КОПЕТДАГ

Б.Н. Гаипов, Н.В. Петрова, Л.В. Безменова, Г.Ч. Сарыева

Научно-исследовательский институт сейсмологии Министерства строительства и промышленности строительных материалов Туркменистана, г. Auxaбad, gaipsr@online.tm

Сеть сейсмических станций Туркменистана в 2002 г., включающая 21 аналоговую и одну цифровую станции и представленная в табл. 1, 2, практически не изменилась, по сравнению с [1]. Исключение составляет лишь цифровая станция «Геокча», статус которой в 2002 г. изменен: она использовалась уже не только в оперативной, но и в сводной обработке землетрясений региона. Для нее в табл. 1 уточнены дата начала работы и международный код. Станция «Геокча» расположена в 2.5 км от стационарной аналоговой станции «Ванновская» (табл. 1) и функционирует в рамках совместного проекта IDA с университетом Сан-Диего с ноября 1993 г. Однако ранее ее материалы были доступны только для американской стороны. В конце 2000 г. станция была переоборудована новым комплектом аппаратуры с радиорелейной передачей данных в непрерывном режиме на центральный компьютер Службы срочных донесений в здании Института сейсмологии в Ашхабаде. В 2000–2001 гг. был разработан и опробован комплекс программ обработки данных цифровой станции для определения параметров землетрясений региона. Используемые фильтры: $0.1-1.0 \Gamma \mu$, $1.0-2.0 \Gamma \mu$, $1.0-10 \Gamma \mu$, $5.0-10 \Gamma \mu$.

Следует отметить, что названия станций, которые не менялись с момента их открытия, стали не совпадать с названиями населенных пунктов, где они установлены в связи с тем, что за последние 10 лет многим из них присвоены новые названия, которые приведены в табл. 1 в скобках.

№	Станц	Станция			Коорд	инаты	$h_{\rm v},$		Ап	аратура	
	Название	Ко	д	открытия	φ ^o , N	λ°, Ε	м	Тип	Компо-	$V_{\rm max},$	$\Delta T_{\rm max}$,
		межд.	рег.					прибора	нента	чувствит-ть	С
1	Ашхабад	ASH	Ашх	16.02.1947	37.96	58.37	305	CKM-3	N, E, Z	6000	0.20-1.2
	(г. Ашгабат)							СК	N, E, Z	1000	0.30-10.2
								C5C	Ν	100	0.20-3.1
									E, Z	100	0.20-3.2
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Ζ	0.1	0.01-4.5
								CCP3-M	N, E, Z	$0.0019 c^2$	0.05
2	Кизыл-Арват	КАТ	Кзл	01.01.1950	38.97	56.28	110	CK	N, E	1580	0.36–11
	(г. Сердар)								Ζ	1190	5.50-11
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Ζ	0.1	0.01-4.5
								CCP3-M	N, E, Z	$0.0021 c^2$	0.05
3	Ванновская	VAN	Ван	07.07.1952	37.95	58.11	580	CKM-3	Ν	70000	0.17–1.4
	(г. Арчабил)								E	70000	0.18–1.2
									Ζ	70000	0.20-1.3
								СКД	N, E	1000	0.17–19.3
									Z 950 (0.25–20.5
								ИСО+С5С N, E 0.1; 2.5		0.01-4.5	
									Ζ	0.1	0.01-4.5
								CCP3-M	N, E, Z	$0.0021 c^2$	0.05
4	Красноводск	KRS	Крс	31.03.1966	40.04	53.00	10	CKM-3	N, E	30000	0.14-0.81
	(г. Туркменбаши)								Ζ	30000	0.17-0.81

Таблица 1. Сейсмические станции Туркменистана (в хронологии их открытия), действовавшие в 2002 г., и параметры аппаратуры с аналоговой записью

No	Станш	ия		Лата	Коорл	инаты	<i>h</i>		Аш		
• -	Название	Ко	л	открытия	0° N	$\lambda^{\circ} E$	у, М	Тип	Компо-	V	ΛT
	Thusballine	меул	ner	открытия	ψ,η	л, с		прибора	нента	имах,	$\Delta I_{\text{max}},$
		мсжд.	per.					приоора	NL 7	19801BH1-18	<i>c</i>
								СК	N, Z	1000	0.20-9.8
									Е	100	0.24-9.8
								исо+с5с	N, E	0.1; 2.5	0.01-4.5
									Z	0.1	0.01–4.5
								CCP3-M	N, E, Z	$0.0019 c^2$	0.05
5	Небит-Даг	NBD	Нбд	12.02.1966	39.51	54.39	15	CKM-3	N, E	5000	0.16–1.3
	(г. Балканабат)								Z	5000	0.13–1.3
								СКД	N, E,	1000	0.17–17.4
									Z	1000	0.18–17.0
								ИСО+С5С	N, E	0.1; 2.5	0.01–4.5
									Z	0.1	0.01–4.5
								CCP3-M	N, E, Z	$0.002 c^2$	0.05
6	Кизыл-Атрек		Ктр	10.10.1968	37.68	54.77	55	CM-3	N, E, Z	5000	0.20-1.2
	(пос. Этрек)							ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Ζ	0.1	0.01-4.5
7	Кара-Кала		Крк	26.03.1971	38.44	56.27	315	CKM-3	N, E, Z	5000	0.20-1.2
	(пос. Магтымгулы)							CMTP		8.0	
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Ζ	0.1	0.01-4.5
8	Чагыл		Чгл	11.11.1972	40.78	55.38	144	СКМ-3	Ν	40000	0.13-0.8
	(с. Чагыл)								E, Z	40000	0.20-0.7
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Z	0.1	0.01-4.5
9	Каушут		Кшт	24.06.1977	37.46	59.49	257	ВЭГИК	Ν	9400	0.20-1.2
	(с. Говшут)								E	10700	0.30-1.5
									Ζ	8300	0.20-1.2
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Z	0.1	0.01-4.5
10	Маныш		Мнш	04.01.1978	37.72	58.61	680	CKM-3	Ν	6000	0.14-1.3
	(с. Касамлы)								E, Z	30000	0.17-1.3
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Z	0.1	0.01-4.5
11	Овадан-Тепе		Овд	12.04.1978	38.11	58.36	160	CM-3	N, E, Z	5000	0.20-1.3
	(с. Овадандепе)							ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Ź	0.1	0.01-4.5
12	Серный		Срн	01.12.1980	39.99	58.83	120	CKM-3	Ν	56000	0.20-0.8
	(с. Серный завод)		1						Е	61000	0.20-0.8
	· · · · · · · · · · · · · · · · · · ·								Ζ	52000	0.20-0.8
13	Гермаб		Грм	24.05.1980	38.01	57.75	775	CKM-3	N, E, Z	50000	0.20-1.2
	(с. Гермап)		1					ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Z	0.1	0.01-4.5
14	Cepaxc		Cpx	01.01.1982	36.53	61.21		CM-3	N, E, Z	12000	0.20-1.2
	(noc. Cepaxc)		1					CCP3-M	N, E, Z	$0.0021 c^2$	0.05
15	Гаурдак		Грд	01.12.1985	37.80	66.05	460	CM-3	N	13600	0.34-1.5
	(г. Магданлы)		17.						Е	10700	0.24-1.4
									Ζ	11200	0.60-1.5
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5
									Ź	0.1	0.01-4.5
16	Кушка		Кшк	01.01.1986	35.27	62.31	650	CM-3	N, Z. E	10000	0.20-0.9
-	(г. Серхетабат)							ИСО+С5С	N, E	0.1:2.5	0.01-4.5
	(<u>r</u>)								Z	0.1	0.01-4.5
17	Ланата		Лнт	24.04.1988	39.07	55.17		СКМ-3	N. E. Z	40000	0.20-0.8
- /	(с. Дянеата)		, ,					CCP3-M	N. E. Z	$0.0019 c^2$	0.05
18	Сунча		Сун	01.10.1990	38.50	57.30		CM-3	N	8880	0.60-1.4
- 0	(с. Сунче)		- ,						E	9420	0.80-1.5
	(· - <i>j</i>)								Ζ	10000	0.60-1.3
		1		1			1	1	1		

№	Станц	ия		Дата	Коорд	инаты	$h_{\rm y}$,		Аппаратура			
	Название	Ко	Д	открытия	φ°, N	λ°, Ε	м	Тип	Компо-	$V_{\rm max}$,	$\Delta T_{\rm max}$,	
		межд.	рег.					прибора	нента	чувствит-ть	С	
19	Карлюк		Кар	20.07.1992	37.56	66.43		CM-3	Ν	20000	0.20-1.2	
	(с. Кюнджек)		-						E	20000	0.20-1.3	
									Ζ	28400	0.30-1.3	
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5	
									Ζ	0.1	0.01-4.5	
20	Кугитанг		Куг	05.10.1992	37.91	66.48		CM-3	Ν	2000	0.13-1.3	
	(с. Койтен)								E, Z	10000	0.20-1.3	
								ИСО+С5С	N, E	0.1; 2.5	0.01-4.5	
									Ζ	0.1	0.1-4.5	
21	Кёнекесир		Кнк	04.09.1995	38.20	56.90		CM-3+PB3	Ν	40000	0.20-1.5	
	(с. Кёнекесир)								E	40000	0.50-1.4	
									Ζ	40000	0.30-1.2	
								CCP3-M	N, E, Z	$0.002 c^2$	0.05	
22	Геокча	ABKT	Гкч	20.11.2000	37.93	58.12		STS-1	IRIS – u	ифровая стани	ия	
	(г. Арчабил)			(05.11.1993)				FBA-23				
								GS-13				

Таблица 2. Параметры каналов цифровой сейсмической станции «Геокча» (АБКТ) системы IRIS, используемых в 2002 г. в оперативной и сводной обработке землетрясений Копетдага

Название станции	Тип датчика	Перечень имеющихся каналов и их характеристики	Частотный диапазон, Гц	Частота опроса данных, Гц	Эффективная разрядность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>)
Геокча	STS-1	BH(N, E, Z)(v)	0.002-5	20	24	$1.59 \cdot 10^9$
	GS-13	SH(N, E, Z)(v)	0.5-10	40	24	1.6 10 ⁹

Расчет энергетической представительности землетрясений Копетдага до сих пор проводился по программе, созданной для аналоговых станций с постоянным увеличением V_{max} и регистрацией смещений [2]. Поэтому для цифровой станции «Геокча», имеющей регулируемое увеличение и регистрирующей скорость, возникли проблемы с оценкой параметров, вводимых в программу [2]. Для нее эмпирически (рис. 1) была определена предельная дальность регистрации, которая, однако, совпала практически с таковой для аналоговой станции «Ванновская» с СКМ-3. Огибающая надежной дальности регистрации $K_{\rm H}(r)$, приведенная на рис. 1, получена, как обычно, путем параллельного сдвига вверх графика предельной дальности регистрации $K_{\rm n}(r)$ на величину стандартной ошибки определения энергетического класса $\Delta K_{\rm P}$ =0.5. То, что цифровая станция, несмотря на широкие возможности выбора частотного диапазона и увеличения, не изменила дальность регистрации по сравнению с аналоговой, имеющей постоянное увеличение $V_{\rm max}$ =70000, объясняется рядом причин. Основной из них является то, что возможности распознавания полезных сигналов на записях как аналоговых, так и цифровых станций ограничены фоном помех в полосе пропускания регистрирующих приборов или фильтров.

Анализ преобладающих периодов *P*- и *S*-волн землетрясений Копетдага показал, что до 400 км для станций «Ванновская» и «Геокча» преобладающие периоды *P*- и *S*-волн практически не превышают 1 с (рис. 2). При этом для станции «Геокча» периоды в среднем ниже, чем для станции «Ванновская». Это обусловлено тем, что полоса пропускания прибора СКМ-3 на станции «Ванновская» ограничена в низкочастотной части периодами T=1.3-1.4 c, тогда как используемые при обработке местных и близких землетрясений фильтры станции «Геокча» имеют низкочастотный срез на периодах $T \le 1.0 c$, за исключением фильтра $0.1-1.0 \Gamma u$, который используется в основном при обработке далеких землетрясений. Кроме того, цифровая станция регистрирует скорость, а это значит, что при равных амплитудах смещений максимумы записи приходятся на меньшие периоды. В связи с вышеизложенным, учет затухания суммы амплитуд *P*- и *S*-волн с расстоянием при расчете карты K_{min} на записях станции «Геокча» производился по номограмме Т.Г. Раутиан [3] для приборов типа ВЭГИК с T=0.6-0.8 c.

Рис. 1. График огибающих предельной r_n и надежной $r_н$ дальности регистрации землетрясений разных энергетических классов K_P по данным станций «Геокча» (STS-1, GS-13) и «Ванновская» (СКМ-3)

Рис. 2. Преобладающие периоды *P*- и *S*-волн землетрясений Копетдага, зарегистрированных на разных расстояниях от станций «Ванновская» и «Геокча», и осредняющие их линейные зависимости

Амплитуды фона помех на записях станций «Ванновская» и «Геокча», измеренные в разные дни зимы и лета 2002 г. в диапазоне преобладающих периодов T=0.1-1.0 c для *P*- и *S*-волн, довольно близки (рис. 3). Обращает на себя внимание то, что на станции «Геокча» уровень помех в ночное время значительно (в 2–5 раз, в зависимости от частоты) ниже, чем в дневное, что следует учитывать при определении разницы энергетических классов «надежной» и «предельной» регистрации. Другой особенностью спектра помех на этой станции является «всплеск» уровня дневных помех в диапазоне периодов T=0.2-0.3 c, причем на вертикальной составляющей они выше, чем на горизонтальных. Однако при определении величины минимальной амплитуды P-волны, различимой на фоне помех, этот всплеск можно не учитывать, так как от этих помех можно избавиться, перейдя на фильтр записи $5-10 \Gamma \mu$ или $1-2 \Gamma \mu$.

В настоящее время разрабатывается программа построения карт энергетической представительности с учетом реальной («предельной» и «надежной») дальности регистрации землетрясений Копетдага. Пока же при расчете карты $K_{3\min}$ по алгоритму [2] для цифровой станции «Геокча» были введены следующие параметры: увеличение по смещению V_{\max} =70000; минимальная различимая на фоне помех амплитуда *P*-волны $A_{P\min}$ =0.5 *мм*; затухание суммы амплитуд A_P + A_S взято согласно шкале расстояний для приборов ВЭГИК на номограмме Т.Г. Раутиан [3].

Рис. 3. Спектр помех по измерениям в разные дни зимы и лета 2002 г. на записях сейсмических станций «Геокча» и «Ванновская»

1 – амплитуды ночного фона помех и огибающая их максимальных значений на составляющих N, E, Z станции «Геокча»; 2 – амплитуды дневного фона помех и огибающая их максимальных значений на горизонтальных составляющих N, E той же станции; 3 – то же, на вертикальной составляющей Z; 4 – амплитуды дневного и ночного фона помех на составляющих N, E, Z станции «Ванновская», CKM-3; 5 – полосы пропускания фильтров записи STS-1 BH (N, E, Z) станции «Геокча»; 6 – полоса пропускания прибора CKM-3 (Z) на станции «Ванновская» на уровне 0.9 V_{max}.

Карта $K_{3\min}$ за 2002 г. (рис. 4) в области изолиний $K_{3\min} \ge 8.0$ на расстояниях свыше 150 км от станции «Геокча» почти не отличается от таковой за 2001 г. [1], построенной без участия этой станции. Основные же различия касаются площадей и конфигурации изолиний с $K_{3\min} \le 7.5$. Так, в 2002 г. площадь в пределах изолинии $K_{3\min}=7.5$ увеличилась в 1.3 раза; объединились в единую зону две отдельные области, охваченные на карте 2001 г. изолиниями с $K_{3\min}=7.0$ (площадь возросла в 3.3 раза); район наибольшей концентрации сейсмических станций, между станциями «Гермаб», «Овадан-Тепе» и «Маныш», оказался внутри вновь возникших зон с $K_{3\min}=6.5$ и 6.0, а между станциями «Геокча», «Ванновская» и «Гермаб» возник небольшой участок с $K_{3\min}=5.5$. Однако в целом уровень $K_{3\min}$ по сейсмоактивным районам: на большей части территории Центрально-Каракумского и Туркмено-Хорасанского районов по-прежнему $K_{3\min}=8-9$, в Балхано-Каспийском районе $K_{3\min}=9-10$ (рис. 4, табл. 3).

Рис. 4. Карта энергетической представительности *К*_{3min} землетрясений Копетдага по данным наблюдений в 2002 г.

1 – изолиния $K_{3\min}$; 2 – сейсмическая станция: а – аналоговая, б – цифровая; 3 – государственная граница; 4 – граница сейсмоактивного района; 5 – город.

Следует отметить, что значения $K_{\gamma min}$ по Туркмено-Хорасанскому району на полтора порядка ниже значений $K_{3 min}$, тогда как для остальных районов – только на 0.5–1 порядок (табл. 3, рис. 5). Возможно, это связано с тем, что в расчеты карты $K_{3 min}$ не включались параметры сейсмических станций типа «Черепаха» в Ашхабадском районе, которые работают там уже в течение ряда лет в составе Ахалской экспедиции. Эти станции функционируют в триггерном режиме, поэтому имеются проблемы со стабильностью их регистрации, а также с энергетической классификацией землетрясений. Их данные используются в сводной обработке землетрясений региона лишь как вспомогательные. Вместе с тем станции «Черепаха» регистрируют множество слабых толчков, и вполне вероятно, что эта локальная сеть, при участии цифровой станции «Геокча», внесла вклад в понижение реального энергетического уровня представительной регистрации землетрясений до $K_{\gamma min}$ =7 в Туркмено-Хорасанском районе.

N⁰	Район	S, км ²	$\phi_1^{\circ}-\phi_2^{\circ}, N$	$\lambda_1^{\circ} - \lambda_2^{\circ}$, E	$K_{3\min}$	$K_{\gamma \min}$
1	Балхано-Каспийский	$149 \cdot 10^3$	38.5-42.0	51.0-55.5	9	8
2	Эльбурский	$156 \cdot 10^3$	35.0-38.5	51.0-55.5	9–10	9
3	Туркмено-Хорасанский	$243 \cdot 10^3$	35.0-39.5	55.5-61.0	8-9	7
4	Восточный Туркменистан	$406 \cdot 10^3$	35.0-42.0	61.0-67.0	9–10	9
5	Центрально-Каракумский	$130 \cdot 10^{3}$	39.5-42.0	55.5-61.0	8–9	_
	КОПЕТДАГ	$1082 \cdot 10^{3}$	35.0-42.0	51.0-67.0	9–10	9

Таблица 3. Координаты и площади пяти районов и региона в целом; представительные энергетические классы $K_{3\min}$ и $K_{\gamma\min}$ соответственно

Рис. 5. Графики повторяемости землетрясений по районам

1, 2 – логарифмы чисел землетрясений N(K), нормированых на площадь *S* Балхано-Каспийского района, и аппроксимирующая их прямая в диапазоне представительных энергетических классов K_P =8–12; 3, 4 – то же по Эльбурскому району, с аппроксимацией в диапазоне K_P =9–12; 5, 6 – то же по Туркмено-Хорасанскому району с аппроксимацией в диапазоне K_P =8–12; 7, 8 – то же по Восточному Туркменистану с аппроксимацией в диапазоне K_P =9–11; 9, 10 – то же по Копетдагскому региону в целом с аппроксимацией в диапазоне K_P =9–12.

Систематическое завышение значений уровня надежной регистрации землетрясений минимум тремя станциями $K_{3\min}$, по сравнению с $K_{\gamma\min}$ (табл. 3), связано с тем, что при расчете карт $K_{3\min}$ исходят из предположения, что каждое землетрясение зарегистрировано минимум тремя станциями, для которых:

- определены четкие времена вступлений *P*-и *S*-волн,

– минимальные амплитуды *P*-волн, различимые на фоне помех, равны *A*_P=0.5 *мм*.

В то же время в банк сейсмологических данных и каталог землетрясений Копетдагского региона включаются и землетрясения, которые локализованы по вступлениям только одного типа волн (P или S) по данным 1–2 станций и азимутам на эпицентр, с дополнительной дифференциацией минимального уровня полезного сигнала на разных станциях, а также в дневное и ночное время, как это видно из анализа уровня дневных и ночных помех на станции «Геокча». С учетом вышесказанного, параметр $K_{\gamma min}$ отражает, скорее всего, энергетический уровень предельной регистрации (K_n на рис. 1), а K_{3min} – ближе к надежной регистрации K_n , поэтому разница между ними закономерна.

Методика обработки записей землетрясений осталась прежней: кинематические параметры землетрясений региона определялись на основе региональных блочных годографов [4], энергетического класса K_P – по номограмме Т.Г. Раутиан [3], магнитуды *MPVA* – согласно [5], макросейсмические характеристики ощутимых землетрясений – на основе регионального уравнения макросейсмического поля [6]. Общее число зарегистрированных землетрясений в 2002 г. составило N_{Σ} =3560 в диапазоне K_P =2.4–12.0. Суммарная сейсмическая энергия, выделившаяся в их очагах, составила ΣE =6.56·10¹² Дж. Максимальное значение K_P =12.0 имеют сразу три землетрясения, произошедшие 8 апреля в 18^h30^m, 10 октября в 12^h13^m и 11 ноября в 12^h25^m [7].

Графическое изображение поля эпицентров 2002 г. дано в двух энергетических срезах – $K_P \ge 8.6$ (рис. 6) и ≤ 8.5 (рис. 7). Общий вид приведенных полей эпицентров, без разделения их по районам, свидетельствует о наличии двух мощных сейсмических структур разной направленности, северо-западной и северо-восточной, сходящихся севернее г. Боджнурд.

1 – энергетический класс Кр; 2 (а-г) – круговые области выборки для построения графиков на рис. 10 и 11; другие обозначения те же, что на рис. 6.

Сравнение суммарных показателей уровня годовой сейсмичности Копетдага в целом с аналогичными сведениями за предыдущие 10 лет (табл. 4, рис. 8) свидетельствует о том, что количество сейсмической энергии в 2002 г. оказалось минимальным за последние 11 лет, хотя суммарное за год число землетрясений уступает лишь значениям ΣN за 1997 и 2000 гг., когда регистрировались афтершоки Боджнурдского (04.02.1997 г. с MS=6.6 [8, 9]) и Балханского (06.12.2000 г. с MS=7.3 [10]) землетрясений.

Год				$K_{\rm P}$							N_{Σ}	ΣE_{z}
	2–7	8	9	10	11	12	13	14	15	16		Дж
1992	2048	343	150	42	17	2	4	1	_	-	2607	$82.8 \cdot 10^{12}$
1993	1922	325	157	55	23	12	1	_	_	-	2495	$20.4 \cdot 10^{12}$
1994	1737	333	176	77	16	3	4	1	_	-	2348	$156.2 \cdot 10^{12}$
1995	1595	228	95	39	11	1	2	_	_	-	1971	$12.2 \cdot 10^{12}$
1996	1070	210	98	52	20	3	1	_	_	-	1454	$13.4 \cdot 10^{12}$
1997	10050	1170	482	139	57	9	2	1	_	1	11911	$4102.4 \cdot 10^{12}$
1998	1685	363	173	49	10	2	1	_	_	-	2283	$15.1 \cdot 10^{12}$
1999	1196	278	161	65	19	11	3	1	_	-	1734	$73.5 \cdot 10^{12}$
2000	4531	763	304	94	31	6	4	2	_	1	5739	31796.7·10 ¹²
2001	1982	383	158	54	19	2	1	2	_	-	2601	$408.32 \cdot 10^{12}$
2002	3070	279	143	42	21	5	_	_	_	-	3560	6.6·10 ¹²

Таблица 4. Сводные данные о годовых числах землетрясений и суммарной энергии в регионе (φ=35-42°N, λ=51-67°E) за 1992-2002 гг.

Рис. 8. Изменение во времени числа землетрясений *N* и суммарной сейсмической энергии Σ*E*, выделившейся на территории Копетдагского региона (φ=35–42°N, λ=51–67°E) за 1992–2002 гг.

Следует отметить, что большое число землетрясений в 2002 г. связано в основном с обилием слабых толчков с $K_P \le 7$ (табл. 4). В каталог землетрясений Копетдага в наст. сб. [7] включены все землетрясения с $K_P \le 8.6$, зарегистрированные и обработанные сейсмической службой Туркменистана в 2002 г., безотносительно указанных в табл. 3 границ. Однако в расчеты энергетической представительности $K_{\gamma min}$ (рис. 5, табл. 5), годовой сейсмической энергии (табл. 4) и характеристик сейсмического режима по районам (рис. 6, табл. 5) включены сейсмические события, произошедшие только в границах Копетдагского региона, указанных в табл. 3 и на рис. 4, 6, 7.

N⁰	Район	Kp					ΣE ,	γ	A_{10}	ΔK	
		8	9	10	11	12	N_{Σ}	Дж			
1	Балхано-Каспийский	122	51	10	8	1	192	$1.48 \cdot 10^{12}$	0.50	0.093	8-12
2	Эльбурский	18	18	8	4	2	50	$2.46 \cdot 10^{12}$	0.32	0.054	9-12
3	Туркмено-Хорасанский	129	59	16	8	2	214	$2.40 \cdot 10^{12}$	0.45	0.074	8-12
4	Восточный Туркменистан	10	15	8	1	_	34	$0.21 \cdot 10^{12}$	0.59	0.012	9–11
5	Центрально-Каракумский										
	КОПЕТДАГ	279	143	42	21	5	490	$6.55 \cdot 10^{12}$	0.47	0.045	9–12

Таблица 5. Распределение по районам числа землетрясений разных классов K_P , суммарной сейсмической энергии ΣE и параметров сейсмического режима A_{10} и γ за 2002 г.

Примечание. В графе « ΔK » приведен диапазон энергетических классов, в котором строились графики повторяемости для определения γ и A_{10} .

Каталог механизмов очагов за 2002 г., приведенный в [11], содержит решения для 5 землетрясений. Соответствующие им стереограммы представлены на рис. 9.

Рис. 9. Стереограммы механизмов очагов в проекции нижней полусферы для землетрясений: 21 июня в 22^h59^m с *K*_P=10.6 (а), 29 августа в 22^h14^m с *K*_P=10.7 (б), 19 октября в 15^h52^m с *K*_P=11.7 (в), 19 октября в 16^h37^m с *K*_P=10.2 (г) и 27 ноября в 04^h55^m с *K*_P=11.3 (д)

1 - нодальные линии; 2, 3 - оси напряжений растяжения и сжатия соответственно; зачернена область сжатия.

Ниже детально рассматривается сейсмический процесс отдельно по районам.

В Балхано-Каспийском районе (№1) число землетрясений и их суммарная энергия существенно понизились, по сравнению с аналогичными значениями за предыдущий год: N_{Σ} =192 вместо 265, ΣE =1.48·10¹² Дж вместо 81.43·10¹² Дж (табл. 5, [1]). Это обусловлено главным образом затуханием афтершоков в очаге Балханского землетрясения 06.12.2000 г. с MS=7.3 [11]. Очаговая зона Балханского землетрясения, несмотря на ослабление афтершокового процесса, продолжала генерировать на протяжении 2002 г. землетрясения с $K_P \le 12$, оконтурившие, как и в 2000–2001 гг., афтершоковую зону, вытянутую в северо-западном направлении, от с. Дянеаты до г. Балканабат (рис. 6).

Вместе с тем заметна концентрация слабых землетрясений:

- в центре очаговой зоны, к востоку от г. Балканабат (окружность «а» радиусом 30 км на рис. 7),
- в ее юго-восточной части, вокруг сейсмической станции «Даната» (окружность «в» того же радиуса),

- за ее северо-западной границей, в районе курорта Моллакара (окружность «б»).

Максимальное число афтершоков приурочено к юго-восточной части очаговой зоны, оконтуренной окружностью «б» на рис. 7. Здесь 26 июля в $11^{h}45^{m}$ произошло неглубокое ($h=6 \ \kappa m$) землетрясение с $K_{\rm P}=11.1$, которое имело интенсивность в эпицентре $I_0^{\rm p}=6$ баллов и проявилось в с. Дянеата ($\Delta=16 \ \kappa m$) с I=4-5 баллов; в Балканабате ($75 \ \kappa m$) – 2 балла. Максимальный в 2002 г. афтершок Балханского землетрясения зарегистрирован также в этой зоне 19 октября в $15^{h}57^{m}$ с $K_{\rm P}=11.7$ и $h=17 \ \kappa m$ и ощущался в Дянеата ($20 \ \kappa m$) с $I=4 \ балла,$ в Берекете ($40 \ \kappa m$) – 3 балла, в Балканабате ($64 \ \kappa m$) – $2-3 \ балла.$ Тип подвижки в его очаге – правый сбросо-сдвиг по плоскости (NP2) (рис. 9, в; [11]). Через 40^{m} (в $16^{h}37^{m}$) было зарегистрировано землетрясение с $K_{\rm P}=10.2$ из этого же очага. Удалось определить механизм его очага: правый сбросо-сдвиг по субширотной плоскости, или левый сбросо-сдвиг по субширотной плоскости, или левый сбросо-сдвиг по субмеридиональной (рис. 9, г). Отметим, что преобладание сбросовых механизмов очагов землетрясений с эпицентрами восточнее г. Гумдаг отмечалось ранее при анализе афтершокового процесса Кумдагского землетрясения 14.03.1983 г. с *MLH*=5.7 [12].

К северо-западу от Балханской очаговой зоны продолжала действовать очаговая зона Моллакаринского землетрясения 10.06.2001 г. с $K_{\rm P}$ =13.9 [1], отделенная от Балханской узким асейсмичным участком. Самое крупное ($K_{\rm P}$ =11.1) землетрясение из этой зоны, возникшее 25 января в 08^h13^m, h=13 км с расчетной интенсивностью $I_0^{\rm p}$ =4–5 баллов, ощущалось с I=4 балла в Огланлы (11 км), 3–4 балла – в Моллакара (25 км), 2–3 балла – в Балканабате (37 км), 2 балла – в Туркменбаши (110 км) [7].

Следует отметить, что в [1] район Моллакара сочтен не принадлежащим собственно очагу Балханского землетрясения 06.12.2000 г. с MS=7.3, поскольку, как видно из рис. 10 а–в, помесячное распределение числа и энергии землетрясений за период 2000–2002 гг. в этой зоне асинхронно сейсмическому процессу в Балканабатской и Дянеатинской зонах, принадлежащих очаговой зоне Балханского землетрясения. Так, в мае–июне 2000 г., в период сейсмического затишья в Балканабатской и Дянеатинской зонах перед основным толчком (рис. 10а, 10в), Моллакаринская зона генерировала максимальные для этой зоны месячные числа землетрясений с $K_P \ge 8$ (рис. 10,б). Наоборот, с декабря 2000 г. по апрель 2001 г., в период реализации основного толчка и интенсивного афтершокового процесса, проявившегося максимальными значениями ΣN и $lg\Sigma E$ в Балканабатской и Дянеатинской зонах, в Моллакаринской зоне наблюдалось сейсмическое затишье. Эти факты вместе с существованием асейсмичного участка, отделяющего Моллакаринскую зону от Балханской (рис. 6), подтверждают предположение о том, что Моллакаринская зона – самостоятельная и не связана с очагом Балханского землетрясения.

Рис. 10. Изменение во времени чисел землетрясений представительного уровня (согласно рис. 11) и суммарной их энергии за 2000–2002 гг. в трех зонах радиусом 30 км: Балканабатской (а), Моллакаринской (б) и Дянеатинской (в и г)

Координаты центров окружностей каждой выборки указаны в скобках.

Как отмечалось ранее при анализе афтершоковой деятельности Янгаджинского землетрясения 01.07.1994 г. с K_P =14, MS=6.4 [13], Дюзмергенского 19.07.1996 г. с K_P =12.1, MS=4.1 [14], Моллакаринского 10.06.2001 г., K_P =13.9, MS=5.1 [1] и других землетрясений, слабое группирование сейсмических событий и небольшое число афтершоков – характерная черта землетрясений Кубадаг-Большебалханского тектонического блока, сформированного на северном крыле западного участка Копетдаг-Балханского разлома между г. Берекет и г. Туркменбаши (рис. 6). Это подтверждает и небольшое месячное число сейсмических событий с $K_P \ge 8$ в Моллакаринской зоне (рис. 10, б). Всего в радиусе 30 км от эпицентра Моллакаринского землетрясения (окружность «б» на рис. 7) в 2002 г. зарегистрировано 45 толчков с K_P =6.5–11.1, из них по одному с K_P =10 и 11, шесть – с K_P =9, 19 – с K_P =8 и 17 – с K_P =6–7. Для сравнения отметим, что в радиусе 30 км от эпицентра Балханского землетрясения (окружность «а» на рис. 7), приуроченного к тому же блоку земной коры, зарегистрировано 62 толчка, из которых три с K_P =11, ни одного – с K_P =10, девять – с K_P =9, 13 – с K_P =8 и 36 – с K_P =5÷7.

В отличие от Балканабатской и особенно Моллакаринской зон, беспрецедентным числом зарегистрированных в 2002 г. землетрясений выделяется Дянеатинская очаговая зона, которая и ранее генерировала большое число слабых толчков, часто образующих роевые последовательности. В пределах этой зоны, оконтуренной окружностью «в» на рис. 7, в 2002 г. локализовано 1654 землетрясений, из которых одно – с K_P=12, два – с K_P=11, четыре – с K_P=10, 14 – с K_P=9, 35 $- c K_P = 8$ и 1598 (!) $- c K_P = 2 \div 7$. Такое множество слабых толчков не связано с изменением энергетического уровня представительной их регистрации в районе Дянеата в сторону понижения, как можно было бы предположить в связи с введением высокочувствительной цифровой станции «Геокча». Согласно графику предельной регистрации для этой станции на рис. 1, она может регистрировать в районе Дянеата на расстоянии 290 км лишь землетрясения K_P≥7.2. тогда как фактический уровень представительности в Дянеатинской зоне радиусом 30 км, определенный по левому загибу графика повторяемости, соответствует K_{ymin}=4-5 (рис. 11). Этот уровень, как показало исследование дальности регистрации находящейся в центре 30-километровой зоны станции «Даната» с V_{max}=40000, обеспечивается ею в радиусе 25-30 км. Таким образом, в 2002 г. в районе Дянеата произошло усиление группирования землетрясений (рис. 11в, г), которое можно объяснить, в частности, снятием напряжений в очаге Балханского землетрясения и концентрацией их на границах очаговой зоны.

Рис. 11. Графики повторяемости и энергетические уровни представительности *К*_{у min} для землетрясений Балхано-Каспийского района в его четырех очаговых зонах радиусом 30 км (рис. 7) за 2000–2002 гг.

1-4 – наблюденные значения lg $N(K_P)$ и осредняющие прямые графиков повторяемости землетрясений представительных классов для зон: Балканабатской (1), Моллакаринской (2), Дянеатинской (3) и Сарымсаклинской (4); зоны показаны на рис. 7. В акватории Каспия в 2002 г. отметим три землетрясения с $K_{\rm P}$ ÷11: 23 января в 03^h02^m $K_{\rm P}$ =11.0, 11 февраля в 16^h18^m и в 21^h20^m с $K_{\rm P}$ =11.5 и 11.0 соответственно. Первое из них было ощутимым с *I*=2 балла в г. Туркменбаши (89 км). С такой же интенсивностью в г. Туркменбаши проявилось более слабое ($K_{\rm P}$ =9.9) землетрясение, зарегистрированное 16 апреля в 03^h49^m в 35 км к северо-востоку от этого города.

В Эльбурском районе (№ 2) выделившаяся в 2002 г. сейсмическая энергия и сейсмическая активность существенно повысились ($\Sigma E=2.46 \cdot 10^{12} \ \square mc$ вместо 0.56 $\cdot 10^{12} \ \square mc$, $N_{\Sigma}=50$ вместо 38 (табл. 5, [1]), при неизменном наклоне графика повторяемости, следовательно, повысились числа землетрясений всех энергетических классов. Два самых крупных ($K_P=12.0$) землетрясения произошли на южном побережье Каспия, в Иране (рис. 6). Там же, южнее Каспийского моря, можно отметить еще два заметных толчка в зоне Эльбурского разлома. Первое, зарегистрированное 28 июня в $19^{h}57^{m}$ с $K_P=11.2$ в 45 км южнее иранского г. Бехшехр, не имело афтершоков с $K_P \leq 9$. Второе, произошедшее 27 ноября в $04^{h}55^{m}$ с $K_P=11.2$ вблизи г. Горган (Иран), сопровождалось несколькими фор- и афтершоками с $K_P \div 9$ (рис. 6).

На территории Туркменистана в 50 км к северу от станции «Кизыл-Атрек» 5 августа в $05^{h}25^{m}$ реализовалось землетрясение с K_{P} =9.9. Оно сопровождалось афтершоками , среди которых было два с близкой энергией (27 августа в $15^{h}41^{m}$ с K_{P} =9.2 и 28 августа в $14^{h}18^{m}$ с K_{P} =9.5). Вероятно, все три толчка явились форшоками более крупного (K_{P} =10.8) землетрясения 29 августа в $15^{h}16^{m}$, произошедшего севернее предваряющих толчков.

В Туркмено-Хорасанском районе (\mathbb{N} 3) сейсмическая активность A_{10} несколько повысилась при одновременном понижении параметра γ в связи с тем, что число землетрясений с K_P =8–10 уменьшилось, а с K_P =11–12, наоборот, возросло (табл. 5 по сравнению с табл. 4 в [1]). Максимальные (K_P ÷12) землетрясения в этом районе произошли в 2002 г. на территории Туркменистана.

Первое из них, локализованное в 16 км к северо-востоку от с. Гызылбаир (рис. 6), отмечено 11 сентября в $16^{h}20^{m}$ с K_{P} =11.7 и явилось продолжением августовской серии землетрясений, зарегистрированных в 60–70 км западнее (см. описание по Эльбурскому району и рис. 6). Землетрясение 11 сентября имело два афтершока 9-го и один 10-го классов. Главный толчок ощущался с *I*=4 балла в Гызылбаире (16 км), Терсакане (19 км) и 3 балла – в Гаррыгала (47 км).

Второй толчок 12-го класса реализовался 11 ноября в $12^{h}25^{m}$ вблизи с. Сарымсаклы Бахарденского района. Он ощущался с I=5 баллов в селах Сарымсаклы (3 км), Прохладное (3 км) и 3–4 балла в Бахарлы (32 км), Кенекесир, Гермап (37 км).

Сейсмичность Южно-Бахарденского района, где произошло вышеупомянутое Сарымсаклинское землетрясение, активизировалась еще в августе–сентябре 2000 г. [15], когда произошла серия землетрясений, включая одно с K_P =14 и три с K_P =13 (рис. 12). Район оставался активным и в 2001 г. [1], и в 2002 г. Здесь зарегистрировано большое число землетрясений с $K_P \le 10$.

29 августа в $22^{h}14^{m}$ в 40 км от эпицентра Сарымсаклинского землетрясения произошел толчок с $K_{\rm P}$ =10.7, который можно счесть его форшоком, хотя он расположен за пределами 30-км зоны, показанной на рис. 7. Подвижка в его очаге типа правостороннего сдвиго-надвига по субмеридиональной плоскости, или левостороннего сдвиго-надвига – по субширотной (рис. 9,6).

Примечательно, что самый крупный (K_P =10.7) форшок Сарымсаклинского землетрясения произошел 29 августа, как и самый крупный форшок (K_P =10.8) упомятого ранее Гызылбаирского землетрясения, что указывает на единство тектонического процесса, вызвавшего оба главных толчка.

Другим местом концентрации эпицентров землетрясений на территории района № 3 является зона к северу от иранского г. Герме, где в течение всего 2002 г. регистрировались землетрясения с $K_P \le 11$ (рис. 6). Отметим три из них, произошедших 25 февраля в 23^h03^m с $K_P=10.9$, 21 июня в 22^h59^m с $K_P=10.6$ и 27 ноября в 04^h55^m с $K_P=11.3$. Подвижка в очаге землетрясения 21 июня представляет собой взброс по крутой плоскости или надвиг по пологой, причем обе нодальные плоскости имеют северо-восточную ориентацию (рис. 9, а), совпадающую с положением Мешхед-Горганского разлома (рис. 6). В очаге землетрясения 27 ноября ориентация нодальных плоскостей NP1 и NP2 та же самая, но направление подвижки сменилось на противоположное – сброс или поддвиг (рис. 9, д).

На территории **Восточного Туркменистана** (№ 4) сейсмическая активность и выделившаяся сейсмическая энергия существенно понизились ($A_{10}=0.012$ и $\Sigma E=0.21 \cdot 10^{12} \ \mbox{\screwtheta}$ ж в 2002 г. по сравнению с $A_{10}=0.021$ и $\Sigma E=3.25 \cdot 10^{14} \ \mbox{\screwtheta}$ ж в 2001 г. [1]). Это связано главным образом с затуханием серии афтершоковой Камашинского-III землетрясения 18.01.2001 г. с $K_P=14.5$ [1, 16], в радиусе 50 км от эпицентра которого в 2002 г. зарегистрировано лишь по два афтершока с $K_P=9$, 10 и один с $K_P=11$ (рис. 6). Несколько землетрясений с $K_P=10$ произошли к северу и западу от этой зоны. По три толчка с $K_P=9$ произошло вблизи станций «Кугитанг» и «Карлюк».

На территории Афганистана, в районе г. Шыбырган, возникло несколько землетрясений с $K_P=9-10$. В традиционно активной Газлийской зоне не зарегистрировано ни одного сейсмического события с $K_P \ge 9$ (рис. 6).

Литература

- 1. Гаипов Б.Н., Петрова Н.В., Безменова Л.В., Сарыева Г.Ч. Копетдаг // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 120–139.
- 2. Аранович З.И., Ахалбедашвили А.М., Гоцадзе О.Д., Деканосидзе Ц.А. Методика расчета эффективности сети региональных сейсмических станций на примере Кавказа // Вопросы оптимизации и автоматизации сейсмологических наблюдений. Тбилиси: Мецниереба, 1977. С. 27–57.
- 3. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 4. Рахимов А.Р., Славина Л.Б. Региональный годограф Копетдагской сейсмической зоны // Изв. АН ТССР. Сер. ФТХиГН. 1984. № 3. С. 31–38.
- 5. Рахимов А.Р., Соловьёва О.Н., Арбузова Г.Н. Определение магнитуды землетрясений Туркмении на эпицентральных расстояниях до 400 км // Изв. АН ТССР. Сер. ФТХиГН. 1983. № 5. С. 61–65.
- 6. Голинский Г.Л. Уравнения макросейсмического поля землетрясений Туркмении // Изв. АН ТССР. Сер. ФТХиГН. 1977. № 1. С. 69–74.
- 7. Сарыева Г.Ч. (отв. сост.), Тачов Б., Мамедязова М.Т., Халлаева А.Т., Коржукова Т.А., Дурасова И.А., Клычева Э.Р., Эсенова А., Петрова Н.В., Мустафаев Н.С. Копетдаг. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 8. Гаипов Б.Н., Голинский Г.Л., Петрова Н.В., Ильясов Б.И., Мурадов Ч.М., Рахимов А.Р., Безменова Л.В., Гарагозов Д., Ходжаев А., Баймурадов К., Рахманова М.С. Боджнурдское землетрясение 4 февраля 1997 года с *MS*=6.6, *I*₀=8 (Копетдаг) // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 199–218.
- 9. Гаипов Б.Н., Петрова Н.В, Голинский Г.Л., Рахимов А.Р., Сарыева Г.Ч. Копетдаг // Землетрясения Северной Евразии в 1997 году. – Обнинск: ГС РАН, 2003. – С. 63–72.
- 10. Гаипов Б.Н., Петрова Н.В., Голинский Г.Л., Безменова Л.В., Рахимов А.Р. Балханское землетрясение 6 декабря 2000 г. с *MS*=7.3, *I*₀=8–9 (Копетдаг) // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 306–320.
- 11. Аннаоразова Т.А., Безменова Л.В., Чепкунас Л.С. (отв. сост.). Копетдаг. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).

- 12. Голинский Г.Л., Аннаоразова Т.А., Рахимов А.Р. Землетрясения Копетдага // Землетрясения в СССР в 1983 г. М.: Наука, 1986. С. 38–45.
- 13. Голинский Г.Л., Мурадов Ч.М. Янгаджинское землетрясение 1 июля 1994 года // Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 142–146.
- 14. Голинский Г.Л., Мурадов Ч.М., Рахимов А.Р. Дюзмергенское землетрясение 19 июля 1996 года, *MS*=4.1, *I*₀=5-6 (Копетдаг) // Землетрясения Северной Евразии в 1996 году. – М.: ГС РАН, 2002. – С. 190–197.
- 15. Гаипов Б.Н., Петрова Н.В., Голинский Г.Л., Рахимов А.Р., Сарыева Г.Ч. Копетдаг // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 95–109.
- 16. **Михайлова Р.С.** Камашинское-II землетрясение 20 апреля 2000 года с *Мw*=5.3, *I*₀=5–6 (Узбекистан) // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 254–264.