АРКТИЧЕСКИЙ БАССЕЙН

Г.П. Аветисов

ВНИИ геологии и минеральных ресурсов Мирового океана Министерства природных ресурсов Российской Федерации, г. Санкт-Петербург, **avet@vniio.nw.ru**

В 2003 г. несколько изменены границы региона по сравнению с таковыми в [1], определяемыми ранее следующими координатами узловых точек: 1. φ =82°N, λ =10°E; 2. φ =82°N, λ =70°E; 3. φ =70°N, λ =70°E; 4. φ =70°E, λ =101°E; 5. φ =76°N, λ =101°E; 6. φ =76°N, λ =170°W, которых придерживались в Сборниках за период 1997–2001 гг. [2], хотя в 1990–1996 гг. они были другими [3]. Ныне рассматриваются землетрясения, попадающие в рамки девятиугольника с измененными координатами угловых точек (рис. 1): 1. Северный полюс; 2. φ =81°N, λ =10°W; 3. φ =81°N, λ =29°E; 4. φ =70°N, λ =29°E; 5. φ =70°N, λ =68°E; 6. φ =76°N, λ =68°E; 7. φ =76°N, λ =162°E; 8. φ =74°N, λ =162°E; 9. φ =74°N, λ =168°W. В этих пределах в 2003 г. не работало ни одной сейсмической станции, поэтому, как и в прошлые годы [1–3], представляемая информация о землетрясениях получена исключительно по данным [4, 5] мировой сети, вводимым последовательно в Банк арктических сейсмологических данных (APC), структура которого описана в [6].

Рис. 1. Схема трех границ ответственности региона Арктический бассейн за разные периоды времени

Всего в течение 2003 г. мировой сетью в пределах указанного региона зарегистрировано 29 землетрясений (рис. 2), охарактеризованных определениями магнитуд по данным ISC (m_b и Ms), NEIC (m_b и Ms), EIDC (m_b и Ms) и MOS (MPSP и MS) и NAO (ML) [7].

Как показано в [3] и подтверждено в [2], представительными для данного региона в настоящее время являются землетрясения, начиная с магнитуды m_b =4.5.

Распределение годовых чисел землетрясений разных магнитуд и выделенной сейсмической энергии за период 1990–2003 гг. показаны в табл. 1. Распределение энергии проиллюстрировано также на рис. 3.

Рис. 2. Карта эпицентров землетрясений Арктического бассейна за 2003 г.

Энергия Е рассчитывалась по формуле К. Касахара [8]:

lg*E*,
$$3pz=5.8 + 2.4 m_{\rm b}(\rm ISC)$$
.

Год	m _b						N_{Σ}	ΣE ,
	3.1–3.5	3.6-4.0	4.1-4.5	4.6-5.0	5.1-5.5	5.6-6.0	-	10 ¹¹ Дж
1990	1	2	4	5	1		13	0.9
1991		1	3	5	3		12	13
1992	2	1	6	1	1	1	12	93
1993	1	1	6	9	1		18	3.3
1994	2	1	1	3			7	0.8
1995	2	10	10	3			25	0.8
1996	3	7	2				12	0.02
1997	6	7	2	1		1	17	18
1998	3	14	8	3			28	1.0
1999	33	122	79	29	4		267	15
1999 (без роя)	3	5	3	4	1		16	2.2
2000	3	17	7		1		28	1.3
2001	4	10	3	3			20	0.3
2002	5	7	3	1	2		18	3.4
2003	9	7	3	2	1		22	1.5
Сумма	74	207	137	65	14	2	499	152.3
Сумма (без роя)	44	90	61	40	11	2	248	139.5
Среднее за 1990-2003 гг.	5.286	14.786	9.786	4.643	1.0	0.143	35.6	10.879
Среднее без роя 1999 г.	3.143	6.429	4.357	2.857	0.786	0.143	17.4	9.964

Таблица 1. Годовые числа землетрясений разных магнитуд *m*_b и суммарной выделенной сейсмической энергии Σ*E* в Арктическом бассейне за 1990–2003 гг.

Картина распределения эпицентров в 2003 г. типична для данного района Арктики (рис. 2). Большая часть землетрясений (24 из 29) связаны с сейсмоактивной зоной, протягивающейся через глубоководную часть Арктического бассейна до шельфа моря Лаптевых. Указанная зона является фрагментом глобального сейсмического пояса срединноокеанических хребтов, трассирующего дивергентные границы литосферных плит. В глубоководной части Северного Ледовитого океана она приурочена к гребню подводного хр. Гаккеля, являющегося продольной осью Евразийского суббассейна. По ней проходит граница Евразийской и Североамериканской литосферных плит [9–12].

В 2003 г. заметно большая активность характеризует западную часть хр. Гаккеля, где 13 февраля в $02^{h}21^{m}$ произошло единственное в этом году событие с $m_{b}(ISC)=5.0$. Ни одного землетрясения не отмечено на протяженном участке хребта между 80° Е и 120° Е.

Землетрясения 26 апреля $03^{h}40^{m}$ с ML(NAO)=2.2, 11 мая $10^{h}33^{m}$ с ML(NAO)=3.0 и 15 августа $14^{h}24^{m}$ с ML(NAO)=2.2 произошли в северной части шельфа Баренцева моря между архипелагами Шпицберген и Земля Франца-Иосифа, где и раньше отмечались редкие проявления повышенной сейсмичности. Так, в этом районе 18.02.1948 г. и 22.11.1948 г. имели место два землетрясения с магнитудами MS(MOS), равными 6.3 и 5.2 соответственно. События с магнитудами $m_b(ISC)$, равными 4.3 и 4.7, отмечались 13.03.1967 г. и 14.03.1967 г.; с $m_b=4.6 - 25.06.1975$ г.; с $m_b=4.3 - 26.04.1994$ г. [5].

Одно слабое событие с магнитудой ML(NAO)=2.6, записанное всего двумя далекими станциями, произошло 8 октября в $23^{h}07^{m}$ на Карском побережье северного острова Новой Земли. Ранее, в районе пролива Маточкин Шар между северным и южным островами Новой Земли, 15.11.1978 г. имело место землетрясение с $m_b(NEIC)=4.3$, а 01.08.1986 г. – с $m_b(ISC)=4.8$ [5].

В распределении событий по времени суток (рис. 4) отмечается максимум, попадающий на $0^{h}-1^{h}$ по Гринвичскому времени.

На диаграмме распределения землетрясений по дням недели (рис. 5) некоторое увеличение приходится на среду и четверг.

Фокальные механизмы определены для четырех землетрясений: 25 января в $14^{h}45^{m}$ с MS=4.0, 13 февраля в $02^{h}21^{m}$ с MS=4.5, 14 июня в $19^{h}33^{m}$ с MS=4.2 и 26 сентября в $04^{h}35^{m}$ с MS=4.8 [13]. Все решения дали режим нормального сброса (рис. 6). Простирание оси T, по определениям HRVD, субортогонально оси хр. Гаккеля. Определения ZUR-RMT дали по этому параметру значения, которые меньше на 20–40° относительно HRVD [5].

6

Рис. 4. Распределение землетрясений Арктического бассейна по часам суток в 2003 г.

Рис. 6. Стереограммы механизмов очагов четырех землетрясений 25 января в 14^h45^m с *MS*=4.0, 13 февраля в 02^h21^m с *MS*=4.5, 14 июня в 19^h33^m с *MS*=4.2, 26 сентября в 04^h35^m с c *MS*=4.8 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Литература

- 1. **Аветисов Г.П.** Арктический бассейн // Землетрясения Северной Евразии, 2002 г. Обнинск: ГС РАН, 2008. С. 265–266.
- 2. Аветисов Г.П. Арктический бассейн // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 248–251.
- 3. **Аветисов Г.П.** Арктический бассейн за 1990–1994 гг. // Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 117–121.
- 4. Сейсмологический бюллетень (ежедекадный) за 2003 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2003–2004.
- 5. Bulletin of the International Seismological Centre for 2003. Berkshire: ISC, 2005-2006.
- 6. Аветисов Г.П., Винник А.А., Копылова А.В. Модернизированный банк арктических сейсмологических данных // Российский геофизический журнал. 2001. № 23–24. С. 42–48.
- 7. Аветисов Г.П. (сост.). Каталог землетрясений Арктического бассейна за 2003 год. (См. Приложение к наст. сб. на CD).
- 8. Касахара К. Механика землетрясений. М.: Мир, 1985. С. 25.
- 9. Sykes L.R. The seismicity of the Arctic // Bull. Seismol. Soc. Am. 1965. 55. № 2. P. 519–536.
- Карасик А.М. Магнитные аномалии хребта Гаккеля и происхождение Евразийского суббассейна Северного Ледовитого океана // Геофизические методы разведки в Арктике. Ленинград: НИИГА, 1968. Вып. 5. С. 8–19.
- 11. The Arctic Ocean region / The Geology of North Americ, (edited by Grantz A., Johnson L. and Sweeney J.F.). Boulder: The Geological Society of America, 1990. L. 644 p.
- 12. Аветисов Г.П. Сейсмоактивные зоны Арктики. СПб: ВНИИОкеангеология, 1996. 185 с.
- 13. Аветисов Г.П. (сост.). Каталог механизмов очагов землетрясений Арктического бассейна за 2003 год. (См. Приложение к наст. сб. на CD).