<u> IV. СЕЙСМИЧЕСКИЙ МОНИТОРИНГ ВУЛКАНОВ</u>

УДК 550.348.438(517.66)

ВУЛКАНЫ КАМЧАТКИ

С.Л. Сенюков, И.Н. Нуждина, С.Я. Дрознина, Т.Ю. Кожевникова, В.Т. Гарбузова

Камчатский филиал ГС РАН, г. Петропавловск-Камчатский, ssl@emsd.iks.ru

Камчатка является зоной активного вулканизма, и по современным представлениям здесь выделено 29 действующих вулканов (рис. 1) [1]. В 2003 г. был продолжен мониторинг их сейсмической и вулканической активности с целью своевременного предупреждения населения и административных органов о возможности извержения, для уменьшения последствий катастрофических событий, для обеспечения безопасности авиаполетов в районе п-ва Камчатка [1–3].

Мониторинг проводился по данным следующих трех наблюдений:

– сейсмический мониторинг по данным радиотелеметрических сейсмических станций в режиме, близком к реальному времени;

 визуальные и видеонаблюдения (в 2003 г. три видеосистемы наблюдали за вулканами Ключевской, Шивелуч и Безымянный);

– спутниковый мониторинг термальных аномалий и пепловых выбросов. Прием данных спутников NOAA16 и NOAA17 осуществлял Камчатский центр связи и мониторинга.

Ежедневная информация о состоянии вулканов публикуется в Интернете (*http://emsd.iks.ru/~ssl/monitoring/main.htm*).

Наиболее информативны и надежны наблюдения за сейсмической активностью. Их качество не зависит от погодных условий, а высокая информативность доказана многочисленными исследованиями, как на Камчатке, так и в мире.

В 2003 г. сеть сейсмических станций в вулканических районах (рис. 1) и ее характеристика [4, 5] не изменились. Сейсмический мониторинг, как и в 2002 г., для разных вулканов проводился с разной степенью детальности. Наиболее детальные наблюдения проводились для Авачинской (вулканы Авачинский и Корякский) и Северной (вулканы Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский и Крестовский) групп вулканов. На вулканах Шивелуч, Карымский, Горелый работало только по одной станции, поэтому слабые близкие землетрясения лишь фиксировались, но не локализовались. Для остальных вулканов регистрировались только относительно сильные ($K_{\rm S} \ge 7$) сейсмические события по удаленным станциям. Здесь $K_{\rm S}$ – энергетический класс землетрясений $K_{\rm S1,2}^{668}$, определяемый по номограмме С.А. Федотова [6], для пересчета которого в локальную магнитуду, приведенную в обоих каталогах вулканических землетрясений [7, 8], использована формула А.А. Гусева [9]:

$$ML = K_{\rm S}/2 - 0.75$$
.

В 2003 г. применялись такие же методы обработки сейсмических данных, как и в предыдущие годы [10, 11]. Определение кинематических параметров землетрясений в вулканических районах выполнялось на основе одномерных скоростных моделей [10, 12] с помощью программы Ю.Ю. Мельникова [13]. Ниже приведены данные о сейсмической активности в 2003 г. в районах Северной (рис. 1, район № 1) и Авачинской групп вулканов (рис. 1, район № 2).

Северная группа вулканов (\mathbb{N} 1). Записи землетрясений в районах вулканов отличаются от тектонических землетрясений большим разнообразием. Согласно классификации П.И. Токарева [14], все вулканические землетрясения делятся на пять типов (I–V). Землетрясения I–III типов имеют вступления *P*- и *S*-волн и обрабатываются, как правило, стандартно: определяются времена t_P и t_S вступлений *P*- и *S*-волн, максимальные амплитуды A_{max} *S*-волн и соответствующие периоды *T*, рассчитываются их энергетические классы и координаты гипоцентров. Более сильные землетрясения, зарегистрированные тремя и более станциями, локализуются и заносятся в каталог. Каталог, содержащий стандартные кинематические и энергетические параметры за текущий год, ежедневно дополняется и доступен всем пользователям Интернета по адресу: *http://data.emsd.iks.ru/klyquake/index.htm*. Для более слабых землетрясений – I–III типа, записанных одной или двумя станциями, и всех землетрясений IV типа (в IV типе *S*-волну выделить невозможно) измеряется отношение A_{max}/T , которое характеризует их энергию (для велосиграфов измеряется только A_{max}). Для вулканического дрожания (тип V) измеряются амплитуда A_{max} , период *T* и продолжительность т цугов колебаний в секундах. Результаты измерений заносят в таблицы и вычисляют производные параметры (A/T)_{ср}, $\Sigma A/T$ и др.).

Рис. 1. Карта активных вулканов Камчатки, радиотелеметрических станций и изолинии энергетической представительности *К*_{min} землетрясений

1 – телеметрическая сейсмическая станция; 2 – вулкан; 3 – изолиния K_{min}.

Код и название вулканов: SL – Шивелуч, KL – Ключевской, US – Ушковский, BZ – Безымянный, TL – Плоский Толбачик, NT – Новые Толбачинские вулканы, IH – Ичинский, KZ – Кизимен, GM – Гамчен, KM – Комарова, KC – Кроноцкий, KR – Крашенинникова, KH – Кихпиныч, UZ – Узон, BS – Большой Семячик, MS – Малый Семячик, KI – Карымский, DZ – Дзензур, JP – Жупановский, KK – Корякский, AV – Авачинский, GR – Горелый, MT – Мутновский, OP – Опала, KS – Ксудач, JL – Желтовский, IL – Ильинский, KO – Кошелевский, KB – Камбальный. Код и название телеметрических станций: SVL – «Шивелуч», KLY – «Ключи», SRD – «Срединный», KRS – «Крестовский», PDK – «Подкова», CIR – «Цирк», LGN – «Логинов», KPT – «Копыто», KZY – «Козыревск», ZLN – «Зеленая», KMN – «Каменистая», KRK – «Коряка», AVH – «Авача», SDL – «Седловина», SMA – «Сомма», UGL – «Угловая». На врезках показаны районы Северной (№ 1) и Авачинской (№ 2) групп вулканов.

Рис. 2. Карта эпицентров (а) и вертикальный разрез вдоль линии А-В (б) для землетрясений в районе № 1

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность вокруг вулкана оконтуривает область выборки землетрясений, для которой построены графики параметров сейсмичности. Радиусы областей для разных вулканов равны: Шивелуч – 12 км, Ключевской – 7 км, Крестовский и Ушковский – 10 км, Безымянный – 6 км, Плоский Толбачик – 20 км.

Все землетрясения I–III типов, зарегистрированные тремя и более станциями, включены в каталог [7], содержащий 7545 землетрясений (табл. 1). Суммарная сейсмическая энергия составила $\Sigma E=8.284 \cdot 10^9 \ Delta \infty$, что примерно в 4.4 раза больше, по сравнению с таковой ($\Sigma E=1.871 \cdot 10^9 \ Delta \infty$) в 2002 г. [15]. Рост суммарной сейсмической энергии, возможно, связан с роем землетрясений с глубины 25–30 км под центральным кратером вулкана Ключевской, произошедшим в сентябре–октябре 2003 г. Распределение землетрясений по классам дано в табл. 1, график повторяемости – на рис. 3. График повторяемости был построен с помощью широко известного в мире пакета программ ZMAP [16], в котором по методу максимального правдоподобия автоматически определяется представительный класс, а потом угол наклона графика повторяемости. Из графика следует, что представительными в каталоге являются землетрясения с $K_S \ge 4.8$; значение его угла наклона $\gamma = -1.23 \pm 0.06$. Большое число землетрясений позволило более детально определить представительный класс.

$K_{\rm S}$	3	4	5	6	7	8	9	10	N_{Σ}	ΣЕ, 10 ⁹ Дж	γ
N(K)	41	1620	4790	1043	42	6	2	1	7545	8.284	1.23

Таблица 1. Распределение землетрясений в районе № 1 по энергетическим классам K_S в 2003 г.

Рис. 3. График повторяемости землетрясений Северной группы вулканов за 2003 г.

Ниже описаны шесть вулканов Северной группы (Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский, Крестовский) по инструментальным и визуальным наблюдени-ям за 2003 г.

Вулкан Шивелуч – самый северный действующий вулкан Камчатки (координаты активного кратера – 56°38' N, 161°19' Е, абсолютная высота нового купола, обнаруженного 12.05.2001 г., составила $h_y \sim 2500 \text{ м}$). Вулкан находится в 45 км к северо-востоку от пос. Ключи (рис. 2 а). Ближайшая телеметрическая станция «Шивелуч» расположена в 8.5 км от активного кратера вулкана и регистрирует землетрясения с $K_S \ge 3.1$. Традиционная обработка результатов наблюдений этой станции за 2003 г. представлена в табл. 2. Теоретический уровень надежной регистрации по трем станциям соответствует $K_S = 5.5$. Представитель-

ный класс для исследуемого периода определить по программе ZMAP [16] не представляется возможным из-за недостаточного (*N*=71) числа событий, для которых были определены стандартные параметры.

В 2003 г. на вулкане Шивелуч наблюдалась интенсивная вулканическая деятельность, связанная с продолжением роста нового купола [17]. Рост нового купола сопровождался высокой сейсмической активностью с февраля по август, которая к концу года заметно ослабла (рис. 4). В течение всего года наблюдалась термальная аномалия, свидетельствующая о постоянном выходе на поверхность горячего магматического материала (рис. 5 б). На рис. 5 а представлены данные о газо-пепловых выбросах. При отсутствии видимости предположение о возможности газо-пеплового выброса делалось на основании изучения спектральных особенностей сейсмического сигнала, а возможная высота выброса определялась по амплитуде и продолжительности сейсмического сигнала [18]. В течение всего года регистрировалось вулканическое дрожание (рис. 5, в).

Самым значительным событием по сейсмическим данным была зарегистрированная 3 марта с $22^{h}30^{m}$ до $23^{h}40^{m}$ серия поверхностных сейсмических событий с амплитудой до 8.8 µ/c, вероятно, сопровождавшая эксплозивное извержение с возможным сходом обломочных

лавин. К сожалению, вулкан был закрыт облачностью. В целом вулканическая активность вулкана Шивелуч в 2003 г. была значительно слабее, чем в 2002 г. [15].

Месяцы	Типы вулканических землетрясений																
		т								13.7				V	7		
	1					11,	111		IV			Низкочастотные			Вулканическое		
															Д	рожан	ние
	1	V	K _{Smax}	$\Sigma A/T$	1	V	K_{Smax}	$\Sigma A/T$	1	V	$\Sigma A/T$	$A/T_{\rm cp.}$	A/T_{max}	Στ,	A/T_{cp}	A/T_{max}	Στ,
	A/T<0.2	<i>A/T</i> ≥0.2			A/T<0.2	<i>A/T</i> ≥0.2			A/T<0.5	<i>A/T</i> ≥0.5				час			час
Январь	1		8.1	24.01	544	1	6.8	154.3	4134	4429	3730.55	1.48	13.68	15.19	0.14	0.6	368.87
Февраль	11		8.2	28.34	126		6.8	82.28	1245	3833	1069.24	1.5	21.92	24.24	0.12	0.54	266.5
Март	11		7.8	27.92	190		7.0	104.8	477	1910	450.58	1.62	73.63	17.01	0.11	0.7	174.0
Апрель	13		6.4	19.33	202	3	7.4	94.19	363	1357	327.45	1.24	40.8	10.07	0.1	0.38	116.1
Май	61		9.0	166.52	154		8.0	118.03	338	1246	284.49	1.24	52.06	14.37	0.1	1.02	75.3
Июнь	78		7.6	212.57	124		6.8	96.18	354	1314	410.74	1.21	20.11	12.9	0.1	0.64	61.2
Июль	28		8.6	96.24	340		7.3	187.9	350	957	341.58	0.92	25.03	3.92	0.1	0.38	12.6
Август	8		6.6	18.21	166		6.8	111.3	395	569	549.48	0.8	12.78	6.92	0.12	0.58	23.3
Сентябрь	6		5.7	5.37	48	2	6.8	14.8	96	260	84.53	0.7	9.12	5.54	0.1	0.56	36.92
Октябрь	3		7.1	4.37	22	2	6.2	10.51	69	134	69.83	0.72	13.94	2.43	0.13	0.42	4.8
Ноябрь	10		7.6	9.77	39		6.1	17.1	80	185	66.37	1.16	9.74	1.54	0.07	0.55	6.0
Декабрь	12		7.8	20.19	137		6.1	74.07	53	224	51.19	1.36	27.32	2.19	0.1	0.44	31.97
Всего	250			632.84	2092	8		1065.46	7954	17118	7436.03	13.95	320.73	116.32	1.29	6.81	1177.56

Таблица 2. Параметры вулканических землетрясений разных типов вулкана Шивелуч, записанных на одноименной станции «Шивелуч» в 2003 г.

Примечание. Здесь и в подобных таблицах ниже N с A/T<0.2 равно числу землетрясений с отношением амплитуды к периоду меньше, чем 0.2, соответственно N с A/T>0.2 больше, чем 0.2.

Рис. 4. Изменение во времени энергетического класса K_s (а) и глубины гипоцентров h (б) совокупности вулканических землетрясений, произошедших в радиусе 12 км от вулкана Шивелуч в 2003 г.

Вулкан Ключевской – координаты вершины: 56°04' N, 160°38' E; абсолютная высота вулкана h_y =4750 м. Диаметр вершинного кратера, венчающего конус, – около 700 м. Ближайшая телеметрическая станция «Логинов», регистрирующая землетрясения с $K_S \ge 2.2$, расположена в 4 км от кратера. Сеть станций позволяет локализовать при благоприятных условиях землетрясения, начиная с $K_S \ge 4.0$. Уровень надежной регистрации, рассчитанный по программе ZMAP [16], соответствует K_{min} =5.0 для поверхностных событий с глубины от –5 до 5 км (рис. 6), угол наклона графика повторяемости γ = –1.41±0.1. Для землетрясений, локализованных на глубине около 30 км, K_{min} =4.8 (рис. 7), γ = –1.89±0.08. На рис. 8 б показано изменение представительного класса во времени для поверхностных землетрясений. При этом очевидна зависимость представительного класса от амплитуды вулканического дрожания. В 2003 г. были определены параметры для ~ 7000 землетрясений с $K_S \ge 4.0$. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 2, а графики изменения во времени параметров активности вулкана на рис. 9. Также был выполнен традиционный подсчет землетрясений с разбиением по типам, приведенный в табл. 3.

Рис. 5. Графики распределения во времени различных параметров активности вулкана Шивелуч в 2003 г.

а – высота (км) газо-пепловых выбросов по сейсмическим (серый цвет), по визуальным и видеоданным (черный цвет) сотрудников сейсмической станции «Ключи» над куполом; б – число пикселей в термальной аномалии по данным спутников NOAA16 и NOAA17; в – максимальная амплитуда скорости (гистограмма) и продолжительность (график) вулканического дрожания по станции «Шивелуч».

Рис. 9. Изменение во времени энергетического класса *K*_S (а) и глубины гипоцентров *h* (б) вулканических землетрясений, произошедших в радиусе 7 *км* от вулкана Ключевской в 2003 г.

Месяцы	Типы вулканических землетрясений													
		Ι				II, I	II			IV		V		
												Вулканическое		
												дрожание		
	1	V	K_{Smax}	$\Sigma A/T$	Ì	V	K_{Smax}	$\Sigma A/T$	N		$\Sigma A/T$	$A/T_{\rm cp}$	$A/T_{\rm max}$	Στ,
	A/T < 0.2	<i>A</i> / <i>T</i> ≥0.2			A/T<0.2	$A/T \ge 0.2$			A/T<0.5	A/T≥0.5				час
Январь	727		7.4	619.38	169	143	7.1	2196.79	2842	903	2344.09	0.19	0.61	744.0
Февраль	622	14	7.3	486.89	60	41	6.6	1294.68	2194	2184	1910.69	0.22	1.26	672.0
Март	461	37	7.2	380.01	38	25	6.5	499.65	5036	1860	7510.44	0.33	2.12	744.0
Апрель	371		7.3	318.99	93		7.3	94.18	6906	150	20953.53	1.0	6.91	710.0
Май	972		7.6	798.17	328		7.2	220.93	4542		11831.19	1.13	8.46	744.0
Июнь	316		7.4	457.83	251		8.0	346.78	2080		9432.45	1.84	13.09	717.5
Июль	416		7.3	369.06	1129	1430	7.3	104.56	2658	302	7464.19	0.56	3.32	744.0
Август	340		7.7	433.69	198		7.5	1155.02	9577		73338.58	1.11	8.0	741.5
Сентябрь	130		8.7	223.21	191		7.9	373.03	9438		71647.25	1.62	7.58	720.0
Октябрь	133		7.6	291.49	78		8.1	164.48	5052		64862.68	3.97	19.55	744.0
Ноябрь	9		8.1	54.49	375		7.9	181.21	4681		81185.38	4.0	18.63	720.0
Декабрь	21		7.4	72.3	1267		8.3	85.9	5646		50100.05	2.06	18.63	744.0
Всего	4478	51		4505.51	4177	1639		6717.21	60652	5399	402580.52	1.5	19.55	8745

Таблица 3. Параметры вулканических землетрясений разных типов вулкана Ключевской, записанных на станции «Цирк» в 2003 г.

В 2003 г. вулкан Ключевской находился в неспокойном состоянии. Число зарегистрированных землетрясений увеличилось, по сравнению с таковым в 2002 г. [15]. Фиксируемые почти в течение всего года землетрясения с глубины около 30 км под постройкой вулкана прекратились в ноябре. Число поверхностных событий, наоборот, возросло к концу года. Также с ноября начали происходить землетрясения с промежуточной глубины от 5 до 12 км под центральным кратером. Амплитуда вулканического дрожания в 2003 г. увеличилась на порядок, по сравнению с таковой в 2002 г., и достигала среднего за сутки значения 10.5 µ/с по станции «Цирк» (рис. 9 а). Все это свидетельствовало о подъеме магмы.

Но прямым доказательством заполнения кратера магмой стала термальная аномалия, впервые зарегистрированная 15 мая 2003 г. (рис. 10 б). В дальнейшем в течение года эта аномалия изменялась в размере. При увеличении термальной аномалии, свидетельствующей о поступлении новой порции магмы, наблюдалось свечение в кратере вулкана Ключевской в ночное время. На рис. 10 а представлены данные о пепловых выбросах, зафиксированных по визуальным и видеоданным.

Рис. 10. Графики распределения во времени различных параметров активности вулкана Ключевской в 2003 г.

а – высота (км над уровнем моря) газо-пепловых выбросов по визуальным и видеоданным сотрудников сейсмической станции «Ключи»; б – число пикселей в термальной аномалии по данным спутников NOAA16 и NOAA17 (значение «–1» означает отсутствие снимков или сокрытие вулкана облачностью).

Вулкан Безымянный – координаты вершины: 55°58' N, 160° 35' E; абсолютная высота вулкана $h_v = 2869 \ M$. Ближайшие телеметрические станции «Логинов» и «Зеленая», регистри-

рующие землетрясения с $K_S \ge 3.6$, расположены в 13.5 км от кратера вулкана (рис. 2 а). По теоретическим расчетам надежная локация по трем станциям возможна лишь для землетрясений с $K_S \ge 4.5$. Но определить точно представительный класс оказалось невозможно из-за недостаточного числа событий. Традиционная обработка землетрясений с разделением по типам, определением их числа и суммарного отношения A/T представлена в табл. 4.

Месяцы	Типы вулканических землетрясений															
		т пш					п	7	V							
	1				11, 111			1 V		Низкочастотные			Вулканическое дрожание			
	N	K_{Smax}	$\Sigma A/T$	N	K_{Smax}	$\Sigma A/T$	N	$\Sigma A/T$	$A/T_{\rm cp}$	$A/T_{\rm max}$	Στ,	$A/T_{\rm cp}$	$A/T_{\rm max}$	Στ,		
	<i>A</i> / <i>T</i> ≥0.1			<i>A</i> / <i>T</i> ≥0.1			<i>A</i> / <i>T</i> ≥0.1		-		час	-	<u> </u>	час		
Январь				2	5.2	0.61	2	1.78								
Февраль							1	1.27								
Июль				17	7.8	18.47	40	78.97								
Август				1	4.3	0.1										
Всего				20		19.18	43	82.02								

Таблица 4. Параметры вулканических землетрясений разных типов вулкана Безымянный, записанных на станции «Зеленая» в 2003 г.

Примечание. В остальные месяцы событий нет.

В 2003 г. вулкан Безымянный извергался один раз. Наличие на вулкане постоянной термальной аномалии свидетельствовало о том, что горячий материал находится близко к поверхности и извержение может начаться без сильной предварительной сейсмической подготовки. Первый признак сейсмической активизации вулкана был зафиксирован 11 июля, когда было зарегистрировано одно поверхностное землетрясение (рис. 11 а). В дальнейшем, вплоть до 24 июля, регистрировались отдельные поверхностные события. 25 июля сейсмическая активность возросла, было зафиксировано 6 поверхностных землетрясений с K_s =3.6–5.5. Также 25 июля на спутниковых снимках было зафиксировано увеличение размера термальной аномалии. По данным видеонаблюдений эксплозивное извержение началось 26 июля в 08^h45^m. По визуальным данным станции «Козыревск» высота эруптивной колонны достигала альтитуды 8000 *м*. По данным сейсмического мониторинга извержение продолжалось не более трех часов. Спутниковые данные позволили проследить за распространением пеплового облака на расстояние более 200 *км* в западном направлении.

Рис. 11. Изменение во времени энергетического класса K_s (а) и глубины гипоцентров h (б) вулканических землетрясений, произошедших в радиусе 6 км от вулкана Безымянный в 2003 г.

Вулкан Плоский Толбачик – координаты вершины: 55°49' N, 160°22' E; абсолютная высота вулкана h_y =3085 м. Ближайшая телеметрическая станция «Каменистая» расположена в 10 км от кратера вулкана и регистрирует землетрясения с $K_S \ge 3.3$. Теоретический уровень на-

дежной регистрации по трем станциям соответствует *K*_S=5.0. В табл. 5 представлены землетрясения, зарегистрированные этой станцией.

Месяцы	Типы вулканических землетрясений													
	Ι					II, 11	Ι		IV			Вулканическое		
	N $K_{\text{Smax}} \Sigma A/T$		1	Ν		$\Sigma A/T$	Ν		$\Sigma A/T$	др	ожание			
	A/T<0.2	A/T≥0.2			A/T<0.2	<i>A</i> / <i>T</i> ≥0.2			A/T < 0.5	<i>A</i> / <i>T</i> ≥0.2		(A/T)	(A/T)	τ,
												cp.	max	час
Январь		15	5.7	6.08		5	5.5	1.3		1	0.21			
Февраль		13	6.7	9.21		19	4.9	5.6		5	1.32		I	
Март		15	6.3	11.02		23	5.6	8.6		2	0.8		1	
Апрель		20	6.7	6.49		2	10.2	80.49				0.29	0.73	0.24
Май		10	6.8	3.91		4	4.7	0.83		1	0.14		l I	
Июнь		3	6.0	1.22		3	5.1	1.21					l I	
Июль		8	5.8	1.9		9	4.9	1.99		2	0.49		1	
Август		5	6.9	6.49		3	6.8	4.35		2	1.02		l I	
Сентябрь		3	4.9	0.69									1	
Октябрь													l I	
Ноябрь		2	7.6	6.38									1	
Декабрь		6	6.1	3.57						1	0.25			
Всего		100		47.01						14	4.23	0.29	0.73	0.24

Таблица 5. Параметры вулканических землетрясений разных типов вулкана Плоский Толбачик, записанных на станции «Каменистая» в 2003 г.

На рис. 2 представлены карта эпицентров и проекция гипоцентров на вертикальный разрез, на рис. 12 – графики изменения во времени параметров сейсмической активности вулкана. На протяжении 2003 г. в районе вулкана Плоский Толбачик наблюдалась «обычная фоновая» сейсмичность.

Вулканы Ушковский и Крестовский образуют единый вулканический массив, осложненный вершинной кальдерой. Этот массив рассечен глубокими ледниковыми ущельями и эрозионными долинами. Вулкан Крестовский – координаты вершины: 56°07' N, 160°30'E, абсолютная высота вулкана h_y =4108 м; Ушковский – координаты вершины: 56°04' N, 160°28'E; абсолютная высота вулкана h_y =3943 м. Ближайшие телеметрические станции «Крестовский» и «Логинов» расположены в 12 км от вершины Крестовского и регистрируют землетрясения с $K_S \ge 3.5$. Теоретический уровень надежной регистрации по трем станциям соответствует K_S =4.5. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 2, графики изменения во времени параметров активности вулкана – на рис. 13, а традиционный подсчет землетрясений с разбиением по типам – в табл. 6.

Типы вулканических землетрясений											
		Ι			II	I, III			IV		
i	N	K_{Smax}	$\Sigma A/T$	Λ	V	K_{Smax}	$\Sigma A/T$	1	V	$\Sigma A/T$	
A/T<0.2	A/ <i>T</i> ≥0.2			A/T < 0.2	A/ <i>T</i> ≥0.2			A/T < 0.5	$A/T \ge 0.5$		
1		7.3	2.65		3	5.6	1.35	1		0.24	
					13	5.8 5.8	5.41	1		0.54	
					1	5.7	0.53	1		0.35	
					4	7.2	5.71	1		1.54	
					2	5.8	0.84				
					2	5.1	0.76				
					1	5.4	0.39				
								1	1	0.61	
								1	1	0.01	
1			2.65				14.09	3	2	2.84	
	1			1			1		1	1	
									а		
1											
L nh	J.	r ratio	n l	T							
	<u> </u>			. I			,	, ,	>		
									б		
·	•.	• •		æ							
			• •								
•			•								
0											
		• •	•								
	,						-,	, ,	i, mec		
I II	I IV	V V	VI	VII	VIII	IX	X	XI XI	I		
	A/T<0.2 1	N A/T<0.2	N K _{Smax} A/T<0.2	I X K _{Smax} Σ.4/Т <u>A</u> /T<0.2	I I M K _{Smax} Σ.A/T M/T<0.2	I IIIII N KSmax Σ.4/Т N A/T<0.2	I I, II N K _{Smax} Σ.Λ/Τ N K _{Smax} Δ/T<0.2	ТИПЫ ВУЛКАНИЧЕСКИХ ЗЕМЛЕТРЯСЕНИЙ N KSmax Σ.4/Т N KSmax Σ.4/Τ A/T<0.2	I IIIII И И И И И И И И И И И И И И И И И	ТИПЫ ВУЛКАНИЧЕСКИХ ЗЕМЛЕТРЯСЕНИЙ N K _{Smax} X.A/T N K A/T<0.2	

Таблица 6. Параметры вулканических землетрясений разных типов вулканов Крестовский и Ушковский, записанных на станции «Цирк» в 2003 г.

Рис. 13. Изменение во времени энергетического класса K_S (а) и глубины гипоцентров h (б) вулканических землетрясений, произошедших в радиусе 10 км в районе вулканов Крестовский и Ушковский в 2003 г.

В 2003 г. сейсмичность района вулканов Крестовский и Ушковский была фоновой и никаких проявлений вулканической активности, а также термальных аномалий на снимках из космоса отмечено не было.

Авачинская группа вулканов (№ 2). В Авачинскую группу вулканов входят два действующих вулкана: Авачинский и Корякский. Из всех вулканов они представляют наибольшую потенциальную опасность, так как расположены в 30 км от наиболее густонаселенных городов Камчатки: Петропавловск-Камчатский и Елизово.

Вулкан Авачинский – координаты вершины: 53°15' N, 158°50'E, абсолютная высота вулкана h_y =2741 *м*, диаметр кратера – около 350 *м*. Координаты вершины вулкана Корякский: 53°19' N, 158°43'E; абсолютная высота вулкана h_y =3456 *м*.

Координаты гипоцентров для Корякского и Авачинского вулканов рассчитывались, как и в предшествующие годы, по программе Ю.Ю. Мельникова [13] с использованием двух разных одномерных скоростных моделей среды [12, 19]. Общая карта распределения эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 14. Весь район \mathbb{N} 2, изображенный на рис. 1, по теоретическим расчетам является областью надежной регистрации для событий с $K_S \ge 4.0$.

Рис. 14. Карта эпицентров (а) и проекция гипоцентров на вертикальный разрез вдоль линии А–В (б) для землетрясений района № 2.

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность возле вулкана соответствует радиусу (8 км) выборки исходных данных от вулканов Авачинский и Корякский для построения графиков изменения во времени параметров их активности (рис. 15, 16).

В 2003 г. никакой заметной сейсмической или вулканической активности отмечено не было. Каталог землетрясений Авачинской группы [8] содержит параметры для N_{Σ} =89 землетрясений с $K_{\rm S}$ =1.5–8.7. За все годы детальных однородных наблюдений, начиная с 1994 г., сейсмичность исследуемого периода была относительно спокойной. Суммарная энергия всех землетрясений, включенных в каталог, составила ΣE =5.039·10⁸ Дж, что почти на два порядка больше таковой в 2002 г. (ΣE =8.137·10⁶ Дж [15]). Возможно, причиной такого роста энергии является землетрясение с $K_{\rm S}$ =8.7, произошедшее 2 декабря в 02^h58^m.

Графики распределения во времени различных параметров землетрясений для вулкана Авачинский представлены на рис. 15, а для вулкана Корякский на рис. 16.

Таблица 7. Распределение землетрясений в районе № 2 по энергетическим классам K_S в 2003 г.

Рис. 15. Изменение во времени энергетического класса *K*_S (а) и глубины гипоцентров *h* (б) вулканических землетрясений, произошедших в радиусе 8 *км* от вулкана Авачинский в 2003 г.

Рис. 16. Изменение во времени энергетического класса *K*_S (а) и глубины гипоцентров *h* (б) вулканических землетрясений, произошедших в радиусе 8 *км* от вулкана Корякский в 2003 г.

Литература

- 1. **Действующие вулканы Камчатки** / Под ред. Федотова С.А., Масуренкова Ю.П. М.: Наука, 1991. **1**. С. 5–11.
- 2. Кирьянов В.Ю. Вулканические пеплы Камчатки как источник потенциальной вулканической опасности для пассажирских авиалиний // Вулканология и сейсмология. 1992. № 3. С. 16–36.

- 3. Кирьянов В.Ю., Чубарова О.С., Сенюков С.Л., Евдокимова О.А., Гарбузова В.Т. Группа по обеспечению безопасности полетов от вулканических пеплов (КВЕРТ): 8 лет деятельности // Геодинамика и вулканизм Курило-Камчатской островодужной системы. – Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. – С. 408–423.
- 4. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва–Обнинск: ГС РАН, 2001. 86 с.
- 5. **Левина В.И., Иванова Е.И., Гусева Е.И.** Камчатка и Командорские острова // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 213–222.
- 6. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. – М.: Наука, 1972. – 117 с.
- 7. **Нуждина И.Н. (отв. сост.)**, **Дрознина С.Я., Кожевникова Т.Ю., Толокнова С.Л.** Каталог землетрясений Северной группы вулканов за 2003 год. (См. Приложение к наст. сб. на CD).
- 8. **Нуждина И.Н. (отв. сост.)**, **Дрознина С.Я., Кожевникова Т.Ю., Толокнова С.Л.** Каталог землетрясений Авачинской группы вулканов за 2003 год. (См. Приложение к наст. сб. на CD).
- 9. Детальные сейсмологические исследования Камчатки и Командорских островов (01.01– 31.12.1998 г.) – Петропавловск-Камчатский: Отчет КОМСП ГС РАН, 1999. – 259 с.
- Сенюков С.Л., Чебров В.Н., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Сейсмический мониторинг вулканов Камчатки // Землетрясения Северной Евразии в 1999 году. – Обнинск: ГС РАН, 2005. – С. 253–273.
- Сенюков С.Л., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Сейсмический мониторинг вулканов Камчатки // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 321–336.
- Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений // Комплексные сейсмологические и геофизические наблюдения на Камчатке. – Петропавловск-Камчатский: КОМСП ГС РАН, 2004. – С. 279–291.
- 13. **Мельников Ю.Ю.** Пакет программ для определения координат гипоцентров землетрясений Камчатки на ЭВМ // Вулканология и сейсмология. – 1990. – № 5. – С. 103–112.
- 14. Токарев П.И. Вулканические землетрясения Камчатки. М.: Наука, 1981. 164 с.
- 15. Сенюков С.Л., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Сейсмический мониторинг вулканов Камчатки // Землетрясения Северной Евразии в 2002 году. – Обнинск: ГС РАН, 2008. – С. 380–394.
- Weimer S. A software package to analyze seismicity: ZMAP // Seism.Res.Lett. 2001. -72 № 2. -P. 374-383.
- 17. Сенюков С.Л., Дрознина С.Я., Гарбузова В.Т., Нуждина И.Н., Дрознин Д.В., Кожевникова Т.Ю. Исследования активности вулканов Шивелуч и Безымянный в 2000–2003 гг. дистанционными средствами наблюдений // Комплексные сейсмологические и геофизические наблюдения на Камчатке. – Петропавловск-Камчатский: КОМСП ГС РАН, 2004. – С. 301–318.
- 18. Сенюков С.Л., Дрознина С.Я., Дрознин Д.В. Опыт выделения пепловых выбросов и оценка их высоты по сейсмическим данным на примере вулкана Шивелуч (Камчатка) // Комплексные сейсмологические и геофизические наблюдения на Камчатке. Петропавловск-Камчатский: КОМСП ГС РАН, 2004. С. 292–300.
- 19. Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений в 2000–2004 гг. // Вулканология и сейсмология. 2006. № 3. С. 68–78.