Беларусь

А.Г. Аронов, Р.Р. Сероглазов, Т.И. Аронова, О.Н. Кулич

Центр геофизического мониторинга Национальной академии наук Беларуси, г. Минск, centr@cgm.org.by

Сейсмологические наблюдения на территории Беларуси в 2003 г. проводились сейсмическими станциями «Минск», «Нарочь», «Солигорск», «Гомель» (рис. 1), расположение которых в основном осталось прежним [1], хотя последняя перемещена. Станция «Гомель» из-за неудовлетворительных условий регистрации (высокий уровень шумов) была закрыта 22 февраля 2003 г., а аппаратура перебазирована в крайнюю южную точку Беларуси в пос. Глушкевичи в 260 км к югу от г. Минска. Геологические условия: район расположен на северном борту Украинского щита вблизи пересечения суперрегионального Южно-Припятского разлома, проникающего в чехол, и секущего чехол регионального Пержанско-Самоновичского доплатформенного разлома [2, 3]. Кристаллический фундамент сложен гранитоидами и выходит на поверхность. Станция «Глушкевичи» была открыта 24 апреля. Параметры сейсмических станций по состоянию на 2003 г. приведены в табл. 1, 2.

Рис. 1. Сеть сейсмических станций Беларуси и карта эпицентров сейсмических событий за 2003 г.

^{1 –} энергетический класс K_P ; 2 – сейсмическая станция; 3 – населенный пункт; 4 – г. Минск; 5 – государственная граница.

№	🛯 Станция		Дата		Координаты			Аппаратура			
	Название	Код	открытия	закрытия	φ°, N	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,
							\mathcal{M}	прибора	нента		С
1	Минск	MIK	03.01.1963		54.50	27.88	196	ССМ-СКМ	N	11050	0.96-1.5
	(Плещеницы)								Е	10170	1.06-1.6
									Z	12420	1.09–1.5
								ССМ-СКД	Ν	480	3.56-11.5
									Е	470	2.00-10.9
									Z	570	2.36-10.0
			05.06.2002						SDA	AS – ци	фровая
2	Нарочь	NAR	17.08.1979	30.09.1989	54.92	26.73	167				
			01.10.1989		54.90	26.78	189	ССМ-СКМ	Ν	15040	0.69–0.9
									Е	11200	0.76-1.1
									Z	13080	0.76-1.0
								ССМ-СКД	Ν	910	2.23-12.2
									Е	990	2.22-10.9
									Z	1080	1.80-11.3
								ССМ-СД	Ν	190	4.45-25.4
									Е	180	5.00-33.2
									Z	180	4.20-31.5
								ССМ-КПЧ	Ν	97	3.17-26.2
									Е	100	4.00-33.9
									Z	150	4.18-34.5
			01.01.1998						CSD	-20 – ци	фровая
			28.11.2002						SDAS – цифровая		фровая
3	Гомель	GML	02.04.1982	01.02.1989	52.30	31.00	132				
			01.02.1989	31.12.1997	52.60	31.08	159				
			01.01.1998						CSD-20 – цифровая		фровая
4	Солигорск	SOL	01.01.1983		52.75	27.78	-436				
			00.01.1998		52.84	27.47	-436	ССМ-СКМ	Ν	28010	0.45-1.1
									E	13270	0.41-0.7
									Z	20380	0.60-1.3

Таблица 1. Сейсмические станции Беларуси (в хронологии их открытия), работавшие в 2003 г., и их параметры

Таблица 2. Данные об аппаратуре цифровых станций в 2003 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса дан- ных, Ги	Эффективная разрядность АЦП	Чувствительность, велосиграф – от- счет/(<i>м/c</i>)
Гомель	CSD-20-SL-210	BH(N, E, Z)v	0.01-10	20	22	5.8·10 ⁸
	CSD-20-SL-220	LH(N, E, Z)v	0.01-10	1	22	$5.8 \cdot 10^8$
Нарочь	CSD-20-SL-210	BH(N, E, Z)v	0.01-10	20	22	$5.8 \cdot 10^8$
	CSD-20-SL-220	LH(N, E, Z)v	0.01-10	1	22	$5.8 \cdot 10^8$
	SDAS-CM-3-OC	BH(N, E, Z)v	0.02-10	20	16	$7.1 \cdot 10^8$
		LH(N, E, Z)v	0.02-10	20	16	$1.2 \cdot 10^7$
Минск	SDAS-CM-3-OC	BH(N, E, Z)v	0.02-10	20	16	$7.1 \cdot 10^8$
		LH(N, E, Z)v	0.02-10	20	16	$1.2 \cdot 10^7$
Глушкевичи	CSD-20-SL-210	BH(N, E, Z)v	0.01-10	20	22	$5.8 \cdot 10^8$
	CSD-20-SL-220	LH(N, E, Z)v	0.01-10	1	22	5.8·10 ⁸

В течение 2003 г. сейсмичность на территории Беларуси проявилась, как и ранее [1], лишь в Солигорском горнопромышленном районе. Методика определения основных параметров регистрируемых толчков, по сравнению с таковой в [1], не изменилась. Локализация местных сейсмических событий производилась по данным одной станции – «Солигорск». Эпицентральные расстояния определялись по разнице времен (t_S - t_P) вступлений *S*- и *P*-волн с использованием регионального годографа [4]. Расчеты по определению азимутов на эпицентры проводились на основе полярности первых вступлений [5]. Для определения энергетического класса K_p сейсмических событий использовалась номограмма Т.Г. Раутиан [6], а их магнитуды получены пересчетом из энергетических классов K_P по формуле Т.Г. Раутиан [7]:

$$K_{\rm P} = 4 + 1.8 M_{\odot}$$

Общее число зарегистрированных событий составило N=58 [8]. Из них наименьшее имеет $K_p=4.8$ (28 октября в $01^{h}26^{m}$), а два наибольшие – $K_p=8.1$ зарегистрированные 6 апреля в $01^{h}46^{m}$ и 5 октября $01^{h}59^{m}$ соответственно. Карта эпицентров всех событий показана на рис. 1, а распределение по месяцам числа сейсмических событий разных энергетических классов и суммарной выделившейся сейсмической энергии представлено в табл. 3.

Месяц		ŀ	Кр	N_{Σ}	ΣE ,		
	5	6	7	8	_	Дж	
Ι	1	5	7	2	15	$0.2796 \cdot 10^9$	
II		1	3		4	$0.0343 \cdot 10^9$	
III			2	1	3	$0.1119 \cdot 10^9$	
IV			3	1	4	$0.1859 \cdot 10^9$	
V		2	2	1	5	$0.1408 \cdot 10^9$	
VI	2				2	$0.0004 \cdot 10^9$	
VII		1	1	1	3	$0.0487 \cdot 10^9$	
VIII			1	1	2	$0.0448 \cdot 10^9$	
IX	1	1	3		5	$0.0508 \cdot 10^9$	
Х	1	2		1	4	$0.1285 \cdot 10^9$	
XI		1	2		3	$0.0426 \cdot 10^9$	
XII	3	3	2		8	$0.0187 \cdot 10^9$	
Всего	13	37	32	6	90	$1.0870 \cdot 10^9$	

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2003 г.

Рассматривая ход сейсмического процесса в течение года, можно отметить, что максимумы высвобождения сейсмической энергии приходятся на январь (диапазон энергетических классов $K_P=5-8$) и апрель ($K_P=7-8$), а максимумы числа событий N – на январь и декабрь. Минимальные значения выделившейся энергии приходятся на июнь, а минимум числа событий – на июнь и август (рис. 2).

Рис. 2. Распределение числа сейсмических событий (а) и выделившейся энергии (б) за 2003 г.

Сопоставление данных 2003 г. с долговременными средними оценками N и ΣE за период 1983–2002 гг. (табл. 4) показало, что уровень выделившейся в 2003 г. сейсмической энергии равен таковому в 2002 г., но в 3.1 раза ниже среднего его значения за 20 лет ($\Sigma E=3.37\cdot10^9 \ \mathcal{J}\mathcal{H}$). Число событий этого года ниже, чем 2002 г., в 1.5 раза и выше в 1.2 раза его среднего долговременного значения ($\Sigma N=46.35$). В целом по региону продолжился спад сейсмической активности, наметившийся с 2000 г. (рис. 3).

Год	Год Кр						N_{Σ}	ΣΕ,
	4	5	6	7	8	9		10 ⁹ Дж
1983			8	4	10	1	23	2.2
1984		2	10	21	12		45	2.5
1985			1	9	12	1	23	5.0
1986			3	13	29		45	5.3
1987			5	10	5		20	1.0
1988		7	8	9	2		26	0.5
1989		2	1	2	7		12	1.6
1990		2	17	25	45		89	7.7
1991			6	11	13		30	3.0
1992		1	2	10			13	1.7
1993			2	10	20		32	4.8
1994		1	4	15	16		36	2.7
1995		1	6	12	25		44	4.2
1996		1	4	23	46		74	8.
1997		17	22	31	14		84	2.6
1998		14	22	25	26		87	3.7
1999			15	25	39		79	7.3
2000			5	11	9		25	1.7
2001		6	22	20	2		50	0.6
2002	2	13	37	32	6		90	1.1
Среднее за 20 лет	0.10	5.58	10.00	15.90	17.79	0.05	46.35	3.37
2003		8	16	26	8		58	1.09

Таблица 4. Годовые значения числа событий разных энергетических классов *К*_P и их суммарной сейсмической энергии на территории Беларуси за 1983–2002 гг. и 2003 г.

Рис. 3. Распределение числа сейсмических событий (а) и суммарной выделившейся энергии (б) по годам с 1983 г. по 2003 г.

В реальном времени все 58 событий за 2003 г. изображены условными масштабными прямыми по временной оси на рис. 4, на котором видны периоды затишья в марте–апреле и в июне–июле. Активному периоду, проявившемуся в январе, предшествовал период абсолютного затишья с середины ноября по декабрь 2002 г. [1].

Рис. 4. Распределение во времени сейсмических событий разных классов К_Р

Распределение всех сейсмических событий за 2003 г. по часовым интервалам за сутки показано на рис. 5. На графике видны периоды повышения числа событий в ночное время – 1^{h} и 3^{h} , в дневное время – 9^{h} и 13^{h} . Анализируя частоту реализации сейсмических событий в разные годы, можно отметить, что нет четкого проявления максимумов числа событий в определенное время суток.

Рис. 5. Распределение сейсмических событий 2003 г. по часам суток

В тектоническом плане основная часть событий, зарегистрированных в 2003 г., приурочена к зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы [9]. Сопоставление пространственного распределения очагов землетрясений с тектонической характеристикой региона показывает, что большинство разломов здесь активны в сейсмическом отношении [10, 11]: сейсмические события группируются вдоль разломов различного направления или их звеньев, а также сконцентрированы в зонах их пересечения (рис. 6). Наблюдается приуроченность землетрясений к следующим разломам: субмеридионального простирания - суперрегиональному Стоходско-Могилевскому и субширотного простирания суперрегиональному Северо-Припятскому, региональным: Ляховичскому, Речицкому, Червонослободско-Малодушенскому, Копаткевичскому. Отдельные землетрясения попадают в зоны пересечения субмеридиональных и субширотных разломов. Частично эпицентры сей-

смических событий располагаются вдоль южной границы шахтного поля Солигорского горно-промышленного района.

Рис. 6. Карта проявления сейсмотектонических процессов в Припятском прогибе

1 – энергетический класс K_P ; 2 – населенный пункт; 3 – река; 4–6 – разломы, проникающие в чехол (4 – суперрегиональные, ограничивающие крупнейшие надпорядковые структуры; 5 – региональные, ограничивающие крупные структуры I, II порядка; 6 – локальные); 7–9 – разломы, не проникающие в чехол (7 – суперрегиональные, разграничивающие крупнейшие области разного возраста переработки; 8 – региональные; 9 – локальные); 10 – разломы (цифры в кружках): 1 – Северо-Припятский, 2 – Налибокский, 3 – Ляховичский, 4 – Речицкий, 5 – Червонослободско-Малодушинский, 6 – Копаткевичский, 7 – Шестовичский, 8 – Сколодинский, 9 – Выжевско-Минский, 10 – Стоходско-Могилевский, 11 – Кричевский, 12 – Чечерский); 11 – граница шахтных полей Солигорского горнопромышленного района.

Литература

- 1. Аронова Т.И., Кулич О.Н. Беларусь // Землетрясения Северной Евразии, 2002. Обнинск: ГС РАН, 2008. С. 241–246.
- 2. Геология Беларуси / Ред. А.С. Махнач, Р.Г. Гарецкий, А.В. Матвеева и др. Минск: НАН Беларуси, 2001. 815 с.
- 3. Основы геологии Беларуси / Ред. А.С. Махнач, Р.Г. Гарецкий, А.В. Матвеева, Я.И. Аношко. Минск: НАН Беларуси, 2004.– 391 с.
- 4. Аронов А.Г. Региональные годографы сейсмических волн запада Восточно-Европейской платформы // Сейсмологический бюллетень. – Минск: ОКЖИОП, 1996. – С. 136–149.
- 5. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 6. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Труды ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 7. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 8. Аронова Т.И (отв. сост.), Кулич О.Н. Каталог землетрясений Беларуси за 2003 год. (См. Приложение к наст. сб. на CD).
- 9. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И. Сейсмичность территории Беларуси // Землетрясения и микросейсмичность в задачах современной геодинамики Восточно-Европейской платформы. Кн. 1. – Петрозаводск: Карельский научный центр РАН, 2007. – С. 357–364.
- 10. **Аронова Т.И.** Особенности проявления сейсмотектонических процессов на территории Беларуси // Літасфера. 2006. № 2 (25). С. 103–110.
- 11. **Аронов А.Г., Аронова Т.И.** Сейсмическая активность разломов // Разломы земной коры Беларуси. Минск: Красико-Принт, 2007. С. 331–340.