Воронежский кристаллический массив

Л.И. Надёжка, С.П. Пивоваров, И.Н. Сафронич, М.А. Ефременко,

Э.И. Золототрубова

Геофизическая служба РАН, г. Воронеж, nadezhka@geophys.vsu.ru

В 2003 г. продолжались наблюдения за сейсмическим режимом на территории Воронежского кристаллического массива (ВКМ). Региональная сейсмическая сеть расширилась за счет ввода 1 ноября в опытную эксплуатацию еще одной цифровой сейсмической станции «Варварино» (табл. 1), которая расположена на востоке ВКМ в пределах Хоперского мегаблока в с. Варварино, в 15 км от райцентра г. Новохоперск. Оборудование станции установлено в отдельно стоящем погребе частного дома, подпочва – глина. В состав станции входят два комплекта сейсмоприемников: СМЗ-ОС и СМ-3КВ. Кроме этого продолжали работать цифровые станции «Дивногорье» и «Сторожевое» и аналоговая станция «Воронеж». Технические характеристики и координаты сейсмических станций представлены в табл. 1, 2 и подробно описаны в [1–3].

Таблица 1. Сейсмические станции ВКМ (в хронологии их открытия), действовавшие в 2003 г., и параметры аппаратуры с аналоговой записью

№	Станция		Дата	Координаты		$h_{\rm y}$,		Аппаратура			
	Название	Код	открытия	φ°, Ν	λ°, Ε	м	Тип	Компо-	V _{max}	ΔT_{max} ,	
							прибора	нента		С	
1	Воронеж	VOR	20.12.1996	50.730	39.200	180	СМ3-КВ	N, E, Z	5000	0.33 - 2.0	
2	Дивногорье	VORD	20.02.1998	50.966	39.293	94	CM3-OC	SDAS – цифровая станция			
3	Сторожевое	VRSR	08.08.1999	50.215	39.190	183	CM3-OC	SDAS – I	SDAS – цифровая станция		
							СМ3-КВ				
4	Варварино	VRH	01.11.2003	51.2025	41.7215	98	CM3-OC	SDAS – цифровая станция			
							СМ3-КВ				

<i>Гаолица 2.</i> Данные об аппаратуре цифровых станции БКМ в 2005.	Таблии	<i>ųa 2</i> .	Данные	об аппа	ратуре	цифровых	станций	ВКМ 1	з 2003 г	г.
---	--------	---------------	--------	---------	--------	----------	---------	-------	----------	----

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>)
Дивногорье	SDAS – CM3-OC	KH(N, E, Z)v	0.02-10	40	16	$(1.00; 1.06; 1.00) \cdot 10^9$
Сторожевое	SDAS – CM3-OC	BH(N, E, Z)v	0.02-10	20	16	$(1.30; 1.57; 1.22) \cdot 10^9$
	SDAS – CM3-KB	CH(N, E, Z)v	0.50-20	50	16	$(1.19; 1.17; 1.24) \cdot 10^9$
Варварино	SDAS – CM3-OC	BH(N, E, Z)v	0.02-10	20	16	$(7.56; 7.56; 7.40) \cdot 10^8$
	SDAS – CM3-KB	CH(N, E, Z)v	0.50-20	50	16	$(5.24; 4.64; 5.00) \cdot 10^8$

Примечание. Символом «v» обозначен велосиграф.

В летние месяцы 2003 г. дополнительно была развернута полевая сеть временных цифровых сейсмических станций (табл. 3, 4) в различных районах Воронежской области. Полевые станции работали как в населенных пунктах, в этом случае оборудование устанавливалось в погребах и подвалах жилых домов, так и на открытой местности. При работе на открытой местности сейсмоприемники устанавливались в подготовленные приямки с утрамбованным дном вдали от высоких деревьев, мачт линий электропередач, шоссейных дорог и укрывались брезентом для защиты от влаги и ветра. Одновременно работало до четырех станций. Целью работ было изучение микросейсмического шума в различных геолого-геодинамических условиях ВКМ как в пределах крупных геологических блоков, так и непосредственно в зонах крупных тектонических нарушений, разделяющих геоблоки. Попутно велось наблюдение за локальной сейсмичностью различной природы. Получены записи карьерных взрывов на различных расстояниях от источника. Результаты полевых наблюдений были доложены на Международной Казахстано-Российской конференции, посвященной году России в Казахстане и состоявшейся 22–24 июня 2004 г. [4].

Технические характеристики, координаты и время работы полевых сейсмических станций приведены в табл. 3 и 4.

№	Код станции	Дата открытия / закрытия	Коорди ф°, N	инаты λ°, Е	$h_{\rm y},$	Тип АЦП и датчика
1	VS1A	23 07 2003 / 30 07 2003	39 545	51 346	129	SDAS – CM3-KB
2	V30A	24.07.2003 / 27.07.2003	39.67	51.33	159	PDAS – CM3-KB
3	V35A	24.07.2003 / 28.07.2003	39.504	51.206	103	PDAS – CM3-KB
4	VSB	27.07.2003 / 31.07.2003	39.832	51.251	104	SDAS – CM3-OC
5	V30B	27.07.2003 / 30.07.2003	39.893	51.288	155	PDAS – CM3-KB
6	V35B	28.07.2003 / 31.07.2003	39.274	51.198	110	PDAS – CM3-KB
7	V30C	30.07.2003 / 04.08.2003	39.947	51.257	111	PDAS – CM3-KB
8	VS1B	30.07.2003 / 04.08.2003	40.107	51.179	148	SDAS – CM3-OC
9	VS1C	04.08.2003 / 21.08.2003	40.041	51.096	157	SDAS – CM3-OC
10	VSC	31.07.2003 / 24.08.2003	40.16	51.30	153	SDAS – CM3-OC
11	VS1D	21.08.2003 / 29.08.2003	40.22	51.04	154	SDAS – CM3-OC
12	VSD	28.08.2003 / 04.09.2003	40.31	50.99	162	SDAS – CM3-OC
13	VS1E	29.08.2003 / 04.09.2003	40.46	50.86	188	SDAS – CM3-OC
14	V35D	29.08.2003 / 04.09.2003	40.483	50.988	130	PDAS – CM3-KB
15	VS1F	04.09.2003 / 29.09.2003	39.706	51.296	142	SDAS – CM3-OC
16	V35E	04.09.2003 / 06.09.2003	39.785	51.281	139	PDAS – CM3-KB
17	VSE	04.09.2003 / 06.09.2003	39.738	51.286	128	SDAS – CM3-OC
18	VSF	30.09.2003 / 05.10.2003	39.538	51.073	161	SDAS – CM3-OC
19	VS1G	29.09.2003 / 05.10.2003	39.529	50.879	205	SDAS – CM3-OC
20	V35F	29.09.2003 / 03.10.2003	39.512	50.945	135	PDAS – CM3-KB

Таблица 3. Временные полевые цифровые сейсмические станции, работавшие в 2003 г. на территории ВКМ

Таблица 4. Данные об аппаратуре временных цифровых станций ВКМ в 2003 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – от- счет/(<i>м/c</i>)
VS1A, VS1B, VS1D,	СМЗ-ОС СМЗ-КВ	BH(N, E, Z)v	0.02–10	20	16	$(7.56; 7.56; 7.40) \cdot 10^8$
VS1E, VS1F, VS1G						$(5.24; 4.64; 5.00) \cdot 10^{\circ}$
VSB, VSC, VSD, VSE,	CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(1.00; 1.06; 1.00) \cdot 10^9$
VSF						
V30A, V30B, V30C	СМ3-КВ	CH(N, E, Z)v	0.5-20	50	16	$(6.23; 6.23; 3.29) \cdot 10^8$
V35A, V35B, V35D,	СМ3-КВ	CH(N, E, Z)v	0.5-20	50	16	$(6.20; 6.10; 6.71) \cdot 10^8$
V35E, V35F						

Стационарной сетью сейсмических станций (табл. 1) в 2003 г. было зарегистрировано 184 локальных событий, из которых 45 были отнесены к предположительно тектоническим землетрясениям, а 139 – к взрывам в промышленных карьерах [3, 5, 6]. Максимальное землетрясение с K_P =8.8 зарегистрировано в конце года – 4 декабря в 11^h17^m. Самые мощные промышленные взрывы (до 800 *тонн* BB) производились на карьере «Михайловский» в районе г. Железногорска Курской области. На рис. 1 а, б представлены диаграммы распределения явных взрывов и предположительных землетрясений по часам суток, построенных в *ped*. по данным каталога [5].

Рис. 1. Диаграммы распределения по часам суток взрывов (а) и предположительно тектонических землетрясений (б)

Из рис. 1 а видно, что основная масса зарегистрированных карьерных взрывов приходится на обеденное время (с 8 до 10 часов по Гринвичу). Часть взрывов, которые зарегистрированы в ночное время, были произведены в шахте в ночь с субботы на воскресенье. Из сравнения распределений на рис. 1 а и рис. 1 б видно, что максимум числа предположительно землетрясений приходится на интервал $11^{h}-13^{h}$, т.е. временные интервалы максимума чисел взрывов и предположительно тектонических землетрясений не накладываются во времени. Тем не менее можно отметить явное превалирование на рис. 1 б реализации событий в течение четырех часов $(10^{h}-13^{h})$ из 24-х в сутках. Вероятно, при обработке записей не все взрывы удалось выявить (*ped*.).

Ощутимых землетрясений в 2003 г. на территории ВКМ не отмечено. Для построения карты эпицентров сейсмических событий использовались данные стационарных и временных станций. В отдельных случаях обработки удаленных событий привлекалась информация по станциям «Обнинск», «Анапа» и «Кисловодск», расположенным в прилегающих территориях Восточно-Европейской платформы.

Пространственное распределение эпицентров местных предположительно землетрясений представлено на рис. 2. В значительной части эти эпицентры приурочены к зонам разломов различного ранга в эрозионном срезе докембрия. Это указывает на современное «подновление» древних тектонических нарушений.

Распределение событий по глубине (табл. 5), показывает, что основная масса (N=30 или 66%) предположительно тектонических землетрясений произошла в приповерхностном слое $h=0-1 \ \kappa m$, из которых 21 зарегистрировано в пределах Лосевской шовной зоны. Остальные 15 толчков отнесены к горизонту $h=2-5 \ \kappa m$. Следует отметить, что из пяти толчков с $h=5 \ \kappa m$ три локализованы в Хоперском мегаблоке.

Наибольшее число (N=28) событий зарегистрированно в Лосевской шовной зоне, хотя их суммарная сейсмическая энергия (табл. 6) значительно меньше, чем в Хоперском мегаблоке с числом событий N=9, т.е. в три раза меньшим. Самым спокойным, как по числу событий, так и по суммарной энергии, является Курский мегаблок, хотя это может быть обусловлено отсутствием здесь сейсмических станций.

Район		N_{Σ}				
	1	2	3	4	5	
Курский мегаблок	3	2				5
Лосевская шовная зона	21	2	2	1	2	28
Хоперский мегаблок	4		1	1	3	9
Вне районов	2				1	3
Всего	30	4	3	2	6	45

Таблица 5. Распределение гипоцентров землетрясений ВКМ по глубине

1 – тектонические нарушения [7] первого, второго и третьего ранга; 2 – структуры первого ранга (№ 1 – Курский мегаблок, № 2 – Лосевская шовная зона; № 3 – Хоперский мегаблок); 3 – населенный пункт; 4 – сейсмическая станция; 5 – промышленный карьер; 6 – энергетический класс *К*_P.

Таблица 6.	Распределение	числа событий	по энергетическо	му классу	<i>К</i> _Р и сум	ммарной з	энер-
	гии ΣE по райо	нам ВКМ в 2003	3 г.				

N⁰	Район	K _P								N_{Σ}	ΣE ,
		2	3	4	5	6	7	8	9		10 ⁹ Дж
1	Курский мегаблок						4	1		5	0.140
2	Лосевская шовная зона	3	3	3	4	3	10	2		28	0.303
3	Хоперский мегаблок		1			2	2	3	1	9	1.322
4	Вне этих районов						2	1		3	0.120
	Всего	3	4	3	4	5	18	7	1	45	1.885

В заключение можно отметить, что в 2003 г. наблюдалось некоторое снижение активности сейсмотектонических процессов в литосфере Воронежского кристаллического массива, по сравнению с таковыми в 2001 г. и 2002 г., когда было зарегистрировано предположительно тектонических землетрясений N_{Σ} =79 и 47 соответственно, и высвободившаяся в их очагах сейсмическая энергия была равна ΣE =10.8·10⁹ Дж и 4.97·10⁹ Дж [8].

Литература

- 1. Надёжка Л.И., Сафронич И.Н., Орлов Р.А., Пивоваров С.П. Воронежский кристаллический массив // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 193–196.
- 2. Мехрюшев Д.Ю., Старовойт О.Е., Надёжка Л.И. 10 лет сейсмологическим наблюдениям на территории Воронежского кристаллического массива // Материалы Международной конференции «Активные геологические и геофизические процессы в литосфере. Методы, средства и результаты изучения», Т. 1. Воронеж: ВГУ, 2007. С. 321–326.

- 3. Габсатарова И.П., Голубева И.В., Надёжка Л.И., Пойгина С.Г. Восточно-Европейская платформа, Урал и Западная Сибирь // Землетрясения России в 2003 году. Обнинск: ГС РАН, 2006. С. 15–18.
- 4. Надёжка Л.И., Пивоваров С.П., Орлов Р.А., Ефременко М.А., Сафронич И.Н. Характер микросейсмического поля в различных геодинамических и геологических условиях Воронежского кристаллического массива // Материалы Международной конференции «Геодинамические, сейсмологические и геофизические основы прогноза землетрясений и оценки сейсмического риска». – Алматы: Фылым, 2005. – С. 260–265.
- 5. **Пивоваров С.П. (отв. сост.), Надёжка Л.И.** Каталог землетрясений Воронежского кристаллического массива за 2003 год. (См. Приложение к наст. сб. на CD).
- 6. Восточно-Европейская платформа, Урал и Западная Сибирь // Землетрясения России в 2003 году. Обнинск: ГС РАН, 2006. С. 54.
- 7. **Чернышов Н.М., Ненахов В.М., Лебедев И.П., Стрик Ю.Н.** Модель геодинамического развития Воронежского массива в раннем докембрии // Геотектоника. 1997. № 3. С. 21–31.
- 8. Надёжка Л.И., Орлов Р.А., Сафронич И.Н., Пивоваров С.П., Ипполитов О.М., Золототрубова Э.И. Воронежский кристаллический массив, 2001–2002 гг. // // Землетрясения Северной Евразии, 2002 г. Обнинск: ГС РАН, 2008. С. 247–254.