САХАЛИН

Т.А. Фокина, Л.Н. Поплавская, И.А. Паршина, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

Параметры землетрясений региона, включающего территорию о. Сахалин с шельфом и восточную часть Приамурья, определены на основе материалов наблюдений, полученных на четырех стационарных сейсмических станциях Сахалина: «Южно-Сахалинск» (YSS), «Тымовское» (TYV), «Углегорск» (UGL) и «Оха» (OKH) (рис. 1). На юге острова работала локальная сеть из восьми полевых станций Японского производства: две – Datamark и шесть – DAT (табл. 1). В обработке использовались данные сейсмических сетей Приамурья и Приморья [1], Курильских островов [2], бюллетени MOS [3], JMA, ISC [4]. Методы обработки данных [5–10], схема деления региона на отдельные сейсмоактивные районы и параметры аппаратуры сейсмических станций, по сравнению с таковыми в 2002 г. [11], не изменились.

Таблица 1. Сведения о временных цифровых станциях Datamark (DM) и DAT на юге Сахалина в 2003 г.

№	Станция			К	Период		
	Название	Код	Тип	φ°, <i>N</i>	λ°, Ε	h,	наблюдений
						\mathcal{M}	
1	Белые скалы	BSK	DM	46°50.368′	142°19.105′	50	6/VI – 5/XI
2	Успенское	USP	DM	46°52.706′	142°36.203′	170	6/VI – 13/XI
3	Загорское	ZGR	DAT	47°18.1766′	142°29.5786′	120	5/VI - 13/XI
4	Ожидаево	OJD	DAT	47°01.7163′	142°23.9311′	230	13/I – 29/XII
5	Корсаков	KRS	DAT	46°36.5794′	142°48.0659	100	22/I - 24/XII
6	Лесное	LSN	DAT	46°57.4797′	143°01.8682′	30	22/V - 29/X
7	Калинино	KLN	DAT	46°50.8780′	142°00.6260′	20	20/V - 30/X
8	Мальково	MLK	DAT	46°46.1692′	143°21.2681′	0	4/VII - 24/XII

В региональный каталог Сахалина за 2003 г. [12] включены параметры 193 землетрясений: 179 — мелкофокусных ($h \le 32 \ \kappa m$) и 14 — глубокофокусных ($h \ge 320 \ \kappa m$); по 18 землетрясениям имеются макросейсмические сведения. Для десяти землетрясений, из которых восемь коровых и два глубоких, определены механизмы очагов [13].

Коровая сейсмическая активность Сахалина была в 2003 г. по числу землетрясений в 1.2 раза ниже, чем в 2002 г. [11], однако суммарная сейсмическая энергия составила ΣE =4.886 $10^{12} \ Дж$ (табл. 2), что в 3.3 раза превысило соответствующий уровень энергии в 2002 г. Энергетические классы двух наиболее сильных коровых землетрясений (2, 10) на рис. 1, зарегистрированных 8 февраля в $17^{h}36^{m}$ и 21 июля в $02^{h}17^{m}$, составили K_{C} =12.0 и 10.3 соответственно, тогда как в 2002 г. максимальный энергетический класс не превышал K_{C} =9.6.

Глубокофокусная сейсмическая активность, напротив, снизилась как по числу зарегистрированных землетрясений с MSH=4.0–6.0 (N_{Σ} =14 вместо N_{Σ} =21), так и по величине суммарной сейсмической энергии (ΣE =4.077·10¹² Дж вместо ΣE =15.356·10¹² Дж), что в 1.5 и 3.8 раза соответственно меньше, чем в 2002 г. [11].

18 землетрясений ощущались в населенных пунктах о. Сахалин и о. Хоккайдо с интенсивностью сотрясений от 2 до 6–7 баллов (табл. 3). Наибольшее число ощутимых землетрясений (N=11), а также наибольшая интенсивность сотрясений (I_{max} =6–7 баллов) отмечены в Западно-Сахалинском районе (№ 4).

Рис. 1. Карта эпицентров и механизмов очагов землетрясений Сахалина в 2003 г.

1 – энергетический класс K_C ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – граница и номер района, 5 – диаграмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия.

Таблица 2. Распределение коровых землетрясений Сахалина по энергетическому классу *K*_C, глубокофокусных – по магнитуде *MSH* и суммарная сейсмическая энергия Σ*E* по районам

$h \le 32 \ \kappa M$										
N₂	Районы	K _C						N_{Σ}	ΣΕ,	
		≤6	7	8	9	10	11	12		10 ¹² Дж
1	Северный	17	31	27	5	2			82	0.917
2	Охотоморский шельф			2					2	0.097
3	Восточно-Сахалинский		2						2	0.003
4	Западно-Сахалинский	18	32	26	7	2		1	86	3.820
5	Юго-Восточный			2	1				3	0.046
6	Восточная часть Южного Сахалина									0
7	Хабаровский приграничный	2	2						4	0.003
	Всего	37	67	57	13	4		1	179	4.886
h≥320 км										
№	Районы	MSH					N_{Σ}	ΣΕ,		
		4.0				5.0				10 ¹² Дж
5	Юго-Восточный	7			7				14	4.077

Примечание. Энергия оценивалась по формуле Гуттенберга–Рихтера: lg*E*=11.8+1.5 *MLH* [14], для чего величина всех землетрясений приводилась к магнитуде *MLH* путем пересчета из классов *K*_C для землетрясений с глубиной *h*≤80 км и из магнитуд *MSH* с *h* ≥81 км по следующим соотношениям: *MLH* = (*K*_C−1.2)/2; *MLH*= (*MSH*−1.71)/0.75.

Таблица 3. Распределение числа ощутимых землетрясений, максимальной величины класса *К*_С или магнитуды *MSH*, максимальной интенсивности сотрясений *I*_{max} по районам Сахалина

N⁰	Район	Число ощутимых землетрясений	K _{Cmax} (MSH _{max})	I _{max} , балл
1	Северный	5	10.3	4–5
2	Охотоморский шельф	1	8.0	2
3	Восточно-Сахалинский	0	7.1	
4	Западно-Сахалинский	11	12.0	6–7
5	Юго-Восточный	1	(5.5)	2
6	Восточная часть Южного Сахалина	0		
7	Хабаровский приграничный	0	7.2	
	Всего	18		

На рис. 2 представлено распределение мелкофокусных землетрясений Сахалина по часам суток. Диаграмма, построенная для всех сейсмических событий (рис. 2 а), демонстрирует выраженный пик в $12^{h}-13^{h}$ местного времени, на который пришлось 25 событий (14% общего числа). Их эпицентры находились в Северном (№ 1) и Западно-Сахалинском (№ 4) районах. На диаграмме, построенной для событий с $K_{C} \ge 6.9$ (рис. 2 б), распределение более равномерное, следовательно, эти землетрясения, с большой долей вероятности, являются тектоническими.

В Северном районе (№ 1) наблюдалось некоторое повышение сейсмической активности: зарегистрировано 82 коровых землетрясения, что в 1.2 раза больше, чем в 2002 г. [11], суммарная сейсмическая энергия (табл. 2) возросла в 2.7 раза.

Самое сильное (K_c =10.3) землетрясение (17) произошло в районе 18 декабря в 16^h37^m на глубине $h=9\pm 2 \ \kappa M$. Интенсивность вызванных им сотрясений составила 4–5 баллов в пос. Ноглики (Δ =15 κM), 2–3 балла – в пос. Горячие Ключи (22 κM) и Даги (31 κM), 2 балла – в пос. Арги-Паги (59 κM) и Иркир (71 κM). Очаг этого землетрясения находился под преимущественным воздействием растягивающих напряжений, ориентированных субмеридионально, и более крутых субширотных напряжений сжатия [13]. Одна из нодальных плоскостей имела

западное простирание и сравнительно крутое падение на север, вторая – юго-восточное простирание с падением на юго-запад. Сейсмодислокация в очаге – сброс.

а – все зарегистрированные события (N=179); б – события с $K_C \ge 6.9$ (N=115).

Второе по величине энергии землетрясение (18) явилось, по-видимому, афтершоком первого: оно произошло практически в том же месте 19 декабря в $05^{h}09^{m}$, т.е. через 12.5^{h} после первого, его макросейсмический эффект составил 4 балла в пос. Ноглики (16 км) и Даги (28 км).

Еще три землетрясения, зарегистрированные 16 марта в $02^{h}17^{m}$ с $K_{C}=7.9$, 21 августа в $02^{h}57^{m}$ с $K_{C}=8.0$ и 29 августа в $12^{h}34^{m}$ с $K_{C}=7.8$, ощущались в пос. Сабо с интенсивностью сотрясений в 3–4, 2–3 и 3 балла соответственно.

Охотоморский шельф ($N \ge 2$) представлен двумя землетрясениями равной энергии с $K_{\rm C}=8.0$, зарегистрированных 3 апреля в $02^{\rm h}23^{\rm m}$ и 4 июня в $18^{\rm h}40^{\rm m}$, макросейсмический эффект отмечен для первого из них [12].

В Восточно-Сахалинском районе ($\mathbb{N} 3$) также зарегистрировано два землетрясения с $K_{\rm C}$ =7.1 и $K_{\rm C}$ =6.9 без макросейсмического эффекта, локализованные 13 января в 06^h40^m и 6 июня в 11^h18^m [12].

В Западно-Сахалинском районе (№ 4), на территории которого в 2000 г. произошло Углегорско-Айнское землетрясение с MLH=7.0 [15], а в 2001 г. – Такойский рой [16] с главным толчком с $MLH_{max}=5.2$, было зарегистрировано 86 коровых землетрясений, что в 1.5 раза меньше, чем в 2002 г. [11]. Однако суммарная сейсмическая энергия (табл. 2) в пять раз превысила таковую в 2002 г., поскольку 8 февраля в $17^{h}36^{m}$ на глубине $h=9\pm1$ км произошло землетрясение (2) с $K_{C}=12.0$, MLH=5.1, эпицентр которого лишь в 12 км южнее Углегорско-Айнского землетрясения. Максимальная интенсивность сотрясений достигала 6–7 баллов. Макросейсмические данные об этом землетрясении представлены в табл. 4, макросейсмическая схема – на рис. 3. Всего же в районе ощутимых оказалось 11 землетрясений (табл. 3).

Для землетрясений (2, 3, 9–13) определены механизмы очагов [13]. В очагах землетрясений (2, 10), произошедших 8 февраля в $17^{h}36^{m}$ и 21 июля в $02^{h}17^{m}$, наблюдались взбросовые подвижки под действием близгоризонтального напряжения сжатия, которое обусловило подвижку типа взброс по крутым плоскостям разрыва и надвиг – по пологим плоскостям. Очаги землетрясений (3) и (11) за 13 февраля в $01^{h}13^{m}$ и 1 августа в $22^{h}08^{m}$ находились под воздействием близгоризонтальных напряжений растяжения и более крутых напряжений сжатия, что определило подвижку типа сброс по крутой плоскости разрыва и поддвиг – по пологим плоскостокостям. Очаг землетрясения (13), локализованного 1 сентября в $09^{h}23^{m}$, находился под преимущественным воздействием сжимающих напряжений, для которых характерный тип подвижки взброс по крутой плоскости и пологий надвиг – по пологой.

N⁰	Пункт	Δ, <i>км</i>	N⁰	Пункт	Δ, <i>км</i>
	7–6 баллов			3–4 балла	
1	пос. Мелвежье	34	15	пос. Парусное	33
	6 баллов	_	16	пос. Поречье,	40
r		0		Углегорского р-на	
2	пос. Айнское	0	17	пос. Пугачево	47
	<u>5—6 баллов</u>		18	ж/д станция Тихая	64
3	пос. Краснополье	38		<u>3 балла</u>	
	<u>5 баллов</u>		19	пос. Туманово	30
4	пос. Никольское	47	20	пос. Белинское	38
5	г. Углегорск	56	21	пос. Вахрушев	60
	4-5 баллов		22	пос. Гастелло	65
6		27	23	пос. Арсентьевка	79
07	пос. Красногорск	27	24	пос. Тихменево	80
/		54	25	пос. Взморье	85
8	Макаровского р-на	35	26	пос. Леонидово	86
0	п. Макаров,	33	27	г. Поронайск	88
10	пос. Восточный	44		<u>2–3 балла</u>	
11	г. Шахтерск.	66	28	пос. Ильинский	69
	<u>л</u> болло		29	пос. Лесогорск	94
10		10	30	г. Томари	94
12	пос. 1 орное	42		2 балла	
13	пос. Новое	57	21		70
14	пос. лермонтовка	64	31	пос. пензенское	112
		1	32	HOU. DYFORJIEL	115

Таблица 4. Макросейсмические данные о землетрясении 8 февраля 2003 г. в $17^{h}36^{m}$ с K_{C} =12.0, *MLH*=5.1

Рис. 3. Карта пунктов-баллов для землетрясения 8 февраля 2003 г. в 17^h36^m с *K*_C=12.0, *MLH*=5.1 1 – интенсивность сотрясений в баллах по шкале MSK-64; 2 – инструментальный эпицентр.

Глубокофокусные землетрясения на территории района в 2003 г. не отмечены.

Юго-Восточный район (№ 5) представлен тремя коровыми и 14 глубокофокусными землетрясениями, суммарная сейсмическая энергия первых (табл. 2) в 1.5 раза меньше таковой в 2002 г., вторых – в 3.8 раза. Глубокофокусные землетрясения зарегистрированы в интервале глубины $h=320-380 \ \kappa m$, из них (12), произошедшее 26 сентября в $04^{h}44^{m}$ на глубине $h=350\pm26 \ \kappa m$ с MSH=5.5, ощущалось на о. Хоккайдо с интенсивностью сотрясений в I=1-2 балла [12].

Для глубокофокусных землетрясений (14) и (15) определены механизмы очагов [13]. Первое произошло 26 сентября в $04^{h}44^{m}$ на глубине $h=350\pm26 \ \kappa m$ с MSH=5.5, второе – 10 ноября $02^{h}32^{m}$ на глубине $h=320\pm21 \ \kappa m$ с MSH=5.0 [12]. Система напряжений, действовавшая в очаге землетрясения (14), характеризуется близгоризонтальным сжатием, ориентированным субширотно, и северо-восточным субмеридиональным растяжением. В результате действия такой системы напряжений произошла сдвиговая подвижка с небольшой взбросовой компонентой. Очаг (15) реализовался под воздействием преобладающего напряжения растяжения и более крутого напряжения сжатия, что определило подвижку типа поддвиг.

В Восточной части Южного Сахалина (№ 6) в 2003 г. не было зарегистрировано ни одного землетрясения.

В Хабаровском приграничном районе (№ 7) зарегистрировано четыре коровых землетрясения, произошедшие 12 января в 09^h53^m с K_C =7.0, 20 февраля в 07^h19^m с K_C =6.0, 15 марта в 02^h50^m с K_C =6.5 и 1 июня в 11^h01^m с K_C =7.2 [12]. Максимальный энергетический класс составил K_C =7.2, суммарная сейсмическая энергия (табл. 2) в 43 раза меньше таковой в 2002 г. [11].

Литература

- 1. Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. Сейсмологический бюллетень (ежедекадный) за 2003 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2003–2004.
- 4. Bulletin of the International Seismological Centre for 2003. Berkshire: ISC, 2005-2006.
- 5. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 6. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 7. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 8. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- 9. Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- Волкова Л. Ф., Поплавская Л.Н., Соловьёва О.Н. Шкалы MPVA, MSHA для определения магнитуд близких глубокофокусных землетрясений Дальнего Востока // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 81–85.
- 11. Фокина Т.А., Паршина И.А., Рудик М.И., Сафонов Д.А. Сахалин // Землетрясения Северной Евразии, 2002 г. Обнинск: ГС РАН, 2008. С. 200–206.

- 12. **Паршина И.А. (отв. сост.), Малашенко Ю.А.** Каталог землетрясений Сахалина за 2003 год. (См. Приложение к наст. сб. на CD).
- 13. Паршина И.А., Поплавская Л.Н., Нагорных Т.В. (отв. сост.). Каталог механизмов очагов землетрясений Сахалина за 2003 год. (См. Приложение к наст. сб. на CD).
- 14. Гутенберг Б., Рихтер К.Ф. Магнитуда, интенсивность, энергия и ускорение как параметры землетрясений (II) // Слабые землетрясения. – М.: ИЛ, 1961. – С. 72–119.
- 15. Поплавская Л.Н., Нагорных Т.В., Фокина Т.А., Поплавский А.А., Пермикин Ю.Ю., Стрельцов М.И., Ким Чун Ун, Сафонов Д.А., Мельников О.Я., Зудик М.И., Оскорбин Л.С. Углегорско-Айнское землетрясение 4 августа 2000 года, *MLH*=7.0, *I*₀=8–9 (Сахалин) // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 265–284.
- 16. Поплавская Л.Н., Фокина Т.А., Сафонов Д.А., Нагорных Т.В., Ким Чун Ун, Сен Рак Се, Урбан Н.А. Такойское землетрясение 1 сентября 2001 года с *M*=5.2, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – С. 331–344.