КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Г.И. Брагина, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

В 2002 г., как и в пять предыдущих лет [1–5], на территории Курильских островов работали три сейсмические станции Сахалинского филиала ГС РАН: «Курильск», «Северо-Курильск» и «Южно-Курильск». Для определения параметров землетрясений региона также привлекались инструментальные данные сейсмических станций Сахалина [6], Приамурья и Приморья [7], бюллетени ГС РАН [8], ЈМА, Национального информационного центра по изучению землетрясений (NEIC, США), ISC [9]. Методика обработки данных [10–18], схема деления региона на отдельные сейсмоактивные районы, параметры аппаратуры на сейсмических станциях региона, по сравнению с [5], не изменились.

Региональный каталог землетрясений Курило-Охотского региона за 2002 г. [19] включает в себя основные параметры 485 землетрясений с $MLH \ge 4.0$ ($K_C \ge 9$), что чуть меньше, чем в 2001 г. [5], карта их эпицентров приведена на рис. 1.

Рис. 1. Карта эпицентров землетрясений Курило-Охотского региона в 2002 г.

магнитуда *M*, равная *MLH* для землетрясений с *h*≤80 км и *MSH* – с *h*>80 км; 2 – глубина *h* гипоцентра, км;
сейсмическая станция; 4 – граница и номер района соответственно; 5 – ось глубоководного Курило-Камчатского желоба. Числа возле эпицентров – номера землетрясений в соответствии с графой 1 регионального каталога [19].

Гипоцентры 318 землетрясений (65.6 % общего числа) расположились в верхнем глубинном интервале $h \le 80 \ \kappa m$, 134 из которых (27.6 %) находились в слое $h=31-50 \ \kappa m$ (табл.1); 128 землетрясений (26.4 %) зарегистрировано в промежуточном интервале $h=80-300 \ \kappa m$, 39 (8 %) – в нижнем интервале глубины $h>300 \ \kappa m$. Самое глубокое ($h=583\pm5 \ \kappa m$) землетрясение произошло 20 марта в $04^{h}06^{m} \ c \ MPVA=5.2$ под акваторией Охотского моря.

h, км	N_{Σ}	h, км	$N_{\!\Sigma}$	h, км	N_{Σ}	h, км	N_{Σ}	h, км	N_{Σ}
0 - 10	_	121 - 130	17	241 - 250	2	361 - 370	3	481 - 490	5
11 - 20	8	131 - 140	12	251 - 260	3	371 - 380	_	491 - 500	_
21 - 30	33	141 - 150	13	261 - 270	1	381 - 390	1	501 - 510	3
31 - 40	69	151 - 160	6	271 - 280	1	391 - 400	1	511 - 520	3
41 - 50	65	161 - 170	8	281 - 290	_	401 - 410	1	521 - 530	1
51 - 60	50	171 - 180	4	291 - 300	1	411 - 420	_	531 - 540	_
61 - 70	57	181 - 190	_	301 - 310	2	421 - 430	1	541 - 550	_
71 - 80	36	191 - 200	_	311 - 320	_	431 - 440	_	551 - 560	1
81 - 90	18	201 - 210	2	321 - 330	1	441 - 450	1	561 - 583	2
91 - 100	11	211 - 220	_	331 - 340	_	451 - 460	2		
101 - 110	13	221 - 230	2	341 - 350	2	461 - 470	4		
111 - 120	11	231 - 240	3	351 - 360	3	471 - 480	2		

Таблица 1. Распределение землетрясений по интервалам глубины h

Суммарная сейсмическая энергия (табл. 2), выделившаяся в 2002 г. в очагах мелкофокусных землетрясений ($h \le 80 \ \kappa m$), в 7.8 раза меньше, а для глубокофокусных и промежуточных ($h > 80 \ \kappa m$) – в 10.7 раза больше соответствующей энергии 2001 г. [5].

Таблица 2. Распределение землетрясений по магнитудам *MLH* и *MSH* и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона

$h \leq 80 \; \kappa$ м										
N⁰	Район			ΣE ,						
		4.0 4.5 5.0 5.5 6.0 6.5 7.0								
1	Парамуширский	22	7	6	_	_	1	-	$267.83 \cdot 10^{12}$	
2	Онекотан-Матуанский	25	8	7	2	1	_	-	$91.04 \cdot 10^{12}$	
3	Симушир-Урупский	21	13	4	1	_	_	-	$21.32 \cdot 10^{12}$	
4	Северо-Итурупский	38	25	3	1	_	_	_	$37.81 \cdot 10^{12}$	
5	Кунашир-Шикотанский	59	21	9	2	1	_	-	$111.24 \cdot 10^{12}$	
6	Район о. Хоккайдо	22	13	3	2	_	_	_	$29.17 \cdot 10^{12}$	
7	Японское море	1	_	-	-	_	_	-	$0.04 \cdot 10^{12}$	
8	Охотское море	_	_	_	_	_	_	_	0	
	Всего	188	87	32	8	2	1	_	$558.45 \cdot 10^{12}$	

h > 80 км

N⁰	Район МSH								ΣE ,	
		4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.7	Дж
1	Парамуширский	_	_	3	7	7	_	-	_	$185.08 \cdot 10^{12}$
2	Онекотан-Матуанский	—	_	5	13	2	—	1	—	$1578.85 \cdot 10^{12}$
3	Симушир-Урупский	_	_	_	7	6	_	-	_	$192.27 \cdot 10^{12}$
4	Северо-Итурупский	—	_	2	14	3	—	Ι	—	$62.97 \cdot 10^{12}$
5	Кунашир-Шикотанский	—	_	5	11	5	1	Ι	—	$634.58 \cdot 10^{12}$
6	О. Хоккайдо	1	2	3	9	1	2	-	_	$738.57 \cdot 10^{12}$
7	Японское море	1	6	3	3	_	—	Ι	—	$7.45 \cdot 10^{12}$
8	Охотское море	6	11	17	7	1	1	-	1	$60457.03 \cdot 10^{12}$
	Всего	8	19	38	71	25	4	1	1	$63856.80 \cdot 10^{12}$

Примечание. При составлении таблицы величина всех землетрясений приводилась к магнитуде *MLH* путем пересчета из классов *K*_C для землетрясений с *h*≤80 км и из магнитуд *MSH* с *h*>80 км по следующим соотношениям: *MLH*=(*K*_C−1.2)/2 и *MLH*=(*MSH*−1.71)/0.75.

Наибольшая сейсмическая энергия высвободилась под акваторией Охотского моря, где 17 ноября произошло сильнейшее (*MSH*=7.7) землетрясение года (52 на рис. 1, 2). Его максимальный макросейсмический эффект составил в Японии III балла [20], что соответствует 5 баллам по шкале MSK-64 [21].

Всего в регионе отмечено 76 ощутимых землетрясений, распределение их по районам и интервалам глубины гипоцентра приведено в табл. 3. Наибольшее число (N=33) ощутимых землетрясений зарегистрировано в районе о. Хоккайдо (\mathbb{N} 6), гипоцентры 25 из них находились в глубинном слое $h=31-80 \ \kappa m$. Восемнадцать ощутимых землетрясений отмечено в Кунашир-Шикотанском районе (\mathbb{N} 5), в том числе эпицентр землетрясения (32 на рис. 1, 2) с максимальной в 2002 г. интенсивностью сотрясений IV (6–7) балла – на о. Хоккайдо, а в пос. Южно-Курильск – 3–4 балла. Тринадцать ощутимых землетрясений зарегистрировано в Парамуширском районе (\mathbb{N} 1).

N⁰	Районы	h,	N_{Σ}	N _{ouivt.}	I _{max}	М	max
		КМ				MLH	MSH
1	Парамуширский	0-30	4	_	_	_	-
		31-80	32	9	4–5	5.9	6.5
		81-148	17	4	3	4.6	6.0
2	Онекотан-Матуанский	0-30	7	_	_	4.7	5.7
	-	31-80	36	2	2–3	5.8	6.6
		81-152	21	_	_	4.9	6.9
3	Симушир-Урупский	0-30	7	_	_	4.1	_
		31-80	32	_	-	4.5	5.9
		81-175	13	1	2	4.5	6.2
4	Северо-Итурупский	0-30	11	1	4–5	4.2	5.1
		31-80	56	2	3–4	6.6	6.3
		81-166	19	1	2	—	5.7
5	Кунашир-Шикотанский	0-30	11	—	—	—	_
		31-80	81	11	6–7	6.0	6.3
		81-170	22	7	5	5.0	6.6
6	О. Хоккайдо	0-30	1	_	-	_	_
		31-80	39	25	3–4	5.1	5.8
		81-253	18	8	5	4.9	6.7
7	Японское море	0-30	—	—	—	—	_
		31-80	1	1	2	—	_
		81-307	13	—	—	4.3	5.6
8	Охотское море	0–30		_	-	_	_
		31-80		_	-	_	_
		81–583	44	4	5	6.7	7.7

Таблица 3. Распределение землетрясений по интервалам глубины *h*, максимальные значения интенсивности сотрясений *I*_{max} и магнитуды *M*_{max}

По знакам первых смещений в продольных волнах, записанных мировой сетью сейсмических станций, определены механизмы очагов для 61 землетрясения (рис. 2, табл. 4), из которых 31 относятся к мелкофокусным, 20 – к промежуточным, 10 – к глубокофокусным. Каталог механизмов очагов землетрясений представлен в [22].

В Парамуширском районе (№ 1) 67 % землетрясений произошло на глубине $h \le 80 \ \kappa m$, и хотя их число уменьшилось в 1.2 раза, по сравнению с таковым в 2001 г. [5], суммарная сейсмическая энергия (табл. 2) возросла в 5.2 раза. В интервале глубины $h=81-148 \ \kappa m$ зарегистрировано 17 землетрясений, что на 5 больше, чем в 2001 г., при этом суммарная сейсмическая энергия возросла в 3.5 раза.

Самое сильное землетрясение района (5 на рис. 1, 2) произошло 28 января в $13^{h}50^{m}$ на глубине $h=72\pm8 \ \kappa m$ с $MLH=5.9, \ K_{\rm C}=14$, оно ощущалось в г. Северо-Курильск ($\Delta=152 \ \kappa m$) с интенсивностью сотрясений в 4–5 баллов. Макросейсмический эффект остальных двенадцати ощутимых землетрясений района (табл. 3) не превышал 3 баллов в г. Северо-Курильск ($\Delta=40-155 \ \kappa m$) [19].

Рис. 2. Карта механизмов очагов землетрясений Курило-Охотского региона в 2002 г.

1-5 соответствуют рис. 1; 6 – стереограмма механизма очага в проекции на нижнюю полусферу, зачернена область волн сжатия.

№	Район	Номер эпицентра на рис. 1 по интервалам глубины очага <i>h</i> (км)						
		0-30	31-80	81-300	>300			
1	Парамуширский		5, 9, 11	21, 35, 50, 61		7		
2	Онекотан-Матуанский	49	1, 30, 39, 47, 48, 58, 60	22, 29		10		
3	3 Симушир-Урупский		24, 31, 36, 43	6, 14, 44, 46, 53		9		
4	Северо-Итурупский		33, 45	12, 34, 59		5		
5	Кунашир-Шикотанский		2, 3, 18, 25, 28, 32, 37, 40, 41	17, 20, 42		12		
6	Район о. Хоккайдо		4, 10, 26, 54, 57	56		6		
7	Японское море			23		1		
8	Охотское море			62	7, 8, 13, 15, 16, 19,	11		
					27, 51, 52, 55			
	Всего	1	30	20	10	61		

T (/ т	T									
		Incor	nguerdeuue	naom	nononuuo	DOMIDOT	nacentititi	0	UDDOCTIH IM	MOVOILLOMOM	OHOLO
типлини ч				пасн				L.			Jana
				P							

Для семи землетрясений (5, 9, 11, 21, 35, 50, 61 на рис. 1, 2, в табл. 4) определены механизмы очагов. Три очага (5, 9, 11), расположенные в верхнем интервале глубины $h \le 80 \ \kappa m$, находились под преимущественным воздействием сжимающих напряжений, которые обусловили подвижку типа взброса для землетрясений 5 и 11, и пологого надвига – для землетрясения 9.

В очагах 21 и 35, расположенных в промежуточном глубинном интервале, преобладало напряжение растяжения, преимущественный тип подвижки – взрез. Очаги землетрясений 50 и 61 находились под воздействием сжимающих напряжений, ось промежуточного напряжения была близгоризонтальна. Одна из возможных плоскостей разрыва (*NP*1) имела северовосточное простирание и крутое падение на юго-восток, тип подвижки по ней – взброс. Вторая возможная плоскость разрыва (*NP*2) – близгоризонтальная с простиранием на юго-восток. Характер подвижки – взбросо-сдвиг с преобладанием сдвиговой компоненты [22].

В Онекотан-Матуанском районе (№2) сейсмическая активность возросла: 67 % землетрясений зарегистрировано на глубине $h \le 80 \ \kappa m$, их число в 1.2 раза больше, чем в 2001 г. [5], суммарная сейсмическая энергия (табл. 2) возросла в 1.8 раза. В интервале глубины $h=81-152 \ \kappa m$ зарегистрировано 21 землетрясение, что на пять больше, чем в 2001 г., при этом суммарная сейсмическая энергия возросла в 2.5 раза. Отмечено два ощутимых землетрясения, их макросейсмический эффект в г. Северо-Курильск (187 κm и 231 κm) не превышал 2–3 баллов (табл. 3).

Два сильнейших землетрясения района (48 и 60 на рис. 1, 2) произошли 24 октября в $03^{h}34^{m}$ на глубине $h=66\pm 5$ км с MLH=5.1, $K_{C}=13$, и 24 декабря в $12^{h}48^{m}$ на глубине $h=38\pm 6$ км с MLH=5.8, $K_{C}=12.5$ соответственно.

Для этих землетрясений и для восьми других (1, 22, 29, 30, 39, 47, 49, 58 на рис. 1, 2, в табл. 4) определены механизмы очагов. Из них два (22 и 29) зарегистрированы на глубине $h=81-300 \ \kappa m$, остальные – на глубине $h\leq 80 \ \kappa m$. Очаги землетрясений 1, 39, 48, 60 находились под преимущественным воздействием сжимающих напряжений, тип подвижки – взброс и пологий надвиг. Для очага 60 подвижка по близгоризонтальной плоскости носила характер пологого надвига. Система напряжений для очагов 30 и 58 характеризуется преобладанием растяжения, тип подвижки – взрез. В очагах 47 и 49, расположенных в промежуточном интервале глубины, преобладало близгоризонтальное напряжение растяжения, подвижка по пологой плоскости представлена сдвигом, по более крутой – сбрососдвигом, с преобладанием сдвиговой компоненты [22].

В Симушир-Урупском районе (\mathbb{N} 3) сейсмическая активность заметно снизилась: 75 % землетрясений отмечено на глубине $h \leq 80 \ \kappa m$, их число в 1.2 раза меньше, чем в 2001 г. [5], суммарная сейсмическая энергия (табл. 2) уменьшилась в 3.8 раза. Зарегистрировано 13 землетрясений с гипоцентрами в интервале глубины $h=81-175 \ \kappa m$, что в 1.7 раза меньше, чем в 2001 г., суммарная сейсмическая энергия уменьшилась в 2.2 раза. Макросейсмический эффект единственного ощутимого землетрясения (44 на рис. 1, 2) не превышал в Японии I (2) балла (табл. 3).

Два самых сильных землетрясения района 31 и 36 (рис. 1 и 2) произошли 21 августа в 23^h15^m на глубине $h=60\pm 4 \ \kappa m$ с MLH=4.5, $K_{\rm C}=11.5$ и 18 сентября в $04^{\rm h}13^{\rm m}$ на глубине $h=64\pm 4 \ \kappa m$ с MLH=4.4, $K_{\rm C}=12$ соответственно.

Определены механизмы очагов девяти землетрясений (6, 14, 24, 31, 36, 43, 44, 46, 53 на рис. 2, табл. 4): четыре из них (24, 31, 36, 43) – мелкофокусные, пять – с промежуточной глубиной очага. Очаги землетрясений 24, 31, 36, 43 характеризуются близгоризонтальными напряжениями сжатия и более крутыми растягивающими напряжениями. Подвижки по обеим плоскостям в очагах 24, 31, 36 представлены пологим надвигом, в очаге 43 – сдвигом. В промежуточном интервале глубины преобладали близгоризонтальные напряжения сжатия (для очагов 44, 46, 53). Характер подвижки по обеим плоскостям – пологий надвиг. Систему напряжений в очагах землетрясений 6 и 14 характеризует преобладание напряжения растяжения, тип подвижки в очаге 6 – взрез, в очаге 14 – сдвиг [22].

В Северо-Итурупском районе (№ 4) мелкофокусная сейсмическая активность резко снизилась: 78 % землетрясений произошло на глубине $h \le 80 \ \kappa m$, их число, по сравнению с таковым в 2001 г. [5], уменьшилось в 1.7 раза, суммарная сейсмическая энергия (табл. 2) – в 108 раз. Зарегистрировано 19 толчков в интервале глубины $h=81-166 \ \kappa m$, что на пять больше, чем в 2001 г., суммарная сейсмическая энергия возросла в 1.8 раза. Отмечено четыре ощутимых землетрясения (табл. 3), максимальный макросейсмический эффект в 4–5 баллов наблюдался в пос. Горный (64 κm) при землетрясении, произошедшем 1 июня в 20^h15^m ($h=30\pm4 \ \kappa m$, MLH=4.2). Землетрясение 30 августа в 05^h58^m ($h=76\pm7 \ \kappa m$, MLH=4.6) ощущалось в Японии с интенсивностью сотрясений в II (3–4) балла.

Самое сильное землетрясение района (45 на рис. 1, 2) зарегистрировано 19 октября в $12^{h}09^{m}$ на глубине $h=50\pm 2 \kappa m$, с MLH=6.6. Для него и еще четырех землетрясений (12, 33, 34, 59 на рис. 1, 2, в табл. 4), два из которых (33 и 45) – мелкофокусные, три – с промежуточной глубиной гипоцентра, определены механизмы очагов. Система напряжений в верхнем интервале глубины была неустойчивой, в очаге 33 наблюдался пологий надвиг, в очаге 45 – взрез. В очагах землетрясений 34 и 59 преобладало близгоризонтальное напряжение сжатия, характер подвижки для очага 34 – пологий надвиг, для очага 59 – сдвиг. Землетрясение 12 произошло в условиях близгоризонтального напряжения растяжения, подвижка в очаге носила характер взреза [22].

В Кунашир-Шикотанском районе (№ 5) 81 % землетрясений зарегистрировано на глубине $h \le 80 \ \kappa m$, их число сократилось, по сравнению с таковым в 2001 г. [5], в 1.1 раза, но суммарная сейсмическая энергия (табл. 2) возросла в 1.5 раза. В промежуточном интервале глубины зарегистрировано 22 землетрясения с $h=81-170 \ \kappa m$, что на два меньше, чем в 2001 г., при этом суммарная сейсмическая энергия уменьшилась в 6.2 раз.

Самое сильное землетрясение района (17 на рис. 1, 2) зарегистрировано 21 мая в $20^{h}04^{m}$ на глубине $h=148\pm7 \kappa m$, с MSH=6.6. Оно ощущалось в пос. Малокурильское и Крабозаводское (61 и 64 κm соответственно), а также в Японии с интенсивностью сотрясений в 5 баллов. Такой же макросейсмический эффект наблюдался от двух более слабых, но менее глубоких землетрясений (3 и 25 на рис. 1, 2). Первое произошло 19 января в $09^{h}06^{m}$ на глубине $h=73\pm8 \kappa m$, с MLH=5.3 (I=5 баллов в пос. Малокурильское (56 κm) и в Японии), второе – 25 июля в $12^{h}31^{m}$ на глубине $h=46\pm6 \kappa m$, с MLH=5.6 (I=III (5) баллов в Японии).

Всего в районе отмечено 18 ощутимых землетрясений (табл. 3). Максимальный макросейсмический эффект в IV (6–7) балла проявило в Японии землетрясение (32 на рис. 1, 2), зарегистрированное 24 августа в $18^{h}40^{m}$ на глубине $h=40\pm4$ км, с MLH=6.0.

В Кунашир-Шикотанском районе определены механизмы очагов 12 землетрясений (2, 3, 17, 18, 20, 25, 28, 32, 37, 40, 41, 42 на рис. 1, 2, табл. 4), девять из которых произошли в верхнем интервале глубины $h \le 80 \text{ км}$. В промежуточном интервале h = 81 - 300 км зарегистрированы землетрясения 17, 20, 42.

Система напряжений, действующая в верхнем интервале глубины, была неустойчивой. Очаги землетрясений 2, 3, 18, 25, 32 находились под преимущественным воздействием сжимающих напряжений, тип подвижки – взброс, надвиг, сдвиг. В очагах 28, 37, 40, 41 подвижка носила характер сброса и взреза. В очагах землетрясений (17, 20, 42), расположенных в промежуточном интервале глубины, преобладали близгоризонтальные напряжения растяжения, тип подвижки – сброс, взрез. Подвижка в очаге землетрясения 42 носила сдвиговый характер с незначительной взбросовой компонентой. Одна из возможных плоскостей разрыва (*NP1*) имела юго-восточное простирание и крутое падение на юго-запад, другая (*NP*2) – юго-западное простирание с падением на северо-запад, подвижка в очаге – сдвиг [22].

В районе о. Хоккайдо (\mathbb{N} 6) сейсмическая активность заметно усилилась: 69 % землетрясений зарегистрировано на глубине $h \le 80 \ \kappa m$, их число возросло в 1.2 раза, по сравнению с соответствующим числом в 2001 г. [5], суммарная сейсмическая энергия (табл. 2) увеличилась в 2.3 раза. В интервале глубины $h=81-253 \ \kappa m$ зарегистрировано 18 землетрясений, что на четыре меньше, чем в 2001 г., но в основном более высокой магнитуды, в результате суммарная сейсмическая энергия возросла в 15.8 раза. Отмечено 33 ощутимых землетрясения (табл. 3), макросейсмический эффект большинства из них составил в Японии от I (2) до II (3–4) баллов.

Максимальная интенсивность сотрясений в III (5) балла наблюдалась в Японии при сильнейшем землетрясении района (56 на рис. 1, 2), зарегистрированном 1 декабря в $09^{h}57^{m}$ на глубине $h=103\pm4$ км, с MSH=6.7; в пос. Южно-Курильск (208 км) и в г. Курильск (416 км) интенсивность сотрясений составила 2 балла. Землетрясение (26 на рис. 1, 2), зарегистрированное 28 июля в $11^{h}31^{m}$ на глубине $h=76\pm3$ км, с MLH=4.4, также проявило в Японии макросейсмический эффект в III (5) балла.

В районе о. Хоккайдо определены механизмы очагов шести землетрясений, пять из которых (4, 10, 26, 54, 57 на рис. 1, 2, в табл. 4) произошли на глубине $h \le 80 \ \kappa m$, одно (56) – на глубине $h = 103 \pm 4 \ \kappa m$. Очаги землетрясений 4 и 10 характеризуются близгоризонтальными напряжениями растяжения и более крутыми напряжениями сжатия, подвижки по обеим плоскостям представлены взрезом. Систему напряжений для землетрясений 26 и 57 характеризует преобладание напряжения сжатия, подвижка по обеим плоскостям представлена пологим надвигом. Очаг землетрясения 56 находился под воздействием напряжений сжатия и растяжения, действующих в равных условиях, ось промежуточного напряжения – близгоризонтальная. Одна из возможных плоскостей разрыва (NP1) имела юго-восточное простирание и крутое падение на юго-запад, подвижка по ней носила характер взброса. Вторая возможная плоскость разрыва (NP2) имела субширотное простирание и довольно полого падала на северо-восток, подвижка носила характер пологого надвига [22].

Район **Японского моря** (\mathbb{N} 7) по-прежнему характеризовался слабой сейсмической активностью, всего зарегистрировано 14 землетрясений: одно – мелкофокусное, 13 – в интервале глубины $h=81-307 \ \kappa m$. Суммарная сейсмическая энергия (табл. 2) в 11.6 раз ниже соответствующего ее уровня в 2001 г. [5]. Макросейсмический эффект отмечен лишь от одного землетрясения, он составил в Японии I (2) балл (табл. 3).

Самое сильное землетрясение района (23 на рис. 1, 2) зарегистрировано 19 июля в $15^{h}08^{m}$ на глубине $h=231\pm9$ км, с *MSH*=5.6. В его очаге произошел сброс под воздействием преобладающего напряжения растяжения и более крутого напряжения сжатия. Промежуточное напряжение направлено под небольшим углом к горизонту.

В Охотском море (\mathbb{N} 8) не отмечено ни одного мелкофокусного землетрясения, глубокофокусных ($h=273-583 \ \kappa m$) землетрясений зарегистрировано 44, это всего на три землетрясения больше, чем в 2001 г. [5], однако суммарная сейсмическая энергия (табл. 2) увеличилась почти на два порядка.

Сильнейшее землетрясение района и региона в целом с MSH=7.7, упомянутое выше, произошло под акваторией Охотского моря 17 ноября в $04^{h}53^{m}$ на глубине $h=470\pm12 \ \kappa m$. В пос. Южно-Курильск ($\Delta=420 \ \kappa m$) землетрясение ощущалось с интенсивностью сотрясений в 3 балла, в г. Северо-Курильск ($\Delta=788 \ \kappa m$) – 2 балла, в населенных пунктах о. Сахалин ($\Delta=270-425 \ \kappa m$) – от 2 до 3 баллов. Кроме этого, в районе отмечено еще три ощутимых землетрясения (табл. 3), их макросейсмический эффект не превышал в Японии II (3–4) баллов.

В районе Охотского моря определены механизмы очагов 11 землетрясений (7, 8, 13, 15, 16, 19, 27, 51, 52, 55, 62 на рис. 1, 2, в табл. 4). Очаги 16 и 19, расположенные под северной частью Курильской котловины, а также очаги 55 и 62 характеризуются взбросовыми подвижками под воздействием сжимающих напряжений, а землетрясения 7, 16, 27, 51 – сбросовыми подвижками, в очаге 52 произошел взрез. Систему напряжений в очагах землетрясений 13 и 15 характеризует преобладание напряжения растяжения, подвижка по обеим плоскостям представлена сбрососдвигом с преобладанием сдвиговой компоненты [22].

Литература

- 1. Фокина Т.А., Давыдова Н.А., Рудик М.И., Бобков А.О. Курило-Охотский регион // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 129–139.
- 2. Фокина Т.А., Давыдова Н.А., Рудик М.И., Дорошкевич Е.Н., Сафонов Д.А., Гуреев Р.Г., Микрюкова О.В. Курило-Охотский регион // Землетрясения Северной Евразии в 1998 году. – Обнинск: ГС РАН, 2004. – С. 150–161.
- 3. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 159–167.
- 4. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 166–174.
- 5. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 204–212.
- 6. Фокина Т.А., Паршина И.А., Рудик М.И., Сафонов Д.А. Сахалин // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – С. 193–203.
- 7. Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А. Приамурье и Приморье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 8. Сейсмологический бюллетень (ежедекадный) за 2002 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2002–2003.
- 9. Bulletin of the International Seismological Centre for 2002. Berkshire: ISC, 2003–2004.
- 10. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 11. Миталева Н.А., Бойчук А.Н. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 12. Поплавская Л.Н., Миталева Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- 13. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- 14. Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- 15. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 16. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 17. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 18. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 19. Брагина Г.И. (отв. сост.), Дорошкевич Е.Н., Пиневич М.В. Курило-Охотский регион. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 20. Hisada T., Nakagawa K. Present Japanese Development in Engineering Seismology and their Application to Building. Japan, 1958.
- 21. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 22. Рудик М.И. (отв. сост.). Курило-Охотский регион. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).