ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА

Б.Г. Пустовитенко, Е.И. Поречнова, З.Н. Сыкчина

Отдел сейсмологии Института геофизики НАН Украины, г. Симферополь, silver@mail.strace.net

Определение динамических параметров очагов слабых местных землетрясений Крыма стало массовым с 1981 г. [1, 2] благодаря внедрению в практику экспресс-метода расчета спектров землетрясений. В 2002 г. сейсмическая активность Крымского региона была невысокой [3], большинство записей получено на неудобной для оцифровки скорости развертки записи, поэтому спектры удалось построить только для трех землетрясений с K_{Π} =8.9–13.0 (табл. 1) в диапазоне эпицентральных расстояний 89–283 км.

№	Дата,	t_0 ,	Эпиц	ентр	h,		Ma	гнитуд	ы	K_{Π}	Район	
	дм	ч мин с	φ°, N	λ°, E	км	Мс	Mc Mw #Ms ^MPSP					
									$\#m_{ m b}$			
1	2	3	4	5	6	7	8	9	10	11	12	
1	24.06	17 37 45.8	44.46	34.04	14	2.5	3.2			8.9	Ялтинский (№ 2)	
2	09.11	02 18 15.0	44.82	37.70	29	5.1	5.5		^5.2	13.0	Керченско-Анапский (№ 5)	
								#4.8	#5.0			
3	21.12	00 42 12.4	44.90	36.76	21		3.0		^4.1	9.0	Керченско-Анапский (№5)	

Таблица 1. Список землетрясений, для которых рассчитаны спектры в 2002 г.

Примечание. Параметры землетрясений в графах 2–8, 11, 12 соответствуют таковым в [3]; магнитуды ^*MPSP* взяты из [4], #*Ms* и #*m*_b из [5, HRVD].

Очаговые параметры землетрясений получены по амплитудным спектрам *S*-волн землетрясений, зарегистрированных региональными сейсмическими станциями Крыма «Симферополь», «Судак», «Алушта» и «Ялта». Пригодная для оцифровки запись ощутимого землетрясения 9 ноября 2002 г. получена только на загрубленных каналах C-5-C сейсмической станции «Судак» и на канале СД-1 в Симферополе со скоростью развертки записи 472 *мм/мин* и 15 *мм/мин* соответственно (табл. 2). Методика оцифровки сейсмограмм и расчета спектральных и очаговых параметров описана в [2]. Пространственное положение землетрясений, для которых получены спектры, представлено на рис. 1.

Рис. 1. Карта эпицентров землетрясений, для которых рассчитаны спектры 1 – сейсмическая станция; 2 – береговая линия; 3 – эпицентр землетрясения.

Как видно из рис. 2, полученные амплитудные спектры надежно аппроксимируются в рамках модели Брюна [6] со спадом спектральной плотности в области высокочастотной асимптоты по квадратичному закону. Амплитудные спектры довольно просты, с уверенно выделяемой угловой частотой f_0 и спектральной плотностью Ω_0 .

Рис. 2. Амплитудные спектры землетрясений 24 июня в $17^{h}37^{m}$ с K_{Π} =9.0 (а), 9 ноября в $02^{h}18^{m}$ с K_{Π} =13.0 (б) и 21 декабря в $00^{h}42^{m}$ с K_{Π} =9.0 (в)

Характеристики амплитудных спектров f_0 и Ω_0 использованы для расчета динамических параметров очагов землетрясений Крыма (табл. 2).

Расчет динамических параметров, их усреднение проведено с использованием рекомендаций [7] и методических разработок для интерпретации спектров местных землетрясений [2]. Для слабых толчков 24 июня и 21 декабря расчет M_0 проведен для средней функции направленности излучения их очата, при неизвестном механизме очага принятой равной значению 0.4 [8]. Для землетрясения 9 ноября 2002 г. при оценке M_0 учтена направленность излучения на сейсмические станции на основе решения механизма очага [9]. Направленность излучения на станциях «Судак» и «Симферополь» составила 0.64 и 0.77 соответственно.

В табл. 2 представлены следующие параметры очагов землетрясений: Ω_0 – спектральная плотность, f_0 – угловая частота, M_0 – сейсмический момент, r_0 – радиус круговой дислокации, $\Delta \sigma$ – сброшенное напряжение, $\eta \sigma$ – кажущееся напряжение, ε – деформация сдвига, u – средняя подвижка по разрыву. Приведены также средние некорректированные (*S*) и скорректированные (*S*) значения динамических параметров и, соответственно, стандартное отклонение их логарифмов (*P* и *P*_k). Осреднение динамических параметров проводилось исходя из логнормального закона распределения определяемых величин [2].

Сюда же включены значения моментной магнитуды Mw, рассчитанной по сейсмическому моменту M_0 . Вычисления выполнены по средним некорректированным значениям сейсмического момента по формуле Канамори [10]:

$$M_W = 2/3 \cdot \lg M_0 - 10.7.$$

В системе единиц СИ формула Канамори приобретает вид:

$$M_W = 2/3 \cdot (\lg M_0 + 7) - 10.7$$

Станция	Состав- ляющая	Δ, <i>км</i>	$\Omega_0,\ \mathcal{M}\cdot \mathcal{C}$	f ₀ , Гц	М₀, Н∙м	Mw	r ₀ , км	Δσ, Πα	3	— и, м		
Землетрясение 24 июня: $t_0=17^h37^m45.8^s$, $\phi=44.46^\circ$, $\lambda=34.04^\circ$, $h=14 \kappa M$, $K_{\Pi}=8.9$												
Судак	Ε	89	$0.285 \cdot 10^{-6}$	1.80	$6.06 \cdot 10^{13}$	3.15	0.66	$0.92 \cdot 10^5$	$3.07 \cdot 10^{-6}$	$0.15 \cdot 10^{-2}$		
Землетрясение 9 ноября : $t_0=02^h18^m15^s$, $\phi=44.82^\circ$, $\lambda=37.70^\circ$, $h=29$ км, $K_{\Pi}=13.0$												
Судак	Ε	213	$407.38 \cdot 10^{-6}$	0.5	19347.8·10 ¹³	5.49	2.65	$45.57 \cdot 10^5$	151.91.10-6	29.16·10 ⁻²		
Симферополь	N	283	562.34·10 ⁻⁶	1.0	29377.0·10 ¹³	5.61	1.33	549.42·10 ⁵	1831.4.10-6	$176.21 \cdot 10^{-2}$		
Землетрясение 21 декабря: <i>t</i> ₀ =00 ^h 42 ^m 12.4 ^s , φ=44.90°, λ=36.76°, <i>h</i> =21 <i>км</i> , <i>K</i> _Π =9.0												
Алушта	Ε	187	$0.041 \cdot 10^{-6}$	3.98	$2.17 \cdot 10^{13}$	2.86	0.32	$2.90 \cdot 10^5$	9.67·10 ⁻⁶	$0.23 \cdot 10^{-2}$		
Судак	Ε	145	0.198.10-6	1.42	$8.11 \cdot 10^{13}$	2.98	0.89	$0.51 \cdot 10^5$	$1.71 \cdot 10^{-6}$	$0.11 \cdot 10^{-2}$		
Ялта	Ε	210	$0.056 \cdot 10^{-6}$	2.88	$3.32 \cdot 10^{13}$	3.24	0.44	$1.75 \cdot 10^5$	$5.84 \cdot 10^{-6}$	$0.19 \cdot 10^{-2}$		
S					$3.88 \cdot 10^{13}$	3.03	0.44	$2.01 \cdot 10^5$	$6.68 \cdot 10^{-6}$	$0.21 \cdot 10^{-2}$		
Р					$0.17 \cdot 10^{13}$		0.17	$0.36 \cdot 10^5$	0.36.10-6	$0.19 \cdot 10^{-2}$		
$S_{ m k}$					$5.15 \cdot 10^{13}$		0.53	$1.54 \cdot 10^5$	5.12.10-6	$0.20 \cdot 10^{-2}$		
$P_{\rm k}$					$0.23 \cdot 10^{13}$		0.15	$0.25 \cdot 10^5$	$0.25 \cdot 10^{-6}$	$0.13 \cdot 10^{-2}$		

Таблица 2. Спектральные и динамические параметры очагов землетрясений за 2002 г.

Для Нижнекубанского-II землетрясения [11] расчетное значение моментной магнитуды Mw=5.5 (табл. 2) выше среднего для данного диапазона энергетических классов и магнитуд по поверхностным волнам $M_{\rm S}=4.7$ и близко к значению Mw, рассчитанному по записям удаленных станций. Завышенное значение моментной магнитуды, по сравнению с магнитудой по поверхностным волнам, может служить дополнением в пользу версии о приуроченности очага к нижней части земной коры района.

На энергетических спектрах отчетливо выделяется максимум в ограниченной области периодов частот, с завалом в сторону больших и малых значений *f*. Пример энергетических спектров для Нижнекубанского-II землетрясения дан на рис. 3.

Рис. 3. Энергетические спектры Нижнекубанского-II землетрясения 9 ноября 2002 г. по записям сейсмических станций «Судак» и «Симферополь»

Жирной линией выделен сглаженный энергетический спектр в октавном окне по методике [12].

Максимумы $\lg q_{\max}$ энергетических спектров по сейсмическим станциям «Судак» и «Симферополь» находятся вблизи 1 Γq , однако ширина энергетических спектров различна. Слабовыраженный спад в сторону $f \rightarrow \infty$ по станции «Симферополь», вероятнее всего, связан с большими искажениями записи длиннопериодным сейсмографом СД-1 в этом диапазоне частот. В целом можно отметить, что максимум энергии сейсмических волн от Нижнекубанского-II землетрясения 2002 г. на расстояниях 230–280 км приходится на сравнительно высокие частоты – от 0.3 до 4 Γq .

Литература

- 1. Пустовитенко А.Н., Пустовитенко Б.Г., Спиртус В.Б. Расчет амплитудных и энергетических спектров местных землетрясений экспресс-методом // Методы определения сейсмической опасности. Кишинев: Штиинца, 1984. С. 120–128.
- 2. Пустовитенко Б.Г., Пантелеева Т.А. Спектральные и очаговые параметры землетрясений Крыма.-Киев: Наукова думка, 1990. – 249 с.
- 3. Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. Крым. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 4. Сейсмологический бюллетень (ежедекадный) за 2002 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2002–2003.
- 5. Bulletin of the International Seismological Centre for 2002. Berkshire: ISC, 2003-2004.
- 6. Brune J.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. 75. № 26. P. 4997–5009.
- 7. Аптекман Ж.Я., Дараган С.К., Долгополов В.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- Savage I.C. Radiation from a realistic model of faulting // Bull. Seismol. Soc. Amer. 1966. 56. P. 577– 593.
- 9. Габсатарова И.П. Северный Кавказ. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- Hanks T.S., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. № 135. -P. 2348-2350.
- 11. Габсатарова И.П., Чепкунас Л.С., Бабкова Е.А. Нижнекубанское-II землетрясение 9 ноября 2002 года с *K*_P=13.0, *Mw*=4.7. (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 12. Ризниченко Ю.В., Сейдузова С.С. Спектрально-временная характеристика сейсмической опасности. М.: Наука, 1984. 178 с.