Воронежский кристаллический массив

Л.И. Надёжка, Р.А. Орлов, И.Н. Сафронич, С.П. Пивоваров, О.М. Ипполитов, Э.И. Золототрубова

Геофизическая служба РАН, г. Воронеж, nadezhka@geophys.vsu.ru

В 2001–2002 гг. продолжались работы по изучению характера проявления сейсмических событий на территории Воронежского кристаллического массива (ВКМ). Региональная сейсмическая сеть не претерпела изменений. Как и в 2000 г. [1], работала аналоговая станция «Воронеж» и цифровые станции «Дивногорье» и «Сторожевое». Характеристики станций представлены в табл. 1 и 2 и подробно описаны в [1].

Таблица 1. Сейсмические станции, действовашие в 2001–2002 гг. на территории ВКМ, и параметры аппаратуры с аналоговой записью

N⁰	Станция		Дата	Координаты		h_{v}	Аппаратура					
	Название	Код	открытия	φ°, N	λ°, Ε	м	Тип	Компонента	$V_{\rm max}$	$\Delta T_{\rm max}$,		
				-			прибора			С		
1	Воронеж	VOR	20.12.1996	50.730	39.200	180	СМ3-КВ	N, E, Z	5000	0.33 - 2.0		
2	Дивногорье	VORD	20.02.1998	50.966	39.293	94	CM3-OC	SDAS – цифровая станция				
3	Сторожевое	VRSR	08.08.1999	50.215	39.190	183	CM3-OC	SDAS – цифровая станция				

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Эффектив- ная разряд- ность АЦП	Чувствительность: велосиграф – отсчет /(<i>м/c</i>)
Дивногорье	SDAS – CM3-OC	BH(N, E, Z) v	0.02–10	40	16	$\frac{1.00_{\rm N} \cdot 10^9}{1.06_{\rm E} \cdot 10^9} \\ \frac{1.00_{\rm Z} \cdot 10^9}{1.00_{\rm Z} \cdot 10^9}$
Сторожевое	SDAS – CM3-OC	BH(N, E, Z) v	0.02–10	20	16	$\begin{array}{c} 4.01_{\rm N} \cdot 10^8 \\ 5.20_{\rm E} \cdot 10^8 \\ 6.11_{\rm Z} \cdot 10^8 \end{array}$

Таблица 2. Данные об аппаратуре цифровых станций

Кроме перечисленных станций, в августе 2001 г. была развернута полевая сеть станций в районе Новохоперска, действовавшая один месяц. В нее входило три цифровых станции. Характеристика станций приведена в табл. 3, 4. Целью работ было получение данных о характере сейсмических процессов в зоне динамического воздействия крупного, активного по геологическим данным Новохоперского разлома. В результате работы системы станций зарегистрировано десять землетрясений 6-го и более низкого энергетических классов, эпицентры которых приурочены к зоне Новохоперского разлома [2]. Кроме того, был изучен характер микросейсмического шума в районе исследований, его временные вариации: суточные и в течение месяца.

В 2002 г. были организованз 14 временных пунктов наблюдений, на каждом из которых наблюдения выполнялись в течение 10–14 дней. Характеристика станций на временных пунктах наблюдений дана в табл. 5, 6. Целью работ, проводимых в 2002 г., было выяснение характера микросейсмического шума в региональных структурах литосферы ВКМ и выбор места для установки новой станции. За время работы временной сейсмической сети зарегистрировано шесть землетрясений, в основном слабых [3]. Основные результаты, полученные путем анализа данных временных пунктов, изложены в работе [4]. Здесь отметим только то, что крупные структуры литосферы ВКМ находят убедительное отражения в особенностях микросейсмического шума.

N⁰	Код	φ°, Ν	λ°, Ε	h_y	Дата		
					открытия	закрытия	
1	V35	51.1149	41.6511	110	25.07.2001	10.06.2002	
2	V30	50.91744	41.35455	195	25.07.2001	28.07.2003	
3	VDV	51.371	41.1340	141	05.08.2001	27.08.2001	

Таблица 3. Полевые сейсмические станции, действовавшие на территории ВКМ в 2001 г.

Таблица 4. Данные об аппаратуре полевых цифровых станций 2001 г.

Название	Тип АЦП	Перечень	Частотный	Частота	Эффективная	Чувствительность:
станции	и сейсмометра	каналов	диапазон,	опроса	разрядность	велосиграф – отсчет/(м/с)
			Гц	данных,	АЦП	
				Гц		
V35	PDAS-CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.16_{\rm N}, 6.61_{\rm E}, 6.16_{\rm Z}) 10^8$
V30	PDAS-CM3-KB	CH(N, E, Z)v	0.5–20	50	16	$(6.26_{\rm N}, 6.20_{\rm E}, 4.47_{\rm Z}) \cdot 10^8 \cdot$
VDV	SDAS-CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(10.0_{\rm N}, \cdot 10.6_{\rm E}, 10.0_{\rm Z}) \cdot 10^{8}$

Таблица 3. Полевые сейсмические станции, действовавшие на территории ВКМ в 2002 г.

N⁰	Код	φ°, N	λ°, Ε	h_y	Да	та
					открытия	закрытия
1	A30	50.988	37.258	240	10.06.2002	23.06.2002
2	A35	51.629	37.858	262	10.06.2002	23.06.2002
3	B30	50.853	39.613	196	24.06.2002	02.07.2002
4	B35	50.364	40.242	109	25.06.2002	02.07.2002
5	C30	49.926	39.958	208	04.07.2002	15.07.2002
6	C35	50.401	39.498	210	06.07.2002	15.07.2002
7	D30	49.964	40.756	89	16.07.2002	30.07.2002
8	D35	50.458	40.409	127	17.07.2002	30.07.2002
9	E35	50.896	40.268	131	01.08.2002	14.08.2002
10	VRC	50.1079	38.6628	220	03.07.2002	14.07.2002
11	VRD	50.4614	41.1780	100	16.07.2002	01.08.2002
12	VRE	51.4206	40.5343	109	01.08.2002	14.08.2002
13	VRF	51.2917	39.5055	123	14.08.2002	26.08.2002
14	VRL	51.7532	38.6720	141	09.06.2002	02.07.2002

Таблица 6. Данные об аппаратуре полевых цифровых станций 2002 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частот- ный	Частота опроса	Эффективная разрядность	Чувствительность: велосиграф – отсчет/(<i>м/c</i>)
			диапазон,	данных,	АЦП	
			Гų	Гц		
A30	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.26_{\rm N}, 6.20_{\rm E}, 4.47_{\rm Z}) \cdot 10^{8} \cdot$
A35	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.16_{\rm N}, 6.61_{\rm E}, 6.16_{\rm Z}) 10^8$
B30	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.26_{\rm N}, 6.20_{\rm E}, 4.47_{\rm Z}) \cdot 10^8$
B35	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.16_{\rm N}, 6.61_{\rm E}, 6.16_{\rm Z}) 10^8$
C30	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.26_{\rm N}, 6.20_{\rm E}, 4.47_{\rm Z}) \cdot 10^8$
C35	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.16_{\rm N}, 6.61_{\rm E}, 6.16_{\rm Z}) 10^8$
D30	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.26_{\rm N}, 6.20_{\rm E}, 4.47_{\rm Z}) \cdot 10^8$
D35	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.16_{\rm N}, 6.61_{\rm E}, 6.16_{\rm Z}) 10^8$
E35	PDAS – CM3-KB	CH(N, E, Z)v	0.5-20	50	16	$(6.16_{\rm N}, 6.61_{\rm E}, 6.16_{\rm Z}) 10^8$
VRC	PDAS – CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(1.00_{\rm N}, \cdot 1.06_{\rm E}, 1.00_{\rm Z}) \cdot 10^9$
VRD	SDAS – CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(1.00_{\rm N}, \cdot 1.06_{\rm E}, 1.00_{\rm Z}) \cdot 10^9$
VRE	SDAS – CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(1.00_{\rm N}, \cdot 1.06_{\rm E}, 1.00_{\rm Z}) \cdot 10^9$
VRF	SDAS – CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(1.00_{\rm N}, \cdot 1.06_{\rm E}, 1.00_{\rm Z}) \cdot 10^9$
VRL	SDAS-CM3-OC	BH(N, E, Z)v	0.02-10	40	16	$(1.00_{\rm N}, \cdot 1.06_{\rm E}, 1.00_{\rm Z}) \cdot 10^9$

Региональной сетью сейсмических станций в 2001 г. было зарегистрировано 77 событий [2], которые были отнесены к типу «тектонические землетрясения». В 2002 г. было зарегистрировано 47 событий [3], отнесенных к такому же типу. Кроме этих событий зарегистрировано в 2001 и 2002 гг. 129 и 169 взрывов соответственно.

Вопрос идентификации событий является одним из основных и трудных при составлении каталогов местных землетрясений [5, 6]. В регионе работает четыре крупных карьера [5], в каждом из которых одноразово взрывается 100 m BB и более. Во всех этих карьерах ведется добыча полезных ископаемых в кристаллических породах. Опыт анализа записей взрывов сейсмическими станциями на разных расстояниях Δ от 6 до $300 \kappa m$ показал, что волновые формы этих взрывов имеют четкие и вполне определенные характеристики. На рис. 1 представлены образцы волновых форм и спектров вертикальных компонент.

Рис. 1. Пример записей вертикальных составляющих (а) взрывов в различных карьерах на станции «Сторожевое», спектрального состава их записей (б-1) и фона (б-2), а также отношения [(1)/(2)] (в)

Как видно, общим для волновых форм, создаваемых взрывами в этих карьерах, является наличие низкочастотных составляющих с $f=0.4-0.8 \Gamma \mu$. Анализ волнового поля в этом диапазоне частот показал, что оно сформировано волнами Релея. На записях местных землетрясений в этом диапазоне частот, как правило, существенное повышение уровня волнового поля не наблюдается.

Следует отметить, что волновое поле, создаваемое крупными взрывами, проводимыми в разных карьерах, имеет и специфические черты, которые позволяют идентифицировать взрывы. Кроме того, взрывы в рассмотренных карьерах производятся, как правило, в фиксированное время суток. Все это позволяет достаточно уверенно идентифицировать взрывы. Затруднения при отбраковке событий нетектонической природы создают взрывы, которые производятся в осадочных породах, часто небольшой мощности, и другие взрывы неясной природы. Во всех этих случаях выполняется тщательный анализ характера волновой формы, времени и места события.

В 2001 г. значительное число событий зарегистрировано в Липецко–Елецкой зоне. В настоящее время известны карьеры, которые функционируют в этой зоне. В них добывают доломиты и известняки в осадочных породах. Карьеры имеют небольшие размеры, что ограничивает использование взрывов большой мощности. Анализ волновых форм одного из взрывов из этой зоны и события, относимого к разряду тектонических, представлен на рис. 2.

Рис. 2. Пример записей вертикальных составляющих взрыва в карьере Липецко-Елецкой зоны и локального события из этой зоны на станции «Сторожевое» и спектральный состав этих записей

Как видно из рис. 2, на частотах $0.4-0.8 \Gamma u$ достаточно уверенно выделяется волна Релея. Для сравнения на этом же рисунке представлена волновая форма Z-составляющей и ее спектры для событий из этой же зоны, которое идентифицируется как землетрясение. Выполненный анализ, безусловно, не является исчерпывающим. В дополнение к нему привлекалась геологическая и геофизическая информация района эпицентра события. Комплексный подход позволил с большой долей вероятности выделить события тектонической природы, приведенные в каталогах [2, 3]. Пространственное распределение их за 2001 и 2002 гг. представлено на рис. 3 и 4.

Рис. 3. Карта эпицентров сейсмических событий ВКМ за 2001 г.

1 – энергетический класс *К*_P; 2 – сейсмическая станция; 3 – временный пункт наблюдений; 4 – разломы различного ранга.

Как свидетельствует пространственное распределение эпицентров землетрясений в 2001 и 2002 гг., сейсмическая активность была разной. Если в 2001 г. эпицентры расположены компактно, то в 2002 г. они рассредоточены. Компактность эпицентров, с одной стороны, может свидетельствовать об активизации отдельных геологических структур, с другой, может указывать на наличие карьера и нетектоническую природу событий. На рис. 2 показан алгоритм анализа сейсмических событий и их разбраковки. Большинство проблемных событий прошли этот тест и рассматриваются как тектонические события. Возможно, другой подход к анализу и позволит впоследствии скорректировать результаты.

На рис. 5а дана гистограмма распределения событий по энергетическим классам K_P . Как видим, наибольшее число (примерно 44%) землетрясений относится к K_P =7, значительное число (17%) являются землетрясениями с K_P =8, около 7% – с K_P =9.

Распределение событий по глубине показывает, что около 40% из них произошли на глубине $h=5 \ \kappa m$ и около 29% — верхнекоровые ($h=1 \ \kappa m$) слабые землетрясения (рис. 5, б). В табл. 7 приведены числа событий на разных глубинах в каждой крупной структуре. Из нее следует, что 40% всех событий произошли на глубине $h=5 \ \kappa m$, при этом большая часть (16 из 50) этих событий произошла в Курском мегаблоке. Наибольшее число мелкофокусных событий с $h=1 \ \kappa m$ про-изошло в Лосевской зоне, где суммарное число событий (N=45) наибольшее, по сравнению с другими мегаблоками.

Рис. 4. Карта эпицентров сейсмических событий ВКМ за 2002 г.

1 – энергетический класс K_P ; 2 – сейсмическая станция; 3 – временный пункт наблюдений; 4 – разломы различного ранга.

Рис. 5. Распределение локальных событий в 2001–2002 гг. по классу (а) и по глубине (б)

Таблица 7. Распределение гипоцентров землетрясений ВКМ по глубине в 2001–2002 гг.

Район*	h, км									
	1	2	3	4	5	h>5 км	Всего			
Курский мегаблок	7	4	8	4	16	_	39			
Лосевская шовная зона	19	5	6	3	12	_	45			
Хоперский мегаблок	10	-	3	1	7	—	21			
За пределами этих блоков	—	_	_	5	15	1	21			
Всего	36	9	17	13	50	1	126			

Примечание. *Названия структурных элементов взяты из работы [7].

На рис. 6 дано распределение по времени суток сейсмических событий и взрывов, произведенных в крупных карьерах и шахте им. Губкина. Взрывы в карьерах производятся с 7^h до 10^h утра по Гринвичу, а взрывы в шахте – в ночные часы по местному времени или в $19-20^h$ (по Гринвичу). Сейсмические события распределены в течение суток достаточно равномерно. Обращает на себя внимание максимум с 10^h до 14^h (по Гринвичу) или вторая половина рабочего дня по местному времени. Не исключено, что некоторые события, зарегистрированные в этот промежуток времени, не являются землетрясениями, а вызваны другими причинами (взрывы в небольших карьерах, проведение дорожных работ, прокладки трубопроводов и т.д.). Однако сведения по однозначному отнесению такого рода событий к категории «промышленный взрыв» в настоящее время отсутствуют.

Рис. 6. Распределение локальных событий и взрывов в 2001 г. и 2002 г. по времени суток

Сейсмичность на территории Воронежского кристаллического массива, начиная с 1998 г., анализируется в трех районах: Курском мегаблоке, Лосевской шовной зоне и Хоперском мегаблоке. Распределение числа событий по энергетическим классам K_P и суммарной сейсмической энергии ΣE в пределах этих районов в 2001–2002 гг. представлено в табл. 8. Напомним, что ряд событий (N=10 – в 2001 г., N=11 – в 2002 г.) был зарегистрирован за пределами ВКМ, в основном на территории Днепрово-Донецкого авлакогена и южнее.

№	Район		$K_{\rm p}$									N_{Σ}	ΣE ,
		2	3	4	5	6	7	8	9	10	11		Дж
2001 г.													
1	Курский мегаблок	_	_	_	_	3	20	2	1	-	—	26	$1.403 \cdot 10^9$
2	Лосевская шовная зона	—	1	4	1	3	13	4	—	-	—	26	$0.533 \cdot 10^9$
3	Хоперский мегаблок	_	2	6	1	_	4	3	1	-	—	17	$1.340 \cdot 10^9$
4	Вне этих районов	_	—	_	_	_	1	5	3	_	1	10	$103.510 \cdot 10^9$
	Всего	_	3	10	2	6	38	14	5	-	1	79	106.786·10 ⁹
	2002 г.												
1	Курский мегаблок	1	—	_	_	2	8	2	_	_	—	13	$0.282 \cdot 10^9$
2	Лосевская шовная зона	1	3	5	_	3	7	-	_	-	—	19	$0.073 \cdot 10^9$
3	Хоперский мегаблок	_	1	_	2	_	_	1	_	_	_	4	$0.100 \cdot 10^9$
4	Вне этих районов	_	_	_	—	—	2	5	4	_	—	11	$4.520 \cdot 10^9$
	Всего	2	4	5	2	5	17	8	4	-	_	47	4.975·10 ⁹

Таблица 8. Распределение числа землетрясений по энергетическому классу *K*_p и суммарной энергии ∑*E* по мегаблокам ВКМ в 2001 и 2002 гг.

В целом можно отметить, что в 2001 г. наиболее активной была восточная часть Курского мегаблока, а в 2002 г. – Лосевская шовная зона. Наиболее сильные землетрясения произошли в Хоперском мегаблоке.

Литература

- 1. Надёжка Л.И., Сафронич И.Н., Пивоваров С.П., Сорокин Б.А., Золототрубова Э.И. Воронежский кристаллический массив // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2005. С. 190–194.
- 2. **Пивоваров С.П. (отв. исп.), Надёжка Л.И., Сафронич И.Н.** Воронежский кристаллический массив, 2001 // (См. раздел VI (Каталоги землетрясений) в наст. сб.).
- 3. Пивоваров С.П. (отв. исп.), Надёжка Л.И., Сафронич И.Н. Воронежский кристаллический массив, 2002 // (См. раздел VI (Каталоги землетрясений) в наст. сб.).
- 4. Надёжка Л.И., Сафронич И.Н., Орлов Р.А, Ефременко М.А. Микросейсмические исследования на территории Воронежского кристаллического массива // Землетрясения и микросейсмичность в задачах современной геодинамики Восточно-Европейской платформы. Кн. 2 (Микросейсмичность). Петрозаводск: Карельский научный центр РАН, 2007. С. 48–77.
- Сафронич И.Н., Пивоваров С.П. Некоторые особенности местных сейсмических событий // Материалы Международной конференции «Современная геодинамика, глубинное строение и сейсмичность платформенных территорий и сопредельных регионов». Воронеж: Госуниверситет, 2001. С. 172–175.
- 6. Годзиковская А.А. Местные взрывы и землетрясения. М.: Гидропроект, 1995. 77 с.
- 7. **Чернышов Н.М., Ненахов В.М., Лебедев И.П., Стрик Ю.Н.** Модель геодинамического развития Воронежского массива в раннем докембрии // Геотектоника. 1997. № 3. С. 21–31.