ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

2003 год был периодом активного перевода сети сейсмических станций ЯФ ГС СО РАН с аналоговой регистрации землетрясений на цифровую. Всего в течение года на территории Республики Саха (Якутия) действовало 17 сейсмических станций. При этом аналоговая запись землетрясений (на осциллографную бумагу) сохранилась лишь на пяти станциях: «Усть-Нера», «Мома», «Артык», «Чагда» и «Усть-Нюкжа». На некоторых из них («Усть-Нера», «Мома» и «Артык») были также установлены цифровые каналы записи, которые функционировали в 2002–2003 гг. в экспериментальном режиме параллельно с каналами гальванометрической регистрации. Дополнительно начали фиксацию землетрясений четыре новых пункта наблюдений, оборудованных цифровой сейсмической аппаратурой. Так, стационарная регистрация землетрясений на компьютер началась в пос. Витим на востоке Сибирской платформы (июнь 2003 г.), в пос. Табага и пос. Кангалассы в Центральной Якутии (июнь–июль 2003 г.), и пос. Депутатский в системе хр. Черского (сентябрь 2003 г.). Фактически цифровая запись сейсмических событий производилась на 16 станциях из 17 работавших в 2003 г. наблюдательных пунктов (табл. 1).

Основу аппаратурного обеспечения центральной сейсмической станции «Якутск» составлял, как и прежде, комплекс Incorporated Research Institutions for Seismology (IRIS), используемый объединением исследовательских институтов США в области сейсмологии. Данный тип приборов также применялся на сейсмической станции «Тикси». Другие стационары были укомплектованы цифровой аппаратурой как отечественного (SDAS и Байкал-11), так и зарубежного (IRIS, PAR-4CH, PAR-24B) производства (табл. 2).

№	2 Станция			Дата	Координаты						
	Название	Код		открытия	φ°, N	λ° , Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max,,}$
		межд.	рег.				м	прибора	нента		С
1	Якутск	YAK	Як	04.10.1957	62.03	129.68	91				
				01.09.1993				IRIS – цифровая станция			
				01.09.1999				SDAS – I			
2	Чульман	CLN	Члм	05.08.1962	56.85	124.90	580				
				01.04.2000				SDAS – 1			
3	Усть-Нера	USN	У-Нр	21.11.1962	64.57	143.23	485	СКМ-3	N, E, Z	35000	0.2-1.3
				20.04.2002				PAR-24B -			
4	Усть-Нюкжа	USZ	У-Н	18.07.1964	56.56	121.59	415	СКМ-3	N, E, Z	52000	0.2-1.2
5	Чагда	CGD	Чгд	04.10.1968	58.75	130.62	185	СКМ-3	N, E, Z	35000	0.2-1.2
6	Батагай		Бтг	12.03.1975	67.65	134.63	127				
				12.12.2002				SDAS – цифровая станция			
7	Мома		Мома	05.03.1983	66.47	143.22	192	CKM-3	N, E, Z	40000	0.2-1.3
				15.11.2002				РАR-4CH – цифровая станция			
8	Артык		Ар	04.07.1988	64.18	145.13	700	CKM-3	N, E, Z	37000	0.2-0.9
				25.04.2002				РАК-24В – цифровая станция			
9	Тикси	TIK	Ткс	13.08.1995	71.63	128.86	38	IRIS — ц	ифровая ста	анция	
10	Алдан		Алд	01.09.1999	58.61	125.41	667	SDAS – 1			

Таблица 1. Сейсмические станции Якутии (в хронологии их открытия), действовавшие в 2003 г., и параметры аппаратуры с аналоговой записью

№	Ста	Дата	Ко	ординат	ы	Аппаратура						
	Название	Код		открытия	$\varphi^{\circ}, \mathbb{N} \mid \lambda^{\circ}, \mathbb{E} \mid h_{y},$		Тип	Компо-	$V_{\rm max}$	$\Delta T_{\rm max,},$		
		межд.	рег.				м	прибора	рибора нента			
11	Усть-Мая		У-Мая	01.09.2000	60.42	134.54	182	SDAS – I				
12	Тында		Тнд	01.06.2001	55.15	124.72	530	SDAS – I				
13	Столб		Стб	29.10.2002	72.40	128.81	50	Байкал-11 -				
14	Витим		Втм	25.06.2003	59.26	112.35	168	SDAS – I				
15	Табага		Тбг	26.06.2003	61.82	129.64	98	Байкал-11 -				
16	Кангалассы		Кнг	07.07.2003	62.35	129.97	100	Байкал-11 -				
17	Депутатский		Dep	01.09.2003	69.23	139.54	320	PAR-4CH-				

Таблица 2. Данные об аппаратуре цифровых станций ЯФ ГС СО РАН в 2003 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(m/c), акселерограф – отсчет/(m/c^2)	
Якутск	IRIS – STS-1	BH(N, Z, E)v	0.0028-3	20	24	$1.00 \cdot 10^9$	
5		LH(N, Z, E)v	0.0028-0.25	1	24	$4.00 \cdot 10^9$	
		VH(N, Z, E)v	0.0028-0.02	0.1	24	$1.60 \cdot 10^{10}$	
		VM(N, Z, E)a	0-0.0028	0.01	24	$1.20 \cdot 10^{10}$	
	IRIS-GS-13	EH(N, Z, E)v	1–25	80	24	$2.08 \cdot 10^{9}$	
		SH(N, Z, E)v	1-10	40	24	$2.08 \cdot 10^{9}$	
	SDAS – CM3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$1.33 \cdot 10^{7}$	
		BL(N, Z, E)v	0.02-6.7	20	16	$3.33 \cdot 10^{6}$	
Тикси	IRIS – STS-1	BH(N, Z, E)v	0.0028-3	20	24	$1.00 \cdot 10^{9}$	
		LH(N, Z, E)v	0.0028-0.25	1	24	$3.98 \cdot 10^{9}$	
		VH(N, Z, E)v	0.0028-0.02	0.1	24	$1.59 \cdot 10^{10}$	
		VM(N, Z, E)a	0-0.0028	0.01	24	$1.21 \cdot 10^{10}$	
	IRIS-GS-13	EH(N, Z, E)v	1–25	80	24	$4.08 \cdot 10^{9}$	
		SH(N, Z, E)v	1-10	40	24	$4.08 \cdot 10^{9}$	
Алдан	SDAS – CM3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$7.41 \cdot 10^{6}$	
		BL(N, Z, E)v	0.02-6.7	20	16	$1.85 \cdot 10^{6}$	
Чульман	SDAS – CM3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$7.35 \cdot 10^{6}$	
-		BL(N, Z, E)v	0.02-6.7	20	16	$1.83 \cdot 10^{6}$	
Усть-Мая	SDAS – CM3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$7.30 \cdot 10^{6}$	
		BL(N, Z, E)v	0.02-6.7	20	16	$1.83 \cdot 10^{6}$	
Тында	SDAS – CM3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$1.38 \cdot 10^{7}$	
		BL(N, Z, E)v	0.02-6.7	20	16	$3.44 \cdot 10^{6}$	
Мома	PAR-4CH-KS-2000	SH(N, Z, E)v	0.01-50	50	24	9.01·10 ⁸	
Артык	РАК-24В – СМ3-КВ	SH(N, Z, E)v	0.8-5.0	30	24	4.03·10 ¹⁰	
Усть-Нера	PAR-24B - CKM-3	SH(N, Z, E)v	0.8-5.0	30	24	$2.44 \cdot 10^{10}$	
Батагай		BH(N, Z, E)v	0.02-6.7	20	24	1.58.107	
		BL(N, Z, E)v	0.02-6.7	20	24	$3.94 \cdot 10^{6}$	
Столб	Байкал 11 – СМЗ-КВ	SH(N, Z, E)v	0.5-20	100	20	$2.04 \cdot 10^{10}$	
Витим	SDAS – CM3-OC	BH(N, Z, E)v	0.02-6.7	20	24	1.58.107	
		BL(N, Z, E)v	0.02-6.7	20	24	$3.94 \cdot 10^{6}$	
Табага	Байкал-11- СМЗ-КВ	SH(N, Z, E)v	0.5-20	100	20	$2.04 \cdot 10^{10}$	
Кангалассы	Байкал-11- СМЗ-КВ	SH(N, Z, E)v	0.5–20	100	20	$2.04 \cdot 10^{10}$	
Депутатский	PAR-4CH-KS-2000	SH(N, Z, E)v	0.01-50	20	24	9.01·10 ⁸	

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

Лучшая система регистрации землетрясений в 2003 г. имела место на юге региона («Усть-Нюкжа», «Чульман», «Чагда», «Алдан», «Витим», «Тында» и «Усть-Мая»), что позво-

лило без пропусков записывать все землетрясения в междуречье Олекмы и Алдана, начиная с $K_P \ge 7$; на Алданском нагорье и Становом хребте (территория между реками Алдан, Тимптон и Гонам) – с $K_P \ge 8-9$; для восточной части Алданского нагорья (бассейн р. Учур) – с $K_P \ge 9$. К востоку от р. Учур до Охотского моря представительными были землетрясения с $K_P \ge 10-11$.

Улучшились возможности мониторинга за сотрясениями востока Сибирской платформы в центральной части региона. Здесь к уже действующим станциям («Якутск», «Чагда», «Усть-Мая») добавились новые в Витиме, Табаге и Кангалассах, что позволило полностью начать фиксировать все сейсмические события, начиная с *К*_Р≥8.

На северо-востоке региона в системе хр. Черского, где в верхнем и среднем течении р. Индигирки действовали три станции («Усть-Нера», «Артык» и «Мома»), надежно регистрировались местные землетрясения с $K_P \ge 8-9$.

Наихудшая система наблюдений была в арктической части Якутии между реками Леной и Индигиркой, а также на побережье и шельфе моря Лаптевых. Здесь регистрация землетрясений осуществлялась тремя близкими станциями: «Батагай», «Тикси» и «Столб». К ним в сентябре 2003 г. присоединилась новая станция в пос. Депутатский, что, несомненно, улучшило возможности записи землетрясений между пунктами регистрации «Тикси» и «Столб», с одной стороны, и «Батагай» и «Депутатский» – с другой. Без пропусков здесь продолжали фиксироваться сейсмические события с $K_P \ge 9-10$ в районе Тикси и с $K_P \ge 11-12$ – на шельфе моря Лаптевых. Для всей территории Республики Саха Якутия в 2003 г. в полном объеме записывались местные сейсмические события с $K_P \ge 12$.

Параметры эпицентров землетрясений определялись по совокупности данных наблюдений сети сейсмических станций Якутского и Байкальского филиалов ГС СО РАН, а также сведений сводной обработки и каталогов землетрясений отдельных станций Магаданского и Сахалинского филиалов ГС РАН. Методика обработки землетрясений и оценка точности параметров эпицентров землетрясений остались прежними [1].

По результатам совместной обработки инструментальных данных составлен каталог, включающий сведения о 294 местных землетрясениях с $K_P \ge 6$, отмеченных в Якутском регионе и пограничных районах. Их распределение по районам и энергетическим классам приведено в табл. 3, а география их размещения дана на карте эпицентров землетрясений (рис. 1). Суммарная сейсмическая энергия ΣE , выделившаяся в 2003 г., составила 2.743·10¹² Дж и близка к ее величине в 2002 г. ($\Sigma E = 2.703 \cdot 10^{12} \ Дж$) [1]. В каталоге [2] в наст. сб. включены 114 более сильных землетрясений с $K_P=7.6-12.1$.

№	Район	K_{\min}	$K_{ m P}$							N_{Σ}	ΣE ,
_			6	7	8	9	10	11	12		10 ¹² Дж
1	Олекминский	7–8	7	32	12	3	2	1		57	0.125
2	Становой хребет	8–9	11	54	12	5	1	1		84	0.117
3	Алданское нагорье	8–9	3	54	14	3	1			75	0.015
4	Учурский	10		9	13	4				26	0.005
5	Охотский	10									0
6	Хребет Сетте-Дабан	9–10					1			1	0.010
7	Верхоянский хребет	9–10			2	1		1		4	0.101
8	Яно-Оймяконское нагорье	9-10		1	2	2	2			7	0.022
9	Хребет Черского	8–9	1	9	11	5	1	1		28	0.116
10	Приморская низменность	10-11			3	1	1			5	0.011
11	Лаптевский	11-12				1	1	2	2	6	2.211
12	Восточная часть Сибирской платформы	11					1			1	0.010
	Всего		22	159	69	25	11	6	2	294	2.743

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по районам за 2003 г.

Как известно, территорию Якутии пересекают два сейсмических пояса: Арктико-Азиатский – на северо-востоке и восточный фланг Байкало-Станового пояса (Олекмо-Становая зона) – на юге [3]. Анализ данных из табл. 3 свидетельствует, что самым мобильным в 2003 г. был Арктико-Азиатский пояс (сейсмоактивные районы: Лаптевский, хр. Черского, Яно-Оймяконское нагорье и др.), где выделилось 89% всей сейсмической энергии за год.

Наиболее активным был Лаптевский район (№ 11), в пределах которого зафиксировано четыре подземных толчка с K_P =11–12 [2], M_S =4.1–4.5 [4]. Все они произошли на шельфе моря Лаптевых и тяготеют к окраинно-континентальной рифтовой системе, возникшей и развивавшейся в кайнозое на продолжении арктического спредингового хр. Гаккеля. Лаптевоморская рифтовая система занимает восточную часть шельфа и представляет ансамбль глубоких рифтовых осадочных бассейнов (Усть-Ленский, Омолойский, Усть-Янский, Чондонский, Бельковско-Свяносский и другие грабены) и горстовых блоков фундамента (Центрально-Лаптевское и Котельническое поднятия, Шилонская структурная терраса, Восточно-Лаптевский и Столбовской горсты и др.) [5]. Одно из отмеченных здесь землетрясений, зарегистрированное 19 марта 2003 г. с координатами 76.0° N и 131.9° Е произошло в пределах Восточно-Лаптевского поднятия на севере рифтовой системы (рис. 1). Эпицентры трех остальных сейсмических событий, возникших одно за другим в пределах земной коры на глубине 10-20 км в течение 7 декабря в 09^h09^m с K_P=11.2, 09^h10^m с K_P=11.6, 09^h16^m с K_P=12.1 [2], выявлены к югу от первого на границе Широстонского грабена и Столбовского горста вблизи о. Столбовой. Для максимального из них в бюллетене ISC имеется решение механизма очага по методу тензора момента центроида HRVD [4]. Обе плоскости разрыва простираются (рис. 2) субдолготно (азимуты 36° и 160°) с пологим падением первой плоскости на юго-восток (угол 34°) и более крутым падением второй плоскости на юго-запад (угол 69°). При этом растягивающие усилия действовали в близширотном направлении (азимут 271°, угол с горизонтом 20°), а сжимающие – субдолготно (азимут 33°, угол 57°). Подвижка в его очаге соответствовала сбросу [6].

Еще несколько землетрясений с K_P =9–10 в Лаптевском районе зарегистрировано в дельте р. Лены и Янском заливе моря Лаптевых вблизи расположения сейсмических станций «Тикси» и «Столб».

Особенности распределения поля силы тяжести в восточной части моря Лаптевых в виде чередования узких линейных высокоградиентных зон северо-западного и субдолготного простираний, протягивающихся от континентального склона шельфа на побережье [7, 8], фиксируют продолжение грабенов Лаптевоморской рифтовой системы на континент. В частности, такая обстановка имеет место для Усть-Янского, Чондонского и Широстонского грабенов. В подтверждении современной активности этих структур на континентальном продолжении Чондонского грабена 26 февраля в $13^{h}28^{m}$ отмечено землетрясение с K_{P} =9.3 с эпицентром 71.3° N и 138.9° Е и еще два слабых толчка с K_{P} =8.7 и 8.0, локализованных 3 ноября в $13^{h}16^{m}$ и 9 декабря в $20^{h}36^{m}$ в районе Приморской низменности (№ 10).

Таким образом, цепочка эпицентров землетрясений в 2003 г., пересекающая шельф моря Лаптевых от юго-восточного окончания хр. Гаккеля в Северном Ледовитом океане к Янскому заливу и побережью моря Лаптевых, свидетельствует о современной активности сейсмотектонических процессов, происходящих в Лаптевоморской окраинно-материковой рифтовой зоне [5]. При наличии в этом районе достаточного числа пунктов сейсмических наблюдений (в настоящее время их только два) число инструментально зарегистрированных здесь подземных толчков могло быть существенно больше.

К другим сейсмоактивным районам на северо-востоке Республики Саха Якутия относится горная система **Хребта Черского** (**№** 9). Здесь зарегистрировано 28 землетрясений с K_P =6–10. При этом более подвижно юго-восточное окончание системы, где эпицентры приурочены к Индигиро-Колымской системе активизированных разломов (Улахан, Дарпир, Чай-Юреинский, Иньяли-Дебинский и др.) [3, 9]. Следует отметить повышенный уровень сейсмичности в Момо-Селенняхской впадине, расположенной между хребтами Черского и Момским. Здесь наблюдается цепочка эпицентров слабых землетрясений, вытянутая в северо-западном направлении. Большинство этих событий тяготеет к зоне сочленения названной впадины с ограничивающими ее горными хребтами. Например, в пределах ее северо-восточного борта на границе с Момским хребтом произошел толчок с K_P =10.8, отмеченный 16 октября в 07^h23^m [2]. Более десятка небольших (K_P =6–8) землетрясений отмечено вдоль трасс Чай-Юреинского и Иньяли-Дебинского

разломов между верховьями рек Индигирки и Колымы [9]. Еще одна группа слабых сотрясений имела место в Верхненерской впадине рядом с сейсмическими станциями «Усть-Нера» и «Артык».

Рис. 1. Карта эпицентров землетрясений Якутии за 2003 г.

1 – энергетический класс K_P; 2, 3 – сейсмическая станция, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [3], установленный и предполагаемый (пунктир); 6, 7 – граница района и региона соответственно.

В районе **Верхоянского хребта** (№ 7) выявлены лишь единичные сейсмические события, в том числе одно землетрясение, возникшее 18 апреля в 09^h58^m на границе Якутии с Магаданским регионом с $K_{\rm P}$ =10.8. Землетрясение оказалось приуроченным к зоне влияния Кетандинского разлома, входящего в Охотско-Ульбейскую систему разломов субдолготного простирания [9].

Довольно низкий уровень сейсмической активности выявлен в 2003 г. в районах **Яно-Оймяконского нагорья** (**№** 8). Здесь максимальным (K_P =10.2) было землетрясение 5 августа в 12^h01^m. Еще пять событий имели K_P =8.3–9.6: 26 февраля в 13^h28^m с K_P =9.3, 7 марта в 12^h40^m с K_P =8.6, 16 апреля в 14^h31^m с K_P =8.3, 10 августа в 18^h32^m с K_P =8.3, 13 ноября в 10^h51^m с K_P =9.6 [2]. Всего по одному землетрясению зарегистрировано в **Хребте Сетте-Дабан** (**№** 6) (27 мая в 21^h34^m с K_P =9.8) и в **Восточной части Сибирской платформы** (**№** 12) (14 мая в 02^h03^m с K_P =10.1) [2].

На территории Южной Якутии в пределах Олекмо-Становой зоны высвободилось лишь около 11% годовой сейсмической энергии. Как и в 2002 г. [1], максимальная активность наблюдалась в Олекминском районе (№ 1). Эпицентры землетрясений с *K*_P=6–10 группировались здесь на территории Олекмо-Чарского нагорья и в среднем течении р. Олекмы рядом со станцией «Усть-Нюкжа». Трехбалльные воздействия одного из них, произошедшего 26 июня в $18^{h}53^{m}$ с $K_{P}=10.6$, наблюдались на железнодорожной станции БАМ «Хани» (легкое сотрясение домов, дребезжание стекол окон, скрип полов и перекрытий потолка). Вместе с тем активность данного района, по сравнению с таковой в предыдущие годы, с 1997 г. по 2002 г. [1, 10–14], существенно снизилась. В указанный шестилетний период времени основной максимум сейсмичности приходился здесь на участок Олдонгсинского роя землетрясений [10], который образовался в октябре 1997 г. на северо-восточном окончании хр. Удокан в верховьях р. Олдонгсо (левом притоке р. Олекмы) к востоку от крайней на северо-востоке Байкальского рифта Верхнетоккинской впадины. Если рассмотреть динамику развития сейсмического процесса этой территории (табл. 4), то можно заметить, что число событий, начиная с момента возникновения роя (1997 г.), сократилось более чем в 10 раз и в 2003 г. достигло минимального значения (N=57) за последние 10 лет.

Год	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
N_{Σ}	69	186	133	647	471	499	139	74	94	57
$\Sigma E, 10^{12} Дж$	0.002	0.052	0.129	3.190	0.535	17.300	0.147	0.014	0.208	0.125

Таблица 4. Сейсмичность Олекминского сейсмоактивного района в 1997-2003 гг.

В районе Становой хребет (\mathbb{N} 2) сейсмическая деятельность была несколько оживленнее. Здесь в 2003 г. выделилось $0.117 \cdot 10^{12} \ \mathcal{A} \mathscr{K}$ (около 4% годовой энергии). Это на порядок больше соответствующего уровня сейсмической энергии в 2002 г. ($\Sigma E=0.013 \cdot 10^{12} \ \mathcal{A} \mathscr{K}$ [1]). В целом эпицентры землетрясений этого района располагались с запада на восток в широтном направлении вдоль системы разломов Станового краевого шва [15] с их концентрацией на западном фланге Станового хребта и постепенным убыванием к востоку вплоть до Токинского Становика вблизи оз. Большое Токо.

Сейсмическая активность района Алданского нагорья (№ 3) оказалась несколько выше таковой в 2002 г. [1] за счет возникновения четырех землетрясений с K_P =9–11, отмеченных 20 мая в 03^h38^m с K_P =9.1 и 21 мая в 11^h19^m с K_P =9.5 в восточных отрогах хр. Западные Янги, 23 мая в 11^h30^m с K_P =9.8 – в долине р. Тимптон и 19 октября в 07^h12^m с K_P =10.6 – в устьевой части р. Гонам (левого притока р. Учур). В целом здесь подтверждается мобильность «ромбической» сети разломов, развитых на Алданском щите Сибирской платформы [3, 15], к трассам которых приурочены слабые землетрясения с K_P =6–8. Наиболее отчетливо фиксируется «облако» эпицентров землетрясений между Западно-Алданским и Тыркандинским разрывными нарушениями по соседству с сейсмическими станциями «Чульман» и «Алдан».

Малоактивен был **Учурский район** (**№** 4), на его территории высвобожденная сейсмическая энергия всего лишь $\Sigma E = 0.005 \cdot 10^{12} \ Дж$. Здесь выявлены две небольшие группы землетрясений в зоне влияния Идюмского надвига (северного ограничения Токинской впадины) и хр. Лурикан, который пересекает р. Учур в ее среднем течении. В **Охотском районе** (**№** 5) сейсмические события в 2003 г. не были отмечены.

В итоге, проявления землетрясений Якутии в 2003 г. не нарушили известной тенденции пространственного сосредоточения их в крупных сейсмических поясах: в Арктико-Азиатском – на северо-востоке, в Олекмо-Становой зоне, восточном фланге Байкало-Станового пояса – на юге.

Литература

- 1. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2002 г. Обнинск: ГС РАН, 2008. С. 232–238.
- 2. Козьмин Б.М., Шибаев С.В. (отв. сост.), Марченко Т.И., Захарова Ж.Г., Саввинова Н.А., Петрова В.Е., Денега Е.Г. Каталог землетрясений Якутии за 2003 год. (См. Приложение к наст. сб. на CD).
- 3. Имаев В.С., Имаева Л.П., КозьминБ.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 4. Bulletin of the International Seismological Centre for 2003. Berkshire: ISC, 2005–2006.
- 5. Драчев С.С. Тектоника рифтовой системы дна моря Лаптевых // Геотектоника. 2000. № 6. С. 43–58.
- 6. Козьмин Б.М. (сост.). Каталог механизмов очагов землетрясений Якутии за 2003 год. (См. Приложение к наст. сб. на CD).
- 7. Грамберг И.С., Деменицкая Р.М., Секретов С.Б. Система рифтогенных грабенов шельфа моря Лаптевых как недостающего звена рифтового пояса хребта Гаккеля – Момского хребта // ДАН СССР. – 1990. – 311. – № 3. – С. 689–694.
- 8. Аветисов Г.П. Сейсмоактивные зоны Арктики. СПб: ВНИИокеангеологии, 1996. 185 с.
- 9. Гусев Г.С., Мокшанцев К.Б., Третьяков Ф.Ф. Разломы Верхояно-Чукотской складчатой области // Разломная тектоника территории Якутской АССР. Якутск: ЯФ СО АН СССР, 1976. С. 73–114.
- 10. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 151–155.
- 11. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 173–177.
- 12. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 181–189.
- 13. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 187–192.
- 14. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 233–239.
- 15. Горнштейн Д.К., Мокшанцев К.Б., Петров А.Ф. Разломы восточной части Сибирской платформы // Разломная тектоника территории Якутской АССР. – Якутск: ЯФ СО АН СССР, 1976. – С. 10–63.