<u> IV. СЕЙСМИЧЕСКИЙ МОНИТОРИНГ ВУЛКАНОВ</u>

УДК 550.348.438(517.66)

ВУЛКАНЫ КАМЧАТКИ

С.Л. Сенюков, В.Т. Гарбузова, С.Я. Дрознина, И.Н. Нуждина,

Т.Ю. Кожевникова, С.Л. Толокнова

Камчатский филиал ГС РАН, г. Петропавловск-Камчатский, ssl@emsd.iks.ru

По современным представлениям на Камчатке выделено 29 действующих вулканов (рис. 1) [1]. Их мониторинг проводится с целью своевременного предупреждения населения и административных органов о возможности их извержения, для уменьшения последствий катастрофических событий и обеспечения безопасности авиаполетов в районе п-ва Камчатка [1–3].

С февраля 2000 г. оценка состояния вулканов делается ежедневно с публикацией информации в Интернете (*http://emsd.iks.ru/~ssl/monitoring/main.htm*) по данным следующих наблюдений:

– сейсмический мониторинг по данным радиотелеметрических сейсмических станций в режиме, близком к реальному времени;

 визуальные и видеонаблюдения (в 2002 г. две видеосистемы наблюдали за вулканами Ключевской и Шивелуч);

– спутниковый мониторинг термальных аномалий и пепловых выбросов. Результаты спутникового мониторинга сенсора AVHRR спутника NOAA12 в 2002 г. предоставлялись Аляскинской вулканологической обсерваторией в рамках международного проекта (KVERT) по безопасности авиаполетов. Начиная с сентября 2002 г, лаборатория ИСВА Камчатского филиала Геофизической службы (КФГС) начала самостоятельно обрабатывать данные сенсора AVHRR спутника NOAA16. Прием данных осуществлял Камчатский центр связи и мониторинга.

Наиболее информативны и надежны наблюдения за сейсмической активностью. Их качество не зависит от погодных условий, а высокая информативность доказана многочисленными исследованиями как на Камчатке, так и в мире.

Сеть сейсмических станций в вулканических районах представлена на рис. 1 (изолиниями показаны расчетные контуры надежной регистрации землетрясений разных классов), а ее характеристика дана в [4]. В 2002 г. она не изменилась, по сравнению с таковой в 2001 г. [5], и позволяла проводить сейсмический мониторинг вулканов в реальном режиме времени с разной степенью детальности. Наиболее детальные наблюдения проводились для Авачинской (вулканы Авачинский и Корякский) и Северной (вулканы Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский и Крестовский) групп вулканов. На вулканах Шивелуч, Карымский, Горелый работало только по одной станции, поэтому слабые близкие землетрясения лишь фиксировались, но не локализовывались. Для остальных вулканов регистрировались только относительно сильные ($K_{\rm S} \ge 7$) сейсмические события по удаленным станциям. Здесь $K_{\rm S}$ – энергетический класс землетрясений $K_{\rm S1,2}^{-668}$, определяемый по номограмме С.А. Федотова [6], для пересчета которого в локальную магнитуду, приведенную в обоих каталогах вулканических землетрясений [7, 8], использована формула А.А. Гусева

$$M_{\rm L} = K_{\rm S}/2 - 0.75$$
 [9].

В 2002 г. применялись такие же методы обработки сейсмических данных, как и в 1999– 2001 гг. [10, 11]. Определение кинематических параметров землетрясений в вулканических районах выполнялось на основе одномерных скоростных моделей [10, 12] с помощью программы Ю.Ю. Мельникова [13]. Ниже приведены данные о сейсмической активности в 2002 г. в районах

Северной и Авачинской групп вулканов (рис. 1, районы \mathbb{N} 1, 2). При этом используется только Гринвичское время, которое отличается от местного времени на 12^h зимой и на 13^h – летом.

Рис. 1. Карта активных вулканов Камчатки, радиотелеметрических станций и изолинии энергетической представительности *K*_{min}

1 – телеметрическая сейсмическая станция; 2 – вулкан; 3 – изолиния K_{min}.
Код и название вулканов; SL – Шивелуч, KL – Ключевской, US – Ушковский, BZ – Безымянный, TL – Плоский Толбачик, NT – Новые Толбачинские вулканы, IH – Ичинский, KZ – Кизимен, GM – Гамчен, KM – Комарова, KC – Кроноцкий, KR – Крашенинникова, KH – Кихпиныч, UZ – Узон, BS – Большой Семячик, MS – Малый Семячик, KI – Карымский, DZ – Дзензур, JP – Жупановский, KK – Корякский, AV – Авачинский, GR – Горелый, MT – Мутновский, OP – Опала, KS – Ксудач, JL – Желтовский, IL – Ильинский, KO – Кошелевский, KB – Камбальный.
Код и название телеметрических станций: SVL – «Шивелуч», KLY – «Ключи», SRD – «Срединный», KRS – «Крестовский», PDK – «Подкова», CIR – «Цирк», LGN – «Логинов», KPT – «Копыто», KZY – «Козыревск», ZLN – «Зеленая», KMN – «Каменистая», KRK – «Коряка», AVH – «Авача», SDL – «Седловина», SMA – «Сомма», UGL – «Угловая».

Сейсмичность Северной группы вулканов (№ 1, рис. 2). Записи землетрясений в районах вулканов отличаются от тектонических землетрясений большим разнообразием. Согласно классификации П.И. Токарева [14], все вулканические землетрясения делятся на пять типов (I–V).

Рис. 2. Карта эпицентров (а) и вертикальный разрез вдоль линии А-В (б) для землетрясений района № 1

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность вокруг вулкана обозначает область выборки землетрясений, для которой построены графики параметров сейсмичности. Радиусы областей равны: Шивелуч – 12 км, Ключевской – 7 км, Крестовский и Ушковский – 10 км, Безымянный – 6 км, Плоский Толбачик – 20 км.

Записи землетрясений I–III типов имеют вступления *P*- и *S*-волн и обрабатываются, как правило, стандартно: определяются времена t_P и t_S вступлений *P*- и *S*-волн и координаты гипоцентров, максимальные амплитуды A_{max} и соответствующие периоды *T* для *S*-волн, по которым рассчитываются их энергетические классы. Более сильные землетрясения, зарегистрированные тремя и более станциями, локализуются и заносятся в каталог. Каталог, содержащий стандартные кинематические и энергетические параметры за текущий год, ежедневно дополняется и доступен всем пользователям Интернета по адресу: *http://data.emsd.iks.ru/klyquake/index.htm*. Для более слабых землетрясений I–III типа, записанных одной или двумя станциями, и всех землетрясений IV типа (в IV типе *S*-волну выделить невозможно) измеряется отношение $A_{max}T$, которое характеризует их энергию (для велосиграфов измеряется только A_{max}). Для вулканического дрожания (тип V) измеряются амплитуда A_{max} , период T и продолжительность τ цугов колебаний в секундах. Результаты измерений заносят в таблицы и вычисляют производные параметры $(A/T)_{\text{ср}}, \Sigma A/T$ и др.).

Все землетрясения I–III типов, зарегистрированные тремя и более станциями, включены в каталог [7], содержащий 7111 землетрясений (табл. 1). Минимальный класс K_S =3.0 имеют два землетрясения, локализованные 22 мая в 11^h02^m на глубине *h*=14.8 км и 20 июня в 04^h04^m на глубине *h*=3.3 км, максимальный – K_S =8.4 и *h*=12.1 км у события 16 июля в 06^h14^m. Отсутствие землетрясений с K_S >9 привело к значительному уменьшению суммарной сейсмической энергии, составившей ΣE =1.87·10⁹ Дж, что на 2.5 порядка меньше таковой в 2001 г. (ΣE =8.52·10¹¹ Дж [11]). Распределение их по классам дано в табл. 1. График повторяемости (рис. 3) был определен с помощью широко известного в мире пакета программ ZMAP [15], в котором по методу максимального правдоподобия автоматически определяется представительный класс, а потом угол наклона графика повторяемости, которые равны: $K_{S min} \ge 4.8$, $\gamma = -1.02$.

Таблица 1. Распределение землетрясений в районе № 1 по энергетическим классам K_S в 2002 г.

Ks	3	4	5	6	7	8	9	10	11	12	N_{Σ}	ΣЕ, Дж	γ
N(K)	31	1681	4781	591	22	5	-	-	-	_	7111	$1.871 \cdot 10^{9}$	1.02

Ниже описаны шесть вулканов (Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский, Крестовский) Северной группы и два вулкана (Авачинский и Корякский) Авачинской группы по инструментальным и визуальным наблюдениям за 2002 г.

Вулкан Шивелуч – самый северный действующий вулкан Камчатки (координаты активного кратера – 56°38' N, 161°19' E, абсолютная высота нового купола, обнаруженного 12.05.2001 г., составила $h_y \sim 2500 \text{ м}$). Вулкан находится в 45 км к северо-востоку от пос. Ключи (рис. 2, а). Ближайшая телеметрическая станция «Шивелуч» расположена в 8.5 км от активного кратера вулкана и регистрирует землетрясения с $K_S \ge 3.1$. Традиционная обработка результатов наблюдений этой станции за 2002 г. представлена в табл. 2. Теоретический уровень надежной регистрации по трем станциям должен был соответствовать классу землетрясений $K_S = 5.5$. Но фактически он получился равным $K_{\min} = 5.0$ в 2002 г. (рис. 4) по программе ZMAP [15].

Рис. 3. График повторяемости землетрясений Северной группы вулканов за 2002 г.

Рис. 4. График повторяемости землетрясений вблизи (*r*≤12 км) вулкана Шивелуч за 2002 г.

В 2002 г. на вулкане Шивелуч наблюдалась интенсивная вулканическая деятельность, связанная с продолжением роста нового купола [16]. Рост нового купола сопровождался высокой сейсмической активностью (рис. 2 и 5). В течение всего года наблюдалась термальная аномалия, свидетельствующая о постоянном выходе на поверхность горячего магматического материала (рис. 6, б). На рис. 6, а представлены данные о газо-пепловых выбросах. При от-

сутствии видимости предположение о возможности газо-пеплового выброса делалось на основании изучения спектральных особенностей сейсмического сигнала, а возможная высота выброса определялась по амплитуде и продолжительности сейсмического сигнала [17]. В течение всего года регистрировалось вулканическое дрожание (рис. 6, в).

Месяцы	ы Типы вулканических землетрясений																
			т			T	ттт			13.7		V					
			1		11, 111				I V			Низкочастотные			Вулканическое		
															дрожание		
	1	V	K_{Smax}	$\Sigma A/T$	Ì	N	K_{Smax}	$\Sigma A/T$	1	V	$\Sigma A/T$	$\Sigma A/T_{cp.}$	$\Sigma A/T_{\rm max}$	Στ,	$\Sigma A/T_{cp}$	$\Sigma A/T_{\rm max}$	Στ,
	< 0.2	≥0.2			< 0.2	≥0.2			< 0.5	≥0.5		-		ч	_		Ч
Январь	-	19	6.2	13.99	-	4399	6.8	2196.79	1656	3985	3565.04	2.81	31.57	17.91	0.18	0.6	218
Февраль	-	11	6.3	17.05	-	1350	7.8	1294.68	983	2248	2064.88	1.92	48.92	52.04	0.16	3.9	318
Март	-	4	6.9	11.81	-	504	7.2	499.65	1661	1114	1060.61	1.84	55.68	43.88	0.11	0.5	450.26
Апрель	-	10	4.9	11.07	10	159	6.9	94.18	4210	3417	1704.23	1.34	6.5	8.91	0.1	0.42	116.33
Май	4	4	6.9	7.74	89	278	7.2	220.93	2435	2125	2040.27	1.17	5.31	6.3	0.14	0.84	228.5
Июнь	-	6	6.8	31.23	-	304	7.4	346.78	1361	2137	1924.26	1.7	55.12	40.71	0.13	1.56	279.41
Июль	-	6	5.7	11.24	-	87	7.3	104.56	447	2064	3349.08	2.23	40.64	19.68	0.39	2.28	679
Август	-	8	6.4	19.54	-	1903	7.4	1155.02		7513	16358.62	2.93	42.03	20.19	0.41	2.06	718
Сентябрь	-	1	7.2	1.76	-	467	7.1	373.03	465	2346	3715.92	2.46	49.36	23.26	0.17	0.9	230
Октябрь	-	3	7.0	7.49	-	156	7.3	164.48	1713	630	459.01	2.06	58.99	17.86	0.11	0.36	145
Ноябрь	-	5	5.3	4.44	-	146	7.4	181.21	2087	669	494.85	1.93	55.86	14.81	0.1	0.24	50.93
Декабрь	_	3	6.7	5.12	4	180	6.7	85.9	1808	665	534.93	1.75	35.42	16.66	0.1	0.53	147.1
Всего	4	80		142.48	103	9933	7.8	6717.21	18826	28913	37268.7	2.01	58.99	281.91	0.18	3.9	3580.53

Таблица 2. Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=12 км) вулкана Шивелуч на одноименной станции «Шивелуч» в 2002 г.

Примечание. Здесь и в подобных таблицах ниже N с A/T<0.2 равно числу землетрясений с отношением амплитуды к периоду меньше, чем 0.2, соответственно N с A/T>0.2 – больше чем 0.2.

Рис. 6. Графики распределения во времени различных параметров активности вулкана Шивелуч в 2002 г.

а – высота (км) газо-пепловых выбросов по визуальным данным сейсмической станции «Ключи» над уровнем моря; б – число пикселей в термальной аномалии по данным Аляскинской вулканологической обсерватории; в – вулканическое дрожание по станции «Шивелуч».

Вулкан Ключевской – координаты вершины: 56°04' N, 160°38' E; абсолютная высота вулкана – h_y =4750 *м*, диаметр вершинного кратера, венчающего конус, – около 700 *м*. Ближайшая телеметрическая станция «Логинов», регистрирующая землетрясения с $K_S \ge 2.2$, расположена в 4 км от кратера. Сеть станций позволяет локализовать при благоприятных условиях землетрясения, начиная с $K_S \ge 4.0$, но надежная регистрация получилась равной $K_S \ge 4.8$ (рис. 7). В 2002 г. были определены параметры для более 5000 землетрясений с $K_S \ge 4.0$. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 2, а графики изменения во времени параметров активности вулканов – на рис. 8. Также был выполнен традиционный подсчет землетрясений с разбиением по типам, приведенный в табл. 3.

Рис. 7. График повторяемости землетрясений вблизи (r≤7 км) вулкана Ключевской за 2002 г.

Рис. 8. Изменение во времени энергетического класса $K_{\rm S}$ (а), кумулятивного числа землетрясений ΣN (б), глубины гипоцентров h (в), кумулятивной сейсмической энергии ΣE (г) совокупности вулканических землетрясений, произошедших в радиусе 7 км от вулкана Ключевской в 2002 г.

В 2002 г. вулкан Ключевской находился в неспокойном состоянии. Число зарегистрированных землетрясений в 2002 г., по сравнению с таковым в 2001 г., увеличилось в три раза. Практически в течение всего года продолжали происходить события с глубины около 30 км под постройкой вулкана. Число поверхностных событий несколько сократилось к концу года, но в этот период усилилось вулканическое дрожание, амплитуда которого на сейсмической станции «Цирк» достигала величины 1.6 µ/c (рис. 9).

Месяцы		Типы вулканических землетрясений													
			Ι				II, III			IV		V			
												Вулканическое дрожание			
		N	K_{Smax}	$\Sigma A/T$	Ν	V	K_{Smax}	$\Sigma A/T$	N		$\Sigma A/T$	$\Sigma A/T_{\rm cp}$	$\Sigma A/T_{\rm max}$	Στ,	
	< 0.2	≥0.2			< 0.2	≥0.2			< 0.5	≥0.5		-		Ч	
Январь	100	508	7.3	317.02	263	60	7.9	150.35	2	21	35.03	0.1	0.17	96.5	
Февраль	7	222	6.8	144.58	228	73	7.8	165.79	15	51	97.05	0.09	0.35	324.5	
Март	4	368	7.2	248.42	151	86	8.4	228.87	27	142	121.08	0.1	0.15	233.0	
Апрель	18	293	7.9	234.22	1725	185	8.7	233.68	649	77	54.47	0.09	0.38	400.51	
Май	20	510	7.2	307.75	339	118	7.5	159.92	902	119	175.66	0.11	0.45	622.68	
Июнь	2	623	6.8	500.67	184	95	7.7	204.03	145	125	178.85	0.17	1.59	713.5	
Июль	4	589	7.6	628.6	200	93	8.3	140.2	18	48	78.54	0.11	0.35	744.0	
Август	-	598	7.3	620.17	184	124	7.8	173.48	14	57	63.4	0.11	0.3	744.0	
Сентябрь	-	692	7.3	608.71	90	22	7.4	15.47	4	26	24.13	0.12	1.2	720.0	
Октябрь	-	301	7.9	284.01	61	8	6.9	12.83	7	725	845.3	0.25	1.23	744.0	
Ноябрь	-	403	7.3	408.27	47	19	8.7	52.22	31	4046	5962.34	0.35	1.22	720.0	
Декабрь	-	391	7.1	334.23		52	7.3	71.25		5102	4409.25	0.23	1.24	744.0	
Всего	155	5498	7.9	4636.65	3472	935	8.7	1608.09	1814	10539	12045.1	0.15	1.59	6806.69	

Таблица 3. Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=7 км) вулкана Ключевской на станции «Цирк» в 2002 г.

Рис. 9. График вулканического дрожания вулкана Ключевской 2002 г. по станции «Цирк»

Единственным проявлением активности, зафиксированным по видео- и фотонаблюдениям, был пепловый выброс на вулкане Ключевской 24 декабря, начавшийся в $00^{h}05^{m}$ UTC. Выброс наблюдался приблизительно в течение 30^{m} и достиг высоты 8 км над уровнем моря, (рис. 10).

Рис. 10. Газо-пепловый выброс на вулкане Ключевской 24 декабря 2002 г. (фото Ю.В. Демянчук)

Термальных аномалий в 2002 г. на вулкане Ключевской по данным спутников NOAA 12 (ABO) и NOAA 16 (КФГС) не зафиксировано.

Вулкан Безымянный – координаты вершины: 55°58' N, 160° 35' E; абсолютная высота вулкана h_y =2869 м. Ближайшие телеметрические станции «Логинов» и «Зеленая» расположены в 13.5 км от кратера вулкана (рис. 2, а), регистрирующие землетрясения с $K_S \ge 3.6$. По теоретическим расчетам надежная локация по трем станциям возможна лишь для землетрясений с $K_S \ge 4.5$. Но определить точно представительный класс оказалось невозможно из-за недостаточного числа событий. Традиционная обработка землетрясений с разделением по типам, определением их числа и суммарного отношения A/T представлена в табл. 4.

Месяцы		Типы вулканических землетрясений													
		т			пш		г	17	V						
		1		11, 111			1 V		Низкочастотные			Вулканическое дрожание			
	N	K_{Smax}	$\Sigma A/T$	N	K_{Smax}	$\Sigma A/T$	N	$\Sigma A/T$	$\Sigma A/T_{\rm cp}$	$\Sigma A/T_{\rm max}$	Στ,	$\Sigma A/T_{\rm cp}$	$\Sigma A/T_{\rm max}$	Στ,	
	≥0.1			≥0.1			≥0.1		*		час	-		час	
Январь	1	5.3	0.45	6	5.3	1.52	11	3.14	-	-	_	-	-	-	
Февраль	1	6.6	2.17	7	5.4	1.96	2	0.78	-	_	_	-	-	-	
Март	-	-	-	_	-	-	-		_	_	-	-	-	-	
Апрель	_	-	_	-	-	-	-		-	_	_	-	-	-	
Май	_	_	_	1	6.1	0.79	_		_	-	_	_	-	_	
Июнь	_	-	_	1	5.5	0.45	1	0.34	-	_	_	-	-	-	
Июль	_	_	_	1	5.2	0.61	11	8.9	_	-	_	_	-	_	
Август	_	-	_	6	6.1	2.59	7	4.26	-	_	_	-	-	-	
Сентябрь	_	_	_	7	7.4	7.93	6	3.82	_	-	_	_	-	_	
Октябрь	1	4.8	0.3	_	-	-	1	1.21	-	_	_	-	-	-	
Ноябрь	_	_	_	_	_	_	_		_	-	_	_	-	_	
Декабрь	_	_	_	80	6.1	57.68	12	7.78	1.93	3.87	1.58	0.28	0.88	25.0	
Всего	3	6.6	2.92	109		73.53	51	30.23	1.93	3.87	1.58	0.28	0.88	25.0	

Таблица 4. Параметры вулканических землетрясений разных типов, записанных вблизи (*r*=6 км) вулкана Безымянный на станции «Зеленая» в 2002 г.

За исключением последнего месяца, на протяжении всего 2002 г. вулкан Безымянный находился в спокойном состоянии. В районе вулкана регистрировались отдельные поверхностные землетрясения (рис. 11), а на вулкане наблюдалась фумарольная и парогазовая деятельность. К первым признакам активизации вулкана Безымянный можно отнести три землетрясения, которые произошли 16 и 17 декабря. Но действительным доказательством активизации стал наблюдаемый в дальнейшем рост термальной аномалии сначала по данным спутника NOAA16, а с 23 декабря и спутника NOAA12, без заметной предварительной сейсмичности (рис. 12). По данным спутника NOAA16, слабая термальная аномалия на вулкане Безымянный наблюдалась на всех ночных снимках (без облачности), начиная с первого дня наблюдений (16 сентября). Наличие постоянной термальной аномалии, возможно, свидетельствует о том, что вулкан готов к извержению без сильной предварительной сейсмической подготовки. На снимках NOAA12 термальная аномалия появилась только 23 декабря, до этого она была не видна, что свидетельствует о меньшей чувствительности датчика AVHRR этого спутника. Рост термальной аномалии сопровождался следующей сейсмичностью. С 18 по 22 декабря сейсмичность вулкана Безымянный была ниже уровня регистрации. 23 декабря стали регистрироваться слабые поверхностные события, возможно, сопровождавшие сход лавин. Слабое вулканическое дрожание от вулкана впервые было зарегистрировано 24 декабря в 23^h35^m. В дальнейшем за ~15 часов до извержения с ~04^h00^m 25 декабря начался рой поверхностных землетрясений (более 50 событий, (рис. 12)), который закончился в ~12^h30^m. И после непродолжительной паузы в ~ 19^h20^m зарегистрировано сильное сейсмическое событие, что свидетельствовало о начале извержения. Огибающая амплитуд сейсмического сигнала имела форму в виде резкого всплеска с последующим постепенным уменьшением по экспоненциальному закону (рис. 12), характерную для эксплозивных извержений с мощными газо-пепловыми выбросами. К сожалению, как и в декабре прошлого года, мощный циклон не дал возможности получить визуальные или спутниковые доказательства извержения, но через два часа после начала извержения в 21^h10^m в пос. Козыревск начал выпадать пепел серого цвета с запахом серы. Этот факт в сочетании с направлением и скоростью ветра подтверждали возможность извержения вулкана Безымянный. За два часа в пос. Козыревск выпал слой пепла толщиной около 3 мм, после чего пеплопад прекратился. Начиная с 00^h00^m 26 декабря, сейсмичность постепенно стала ослабевать и достигла уровня фона в течение четырех часов (рис. 12).

Рис. 11. Изменение во времени энергетического класса $K_{\rm S}$ (а), кумулятивного числа землетрясений ΣN (б), глубины гипоцентров h (в), кумулятивной сейсмической энергии ΣE (г) совокупности вулканических землетрясений, произошедших в радиусе 6 км от вулкана Безымянный в 2002 г. (стрелка обозначает извержение вулкана)

Рис. 12. Амплитуда огибающей сейсмического сигнала (безразмерная единица), осредненная в 10-секундном интервале для извержения вулкана Безымянный в декабре. Стрелка обозначает начало мощного пеплового выброса при извержении вулкана 25 декабря 2002г. Число пикселей в термальной аномалии по данным Аляскинской вулканологической обсерватории.

вулканическое дрожание вулкана Ключевской; 2 – рой поверхностных землетрясений вулкана Безымянный;
сейсмическое событие, сопровождавшее извержение вулкана Безымянный (треугольники обозначают данные NOAA-12 (FDJ), кружки – данные NOAA-16 (КФ ГС РАН), стрелка – начало извержения).

Вулкан Плоский Толбачик – координаты вершины: 55°49′ N, 160°22′ E; абсолютная высота вулкана h_y =3085 м. Ближайшая телеметрическая станция – «Каменистая» – расположена в 10 км от кратера вулкана и регистрирует землетрясения с K_s ≥3.3. Теоретический уровень надежной регистрации по трем станциям соответствует K_s =5.0. В табл. 5 даны сведения о землетрясениях, зарегистрированных этой станцией.

Месяцы					Тиг	іы вул	каничес	ких зем	летряс	ений				
			Ι			I	I, III		IV			Вулканическое		
	1	<u>N</u> K_{Smax} $\Sigma A/T$			1	$N = K_{\text{Smax}} = \Sigma A/T$			N			дрожание		
	< 0.2	≥0.2			< 0.2	≥0.2			< 0.5	≥0.2	$\Sigma A/T$	(A/N)	(A/N)	τ,
												сp.	max	час
Январь	1	12	8.3	18.69	-	7	5.1	2.11	5	11	5.08			
Февраль	-	2	4.8	0.52	-	7	5.4	3.34		11				
Март	-	5	7.3	5.22	-	1	5.7	1.0	1	6	6.24			
Апрель	-	3	5.5	1.35	1	_	-	-						
Май	1	-	_	-	1	_	_	-						
Июнь	-	10	7.2	6.92	-	1	5.2	0.54	1					
Июль	-	8	7.2	9.1	-	_	-	-						
Август	-	6	7.3	7.39	-	2	4.4	0.47						
Сентябрь	-	3	5.7	1.29	-	2	4.4	0.48				0.13	0.27	0.5
Октябрь	-	22	8.5	67.09	-	4	5.4	1.58		2	1.72	0.14	0.30	0.6
Ноябрь	-	12	6.7	7.62	-	6	5.6	3.53		2	2.14	0.21	0.83	1.4
Декабрь	-	10	6.9	8.54	_	4	4.2	0.82		6	1.13	0.40	0.8	1.15
Всего	2	94	8.5	133.73	2	34	5.7	13.87	7	38	17.63	0.22	0.83	3.65

Таблица 5. Параметры вулканических землетрясений разных типов, записанных вблизи (Δ=20 км) вулкана Плоский Толбачик на станции «Каменистая» в 2002 г.

На рис. 2 представлены карта эпицентров и проекция гипоцентров на вертикальный разрез, на рис. 13 – графики изменения во времени параметров активности вулкана. На протяжении 2002 г. в районе вулкана Плоский Толбачик наблюдалась «обычная, фоновая» сейсмичность. Термальные аномалии на снимках со спутников NOAA12 и NOAA16 не зафиксированы.

Рис. 13. Изменение во времени энергетического класса $K_{\rm S}$ (а), кумулятивного числа землетрясений ΣN (б), глубины гипоцентров h (в), кумулятивной сейсмической энергии ΣE (г) совокупности вулканических землетрясений, произошедших в радиусе 20 км от вулкана Плоский Толбачик в 2002 г. (стрелки обозначают извержения вулкана)

Вулканы Ушковский и Крестовский образуют единый вулканический массив, осложненный вершинной кальдерой. Этот массив рассечен глубокими ледниковыми ущельями и эрозионными долинами. Вулкан Крестовский – координаты вершины: 56°07' N, 160°30'E, абсолютная высота вулкана h_y =4108 м; Ушковский – координаты вершины: 56°04' N, 160°28'E; абсолютная высота вулкана h_y =3943 м. Ближайшие телеметрические станции «Крестовский» и «Логинов» расположены в 12 км от вершины Крестовского и регистрируют землетрясения с $K_S \ge 3.5$. Теоретический уровень надежной регистрации по трем станциям соответствует $K_S \ge 4.5$. Карта эпицентров и проекция гипоцентров на вертикальный разрез показаны на рис. 2, графики изменения во времени параметров активности вулкана – на рис. 14, а традиционный подсчет землетрясений с разбиением по типам – в табл. 6.

Рис. 14. Изменение во времени энергетического класса K_S (a), кумулятивного числа землетрясений ΣN (б), глубины гипоцентров h (в), кумулятивной сейсмической энергии ΣE (г) совокупности вулканических землетрясений, произошедших в радиусе 10.1 км от вулканов Крестовский и Ушковский в 2002 г.

Гаолица 6.	Параметры	вулканических	землетрясении	разных тиг	юв, записанных волизи	ſ
	(∆=10 <i>км</i>) ву	лканов Крестов	ский и Ушковск	ий на станці	ии «Цирк» в 2002 г.	

Месяцы		Типы вулканических землетрясений												
			Ι				II, III		IV					
	1	V	K_{Smax}	$\Sigma A/T$		Ν	K _{Smax}	$\Sigma A/T$	1	V	$\Sigma A/T$			
	< 0.2	≥0.2			< 0.2	≥0.2			< 0.5	≥0.5				
Январь	-	-	-	-	17	12	5.2	2.39	-	-	-			
Февраль	-	-	-	-	7	12	7.8	6.74	1	-	-			
Март	-	1	5.3	0.46	1	5	5.6	0.79	_	-	-			
Апрель	-	-	-	-	8	8	4.4	1.01	_	-	-			
Май	-	-	-	-	48	14	5.3	3.39	-	-	-			
Июнь	-	-	-	-	1	8	5.8	1.99	_	-	-			
Июль	-	-	-	-	-	21	5.8	4.2	_	-	-			
Август	-	-	-	-	8	13	6.6	3.39	-	-	-			
Сентябрь	-	_	_	_	2	21	5.9	4.4	_	_	_			
Октябрь	-	-	-	-	2	24	6.7	6.47	-	5	1.74			
Ноябрь	-	-	-	-	-	5	6.2	1.7	-	-	-			
Декабрь	-	-	-	-	1	3	5.9	1.07	-	2	0.77			
Всего	-	1		0.46	95	146	7.8	37.54	1	7	2.51			

В 2002 г. сейсмичность района вулканов Крестовский и Ушковский была фоновой и никаких проявлений вулканической активности, а также термальных аномалий на снимках из космоса отмечено не было.

Авачинская группа вулканов (№ 2). Вулканы Авачинский и Корякский представляют наибольшую опасность для населения, т.к. расположены в 30 км к северу от самых больших городов Камчатки (Петропавловск-Камчатский и Елизово).

Координаты гипоцентров землетрясений вблизи для Корякского и Авачинского вулканов рассчитывались, как и в предшествующие годы, по программе Ю.Ю. Мельникова [13] с использованием двух разных одномерных скоростных моделей среды [12, 18]. Общая карта распределения эпицентров и проекция гипоцентров на вертикальный разрез прведены на рис. 15. Весь район № 2, изображенный на рис. 1, по теоретическим расчетам является областью надежной регистрации для событий энергетического класса $K_S \ge 4.0$.

Рис. 15. Карта эпицентров (а) и вертикальный разрез вдоль линии А–В (б) для землетрясений района № 2 в 2002 г.

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность возле вулкана соответствует радиусу (8 км) выборки исходных данных от вулканов Авачинского и Корякского для построения графиков изменения во времени параметров их активности (рис. 16, 17).

Каталог землетрясений в районе № 2 в 2002 г. содержит параметры для $N_{\Sigma}=93$ землетрясений с $K_{\rm S}=1.5-6.3$ (табл. 7). Землетрясение с минимальным классом $K_{\rm S}=1.5$ было локализовано 23 апреля в $09^{\rm h}05^{\rm m}$. Максимальный класс $K_{\rm S}=6.3$ имеют два землетрясения, отмеченные 21 марта в $09^{\rm h}44^{\rm m}$ и 28 июля в $00^{\rm h}50^{\rm m}$ [8]. Суммарная энергия всех землетрясений, включенных в каталог, равна $\Sigma E=8.137 \cdot 10^6 \, Д ж$, что в два с половиной раза меньше таковой в 2001 г. ($\Sigma E=19.445 \cdot 10^6 \, Д ж$ [11]).

Таблица 7. Распределение землетрясений в районе № 2 по энергетическим классам K_S в 2002 г.

Ks	1	2	3	4	5	6	7	N_{Σ}	ΣЕ, Дж
N(K)	—	27	41	17	2	6	_	93	$8.137 \cdot 10^{6}$

В 2002 г. никакой заметной сейсмической или вулканической активности отмечено не было. Наоборот, число локализованных землетрясений, по сравнению с таковым в 2001 г., уменьшилось почти в три раза. Сейсмичность следует рассматривать как обычную, фоновую. Графики распределения во времени различных параметров землетрясений для вулкана Авачинский представлены на рис. 16, а для вулкана Корякский – на рис. 17.

Рис. 16. Изменение во времени энергетического класса $K_{\rm S}$ (а), кумулятивного числа землетрясений ΣN (б), глубины гипоцентров h (в), кумулятивной сейсмической энергии ΣE (г) совокупности вулканических землетрясений, произошедших в радиусе 8 *км* от вулкана Авачинский в 2002 г.

Рис. 17. Изменение во времени энергетического класса $K_{\rm S}$ (а), кумулятивного числа землетрясений ΣN (б), глубины гипоцентров h (в), кумулятивной сейсмической энергии ΣE (г) совокупности вулканических землетрясений, произошедших в радиусе 8 км от вулкана Корякский в 2002 г.

Литература

- 1. Действующие вулканы Камчатки / Под ред. Федотова С.А., Масуренкова Ю.П. М.: Наука, 1991. 1. – С. 5–11.
- 2. Кирьянов В.Ю. Вулканические пеплы Камчатки как источник потенциальной вулканической опасности для пассажирских авиалиний // Вулканология и сейсмология. 1992. № 3. С. 16–36.
- Кирьянов В.Ю., Чубарова О.С., Сенюков С.Л., Евдокимова О.А., Гарбузова В.Т. Группа по обеспечению безопасности полетов от вулканических пеплов (КВЕРТ): 8 лет деятельности // Геодинамика и вулканизм Курило-Камчатской островодужной системы. – Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. – С. 408–423.
- 4. Левина В.И., Иванова Е.И., Гусева Е.И. Камчатка и Командорские острова. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 5. **Левина В.И., Иванова Е.И., Гусева Е.И.** Камчатка и Командорские острова // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 213–222.
- 6. **Федотов С.А.** Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 117 с.
- 7. Нуждина И.Н. (отв. сост.), Дрознина С.Я., Кожевникова Т.Ю., Толокнова С.Л. Северная группа вулканов. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 8. Нуждина И.Н., (отв. сост.), Дрознина С.Я., Кожевникова Т.Ю., Толокнова С.Л. Авачинская группа вулканов. (См. раздел VII (Каталоги землетрясений) в наст. сб. на CD).
- 9. Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов за 1998 год (Отчет). Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 1999. 259 с.
- Сенюков С.Л., Чебров В.Н., Гарбузова В.Т., Дрознина С.Я., Нуждина И.Н., Кожевникова Т.Ю., Толокнова С.Л. Сейсмический мониторинг вулканов Камчатки // Землетрясения Северной Евразии в 1999 году. – Обнинск: ГС РАН, 2005. – С. 253–273.
- Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений // Комплексные сейсмологические и геофизические наблюдения на Камчатке за 2003 г. – Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. – С. 279–291.
- 13. **Мельников Ю.Ю.** Пакет программ для определения координат гипоцентров землетрясений Камчатки на ЭВМ // Вулканология и сейсмология. – 1990. – № 5. – С. 103–112.
- 14. Токарев П.И. Вулканические землетрясения Камчатки. М.: Наука, 1981. 164 с.
- 15. Weimer S. A software package to analyze seismicity: ZMAP // Seism. Res. Lett. 2001. –72. № 2. P. 374–383.
- 16. Сенюков С.Л., Дрознина С.Я., Гарбузова В.Т., Нуждина И.Н., Дрознин Д.В., Кожевникова Т.Ю. Исследования активности вулканов Шивелуч и Безымянный в 2000–2003 гг. дистанционными средствами наблюдений // Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов за 2003 год (Отчет). – Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. – С 301–318.
- 17. Сенюков С.Л., Дрознина С.Я., Дрознин Д.В. Опыт выделения пепловых выбросов и оценка их высоты по сейсмическим данным на примере вулкана Шивелуч (Камчатка) // Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов за 2003 год (Отчет). Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. С 292–300.
- 18. Сенюков С.Л. Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений в 2000–2004 гг. // Вулканология и сейсмология. 2006. № 3. С. 68–78.