	MS	MPSP		Т		Ν		Р		NP1		NP2		2	ник
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
9	27.09	11 33 26.5	24	6.9	7.3	6.6	11	257	78	90	3	347	33	80	6	302	84	170	[1]
							28	89	62	272	1	180	228	70	20	131	71	158	[2]
10	27.09	18 52 47.1	10	6.2	6.6	6.2	12	90	78	270	0	180	226	82	8	134	82	172	[1]
							33	78	57	256	1	347	117	67	156	217	68	25	[2]
11	01.10	01 03 25.0	10	6.3	6.9	6.5	10	98	74	225	13	5	142	74	-178	51	88	-16	[1]
							20	83	67	297	12	177	221	67	5	129	85	157	[2]
12	17.11	06 43 07.7	38	7.7	7.5	6.4	64	343	5	243	26	151	230	20	76	65	71	95	[1]
							60	323	10	70	28	165	280	19	122	67	74	80	[2]
13	05.12	21 26 11.5	25	6.7	6.8	6.3	55	72	24	202	23	303	71	30	144	194	72	65	[1]
							47	65	43	233	6	328	94	54	147	206	64	41	[2]

Ниже дано краткое описание механизмов очагов некоторых землетрясений из табл. 2 и показанных на рис. 2.

Рис. 2. Стереограммы механизмов очагов землетрясений 2003 г. в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернены области волн сжатия.

Землетрясения (1, 3, 13), произошедшие в Курило-Камчатской зоне, имеют механизм очага, типичный [13, 14] для этого района. Решения по MOS и HRVD близки. Землетрясения возникли под действием явного преобладания напряжений сжатия, ориентированного с юговостока на северо-запад. Во всех решениях присутствуют плоскости северо-восточного простирания, совпадающие с ориентацией Курильской гряды. Тип движения по вертикально падающим плоскостям – взброс, по пологим – надвиг с компонентами правостороннего сдвига для (1) и правосторонний сдвиг с компонентами взброса для (13).

Землетрясения (2, 5, 12) произошли в районе Крысьих островов. Решения близки как между собой, так и в пределах каждого по MOS и HRVD. Землетрясения произошли под действием сжимающих напряжений юго-восточного направления. По крутопадающим плоскостям северо-восточного простирания в движении преобладают взбросы с компонентами левостороннего сдвига. По пологим плоскостям западно-северо-западного простирания движение представлено правосторонним сдвигом с компонентами надвига. Землетрясение (4) в районе о. Хонсю 26 мая в $09^{h}24^{m}$ с MS=6.9, Mw=7.2 имеет близкие решения по MOS и HRVD. Здесь превалируют сжимающие напряжения, обе нодальные плоскости ориентированы близмеридионально. В движении по вертикальной плоскости произошла подвижка типа взброс с компонентами правостороннего сдвига, по пологой – надвиг с компонентами левостороннего сдвига.

Решения механизма очага глубокофокусного землетрясения (7) с MPSP=6.5, произошедшего 27 июля в $06^{h}25^{m}$ в Приморье (Россия), по данным MOS и HRVD близки. Движение в их очагах произошло под действием напряжений сжатия, ориентированных на запад. Тип подвижки по крутозалегающим плоскостям NP2 близмеридионального простирания – взбросы с компонентами левостороннего сдвига, по пологим NP1 северо-восточного простирания – правосторонние сдвиги с компонентами взброса.

Подобные решения механизма очага по MOS и HRVD получены для землетрясения (8), зарегистрированного 25 сентября в $19^{h}50^{m}$ с MS=8.3. Движение в его очаге произошло под превалирующим действием сжимающих напряжений. Подвижка в очаге представлена взбросом по вертикальной плоскости северо-восточного простирания и надвигом с компонентами правостороннего сдвига в случае MOS и левостороннего в случае HRVD. По пологой плоскости отмечается надвиг с компонентами левостороннего сдвига в случае MOS и правостороннего в случае

Землетрясение (9)(27 сентября в 11^h33^m с *MS*=7.3, Центральная Россия), а (10, 12) – два его сильнейших афтершока [6] имеют близкие решения механизмов очагов как по MOS, так и по HRVD. Землетрясения произошли под действием напряжений сжатия, ориентированных на север–юг. Обе нодальные плоскости залегают достаточно круто и простираются в двух направлениях: с северо-востока на юго-запад и с северо-запада на юго-восток.

Механизмы очагов землетрясений (7, 8) рассмотрены в статье [15] наст. сб.

Динамические параметры очагов землетрясений, приведенных в табл. 3, рассчитаны по спектрам продольных волн, зарегистрированных цифровой аппаратурой STS-1 на телесейсмических расстояниях $\Delta \leq 100^{\circ}$ для коровых землетрясений (1–6, 8–14) по записям одной станции – «Обнинск» (OBN). Интервал эпицентральных расстояний для рассматриваемых землетрясений оказался равным $\Delta=31-69^{\circ}$. Станционные спектры, приведенные к очагу, показаны на рис. 3. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота f_{Π} точки перелома спектра, частота угловой точки f_0 . Далее рассчитывались динамические параметры: сейсмический момент M_0 сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах [16]. Для получения значений L, U, $\Delta \sigma$ использовалась дислокационная модель Брюна [17], которая нашла широкое применение в сейсмологической практике.

N⁰	Дата,	$t_0,$	Mw	MS	Δ°	$\Omega_{0},$	$f_{n},$ $10^{-2} \Gamma_{u}$	$f_0,$ $10^{-2} \Gamma u$	$M_{0},$	$L, 10^3 m$	$\Delta \sigma$, 10 ⁵ H/v^2	ησ,	u,
	Ом	ч мин с				10 м.С	10 <i>I ų</i>	10 <i>I</i> ų	10 п:м	10 м	10 П/М	$10^{\circ} H/M^2$	м
1	15.03	19 41 29.3	6.3	5.8	63.3	0.08	18.2	22.9	0.3	22	10	4	0.22
2	17.03	16 36 17.6	7.1	7.1	69.1	1.26	3.6	10.0	5.5	49	16	18	0.83
3	24.04	10 56 22.7	6.4	5.8	64.3	0.07	2.2	13.2	0.5	44	2	5	0.04
4	26.05	09 24 32.7	7.2	6.9	66.3	0.91	5.2	20.0	7.2	29	103	16	1.36
5	23.06	12 12 36.3	7.1	7.1	68.7	1.32	4.0	14.1	5.6	35	45	18	1.66
6	15.07	20 27 50.3	7.0	7.2	63.2	1.00	5.6	12.6	3.9	39	23	36	0.93
8	25.09	19 50 08.7	8.1	8.3	65.2	23.4	3.2	5.5	170	90	45	66	4.22
9	27.09	11 33 26.5	6.9	7.3	30.9	1.00	7.6	21.4	2.2	24	56	89	1.39
10	27.09	18 52 47.1	6.2	6.6	30.9	0.10	20.0	55.0	0.2	9	96	88	0.90
11	01.10	01 03 25.0	6.3	6.9	30.9	0.16	28.8	56.2	0.4	9	192	123	1.80
12	17.11	06 43 07.7	7.7	7.5	69.4	5.01	2.4	7.9	41.0	62	60	22	1.70
13	05.12	21 26 11.5	6.7	6.8	62.1	0.32	17.0	18.6	1.2	26	24	29	0.65
14	10.12	04 28 15.6	6.9	7.0	68.5	0.58	6.3	15.1	2.5	32	27	28	0.89

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений 2003 г. по записям цифровой аппаратуры STS-1 на станции «Обнинск»

Рис. 3. Очаговые спектры Р-волн землетрясений 2003 г., записанных на станции «Обнинск»

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2003 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2003–2004.
- 2. Bulletin of the International Seismological Centre for 2003. Berkshire: ISC, 2005-2006.
- 3. Шаторная Н.В. (отв. сост.), Бабкина В.Ф., Аторина М.А., Рыжикова М.И., Щербакова А.И. Каталог землетрясений Земли за 2003 год. (См. Приложение к наст. сб. на CD).

- 4. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 5. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 6. Старовойт О.Е., Чепкунас Л.С., Габсатарова И.П. Параметры Алтайского землетрясения 2003 г. и его афтершоков по телесейсмическим данным // Сильное землетрясение на Алтае 27 сентября 2003 г. (материалы предварительного изучения). – М.: ИФЗ РАН, 2004. – С. 14–24.
- 7. Dzievonski A., Chou T. and Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. 86. № B4. P. 2825–2852.
- Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 9. Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. № 135. P. 2348–2350.
- 10. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях ЕССН СССР. М.: Наука, 1982. 272 с.
- 11. Малянова Л.С., Чепкунас Л.С. (отв. сост.). Каталог механизмов очагов 12-ти землетрясений Земного шара (по методу первых вступлений *P*-волн) за 2003 год. (См. Приложение к наст. сб. на CD).
- 12. Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я., Бармин М.П. Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. М.: Наука, 1983. С. 86–91.
- 13. Захарова А.И., Чепкунас Л.С. Очаговые параметры сильных землетрясений мира // Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 129–133.
- Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2002 г. – Обнинск: ГС РАН, 2008. – С. 274–282.
- 15. Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 16. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – № 2. – С. 66–79.
- 17. Brune J.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. 75. № 26. P. 4997–5009.