КАРПАТЫ

Р.С. Пронишин¹, А.Ф. Стасюк¹, М.В. Чуба¹, И.А. Гаранджа¹, И.Н. Келеман¹, Н.Я. Степаненко², И.В. Алексеев², Н.А. Симонова²

¹Институт геофизики НАН Украины, г. Львов, **roman@ seism.lviv.ua** ²Институт геологии и геофизики АН Молдовы, г. Кишинев, **kis-seismo@mail.ru**

Сейсмические исследования в Карпатском регионе в 2002 г., как и в [1], проводились сетью, состоящей из десяти стационарных сейсмических станций: «Львов», «Ужгород», «Ужгород (павильон)», «Межгорье», «Косов», «Моршин», «Тросник», «Нижнее Селище», «Городок» и «Черновцы». Продолжалось оснащение региональных сейсмических станций цифровыми автоматическими комплексами DAS-03 [2]. С 18 августа 2002 г. полностью на автоматическую регистрацию перешла станция «Межгорье», на которой в качестве сейсмоприемника использовался комплект С-5-С с собственным периодом $T_s=0.5 c$, ранее используемый в ждущем режиме. На сейсмической станции «Косов» цифровая аппаратура установлена с 17 августа 2002 г. с сейсмоприемником СКД с $T_s=25 c$ и параллельно продолжалась гальванометрическая регистрация только на Z-составляющей СКМ-3 (канал КПЧ был снят полностью). На станции «Ужгород» цифровая регистрация реализована с 27 августа 2002 г. с сейсмоприемником СМ-3КВ и в прежнем объеме проводилась фотогальванометрическая регистрация. Сейсмическая станция «Рахов» в 2002 г. не работала в связи с передислокацией в другое помещение.

Цифровая станция «Черновцы» с 2002 г. принадлежит отделу сейсмичности Карпатского региона ИГ НАНУ. Она размещена по договоренности в арендованном помещении Черновицкого университета. Хотя эта станция существовала и ранее (с 1992 г.), однако она была вне ведения отдела сейсмичности Карпатского региона, к тому же, в силу разных причин, станция больше не работала, чем работала (постоянно были разного рода неполадки или с аппаратурой, которая к тому же менялась, или со службой времени). В любом случае до 2002 г. данные этой станции в обработке землетрясений региона не использовались. Благодаря модернизации аппаратурного комплекса этой станции и применению «почтового робота» в 2002 г. была получена возможность автоматического доступа к ее базе данных и отслеживания сейсмических событий, зарегистрированных всей Карпатской сетью.

Дополнительно при обработке землетрясений юго-западной части Северо-Западного района привлекались, как и в 2001 г. [1], данные режимных геофизических цифровых автоматических станций «Мукачево», «Берегово», «Королево» Карпатской Опытно-методической геофизической партии отдела сейсмичности Карпатского региона. Основные параметры регистрирующей аппаратуры приведены в табл. 1, 2.

№	с Станция			Год	Коо	рдина	ты	Аппаратура							
	Название	К	од	открытия	φ°, N	λ° , Ε	h _y ,	Тип	Компо-	V _{max}	$\Delta T_{\rm max},$	Раз-			
		межд. рег.					м	прибора	нента		С	вертка,			
												мм/мин			
1	Львов	LVV	Лвв	05.06.1899	49.82	24.03	320	СКД	N, E	1050	0.20-20	30			
									Ζ	1050	0.20–20	30			
								СКД, КПЧ	Ζ	100	0.20–18	30			
								СД-1	N, E	85	16-50	15			
									Z	850	17–55	15			
							СД-1, КПЧ	Ζ	55	18-42	15				
				08.10.1999				СКД	N, E, Z	DAS-03	– цифровая	станция			

Таблица 1. Сейсмические станции Карпат (в хронологии их открытия), работавшие в 2002 г., и параметры аналоговых станций

№	Ста	анция		Год	Коо	рдина	ты		Ап	паратура	a	
	Название	К	од	открытия	φ°, N	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,	Раз-
		межд.	рег.				м	прибора	нента		С	вертка,
												мм/мин
2	Ужгород	UZH	Ужг	1934	48.63	22.29	160	СКД	N, E, Z	940	0.20-20	30
								СКД, КПЧ	Ζ	70	0.20–20	30
								ВБП-3	N, E, Z	11.5	0.01-0.80	360
				27.08.2002				СМ-3 КВ	N, E, Z	DAS-03	– цифровая	станция
3	Межгорье	MEZ	Мжг	c 01.06.1961	48.51	23.51	440	CKM-3	N, E, Z	31100	0.50-0.80	60
				то 16.08.2002				СКМ-3, КПЧ	N, E, Z	2050	0.30-0.70	60
				18.08.2002				C-5-C	N, E, Z	DAS-03	– цифровая	станция
4	Косов	KOV	Кос	c 1961	48.31	25.07	450	СКД	N, E, Z	1050	0.20–19	30
				то 17.08.2002				СКМ-3	N, E, Z	<u>, Z 25000 0.3</u>		60
				17.08.2002				СКМ-3	Ζ	25000	0.30-0.80	60
				17.08.2002				СКД	N, E, Z	DAS-03	– цифровая	станция
5	Ужгород		Ужг(п)	10.11.1963	48.66	22.34	168	CKM-3	N, E, Z	38000	0.50-0.80	60
	(павильон)							СКМ-3, КПЧ	N, E, Z	4100	0.30-0.80	60
								C-5-C	N, E, Z	20	0.10-0.80	
6	Моршин	MORS	Мрш	01.01.1978	49.14	23.90	262	*СМ-3КВ	Z	14200	0.50-1.00	60
7	Нижнее	HSL	Нсл	01.03.1987	48.20	23.46	250	СКМ-3				
	Селище			1998	48.20	23.46	250	CM-3 KB	N, E, Z	DAS-03	– цифровая	станция
8	Тросник	TRS	Tpc	01.08.1988	48.09	22.96	126	CM-3KB				
		-		1998	48.09	22.96	126	CM-3KB	N, E, Z	DAS-03	– цифровая	станция
9	Городок	HOR	Гор	1991	49.18	26.50	250			~		
				12.10.2001	49.18	26.50	250	CKM-3	N, E, Z	DAS-03	– цифровая	станция
10	Черновцы	CHR	Чрн	c 1992	48.28	25.93	150		N, E, Z	цис	ровая стан	ция
				01.01.2002	48.28	25.93	150	CM-3KB	N, E, Z	DAS-03	– цифровая	станция
	Берегово	BRG	Брг	12.07.2000	48.25	22.57	160	CM-3KB	N, E, Z	DAS-03	– цифровая	станция
	Мукачево	MUK	Мук	14.08.1996	48.45	22.69	152	CM-3KB	N, E, Z	DAS-03	– цифровая	станция
	Королево	KOR	Кор	12.08.1999	48.16	23.14	150	CM-3KB	N, E, Z	DAS-03	– цифровая	станция
	Микулинцы			c 27.03.2002	49.40	25.61		СМ-3КВ	N, E, Z	DAS-03	– цифровая	станция
	(временная)			то 29.05.2002								

Примечание. *В [1] для этой станции ошибочно указано СМ-3.

Таблица 2. Данные об аппаратуре цифровых станций Карпат в 2002 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Динамический диапазон, дб
Львов	DAS+CM-3KB	EH(N, E, Z)v	0.05–18	100	100
		MH(N, E, Z)v	0.05-1.5	5	100
Нижнее Селище	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
		MH(N, E, Z)v	0.05-1.5	5	100
Тросник	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
-		MH(N, E, Z)v	0.05-1.5	5	100
Берегово*	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
•		MH(N, E, Z)v	0.05-1.5	5	100
Мукачево*	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
2		MH(N, E, Z)v	0.05-1.5	5	100
Королево*	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
-		MH(N, E, Z)v	0.05-1.5	5	100
Городок	DAS+CKM-3	EH(N, E, Z)v	0.05-18	100	100
1		MH(N, E, Z)v	0.05-1.5	5	100
Межгорье	DAS+C-5-C	EH(N, E, Z)v	0.05-18	100	100
1		MH(N, E, Z)v	0.05-1.5	5	100
Косов	DAS+СКД	EH(N, E, Z)v	0.05-18	100	100
		MH(N, E, Z)v	0.05-1.5	5	100
Ужгород	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
-		MH(N, E, Z)v	0.05-1.5	5	100

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Динамический диапазон, дб
Черновцы	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
		MH(N, E, Z)v	0.05-1.5	5	100
Микулинцы	DAS+CM-3KB	EH(N, E, Z)v	0.05-18	100	100
(временная)		MH(N, E, Z)v	0.05-1.5	5	100

Примечание. Символом «v» обозначен велосиграф, знаком * помечены три станции другого подчинения.

Увеличение объема сейсмической информации, получаемой в цифровом виде, дало возможность полностью применить для ее анализа и обработки современную вычислительную технику. Методика определения кинематических и динамических параметров землетрясений Карпатского региона осталась прежней [1].

В 2002 г. в Карпатском регионе Украины зарегистрировано 79 землетрясений с K_P =3.6–11.7, из них локализовано лишь 46 [3]. Карта эпицентров изображена на рис. 1 для землетрясений с K_P =6.2–11.7.

Рис. 1. Карта эпицентров землетрясений Карпат за 2002 г.

1 – энергетический класс *K*_P; 2 – глубина *h* гипоцентра: з/к и 50–185 *км*; 3 – в квадратных скобках указано число эпицентров с одинаковыми координатами; 4 – станция не работала; 5, 6 – сейсмическая станция Карпатского региона и прилегающих территорий соответственно; 7, 8 – граница региона и района соответственно. Номера сильных (*K*_P≥10.6) землетрясений даны в соответствии с первой графой регионального каталога [3]. Сведения о распределении землетрясений по районам, энергетическим классам и величине выделившейся сейсмической энергии приведены в табл. 3.

№	Район				K _P				N_{Σ}	ΣE ,
		4–6	7	8	9	10	11	12		Дж
1	Северо-Западный:									
	а) Закарпатье	1(19)	4(2)	4	_	—	—	—	9(21)	$0.037 \cdot 10^{10}$
	б) Предкарпатье	_	2	2	_	_	1	_	5	$6.340 \cdot 10^{10}$
	в) Словакия	_	(1)	_	2	_	_	_	2(1)	$0.130 \cdot 10^{10}$
	д) Румыния, Мармарош	_	1	1(2)	-	_	_	_	2(2)	$0.046 \cdot 10^{10}$
2	Вранча:									
	а) горы Вранча	—	—	(1)	5	6(3)	2	3	16(4)	$138.000 \cdot 10^{10}$
	б) Предкарпатский прогиб	_	_	_	_	1(1)	_	_	1(1)	$1.580 \cdot 10^{10}$
	в) Плоешти	_	_	_	_	1	_	_	1	$0.316 \cdot 10^{10}$
3	Южные Карпаты	_	-	_	_	_	_	_	_	_
4	Банат	_	-	_	_	_	_	_	_	_
5	Буковина и Молдова	—	-	1(1)	3	—	_	—	4(1)	$0.321 \cdot 10^{10}$
6	Кришана	_	_	(1)	_	_	_	_	(1)	$0.006 \cdot 10^{10}$
7	Трансильвания	_	_	_	_	_	_	_	_	_
8	Бакэу	—	-	-	_	1	_	_	1	$0.050 \cdot 10^{10}$
	Вне региона (Венгрия)	_	(1)	1(1)	2	2	_	_	5(2)	$1.140 \cdot 10^{10}$
	Всего	1(19)	7(4)	9(6)	12	11(4)	3	3	46(33)	$148.145 \cdot 10^{10}$

Таблица 3. Распределение землетрясений по энергетическим классам *К*_P и суммарная сейсмическая энергия *ΣЕ* по районам

Примечание. Деление районов №1, №2, №5 на подрайоны, по сравнению с таковым в [1], изменилось; в скобках приведено число землетрясений без координат (в районах № 3, 4, 7 в 2002 г. землетрясения не зарегистрированы).

Выделившаяся сейсмическая энергия в Карпатском регионе в 2002 г. составила $\Sigma E=1.48 \cdot 10^{12} \ \mathcal{Д} \mathscr{K}$ (табл. 1), что более чем в 17 раз ниже уровня энергии в 2001 г. ($\Sigma E=2.58 \cdot 10^{13} \ \mathcal{Д} \mathscr{K}$ [1]). Как всегда наиболее активным был район Вранча – 93% всей сейсмической энергии Карпатского региона. Относительно высокий уровень сейсмической энергии в Северо-Западном районе (\mathbb{N} 1), по сравнению с предыдущим 19-летним периодом инструментальных наблюдений, обусловлен активизацией сейсмических процессов в Предкарпатье. Сейсмичность остальных районов можно считать фоновой.

Высвобождение сейсмической энергии на протяжении года было неравномерным (рис. 2). Повышенный уровень энергии в мае, августе–сентябре и ноябре обусловлен сильными землетрясениями в районе Вранча, а в январе – вспышкой сейсмической активности в Предкарпатье. Наибольшее число землетрясений зарегистрировано в сентябре.

Максимальным в земной коре в 2002 г. было землетрясение 1 (рис. 1), зарегистрированное 3 января в $17^{h}43^{m}$ с $K_{P}=10.8$, а в промежуточном слое – землетрясение 6, произошедшее 30 ноября в $08^{h}15^{m}$ с $K_{P}=11.7$ и h=185 км.

Наиболее интересное первое из них, Микулинецкое, локализованное в Предкарпатье, в 115 км к юго-востоку от Львова, в 70 км от ближайшей станции – «Городок» – и ощущавшееся в эпицентре с интенсивностью I_0 =6 баллов. Оно обследовано и подробно описано в отдельной статье [4] наст. сб. На станции «Городок» в первый месяц после основного толчка зарегистрировано 16 афтершоков с K_P =5.8–8.8 и один форшок 1 января в 04^h34^m с K_P =6.6, которые, к сожалению, не локализованы. С 27 марта по 29 мая в эпицентральной зоне этого землетрясения, в пос. Микулинцы Тернопольской области, был установлена цифровая станция «Микулинцы» (табл. 1). За время ее работы зарегистрировано 16 местных землетрясений с K_P =5.2–6.8, расположенных на расстоянии 4–40 км от пункта регистрации. К сожалению, из-за удаленности ближайших станций («Городок» (Δ =70 км), «Косов» (Δ =120 км), «Львов» (Δ =120 км)) эти толчки также не локализованы. Землетрясение 30 ноября в 08^h15^m с K_P =11.7 также ощутимо и детально описано ниже.

Рис. 2. Распределение числа землетрясений N(1) и логарифма выделенной сейсмической энергии $lg\Sigma E(2)$ по месяцам за 2002 г.

Рассматривая на карте эпицентров коровые землетрясения в совокупности, без разрыва по районам, можно отметить весьма протяженную полосу эпицентров небольшой ширины, которая в Словакии и приграничных с Венгрией районах Украины имеет северо-северо-западное простирание, затем широтное простирание по границе с Северной Румынией и почти меридиональное – на границе Румынии и Молдовы.

Первая часть этой полосы представлена толчками 22 января в $08^{h}07^{m}$ с $K_{P}=8.9$ и 23 июня в $15^{h}11^{m}$ с $K_{P}=8.7$ на территории Словакии, на продолжение линии Сигет–Свалява, связанной с сейсмогенными зонами Закарпатья, и группой событий в Закарпатье возле станций «Ужгород» и «Мукачево» с максимальным толчком 9 августа в $17^{h}28^{m}$ с $K_{P}=8.2$. Активизация в Закарпатье наблюдалась вдоль линии Ужгород–Мукачево–Берегово. Это зона миоценовых разломов и вулканизма, ограничивающих Закарпатский прогиб с юга. К этой зоне относятся эффузивные породы Береговского холмогорья, возвышенностей Косино и Запсонь. Структурная самостоятельность этой зоны определяется прежде всего тем, что в ее пределах фундамент прогиба высоко поднят. Это поднятие на всем протяжении совпадает с осью максимума силы тяжести [5]. Эпицентры землетрясений обнаруживают связь с наиболее молодыми (четвертичными) разрывными нарушениями Закарпатского прогиба (рис. 3).

Здесь, в районе Ужгорода, на протяжении двух дней, с 10 сентября с $04^{h}38^{m}$ до $15^{h}09^{m}$ и 13 сентября с $15^{h}00^{m}$ по 14 сентября в $02^{h}03^{m}$, отмечен рой из 18 землетрясений с K_{P} =3.6–7.5, зарегистрированных преимущественно одной станцией «Ужгород» (только пять из них записаны двумя и более станциями). Координаты очагов были определены лишь для трех толчков (10 сентября в $04^{h}38^{m}$ с K_{P} =6.7, 13 сентября в $23^{h}10^{m}$ с K_{P} =7.5 и 14 сентября в $01^{h}55^{m}$ с K_{P} =6.2). Землетрясение 13 сентября ощущалось населением в с. Ориховец с интенсивностью *I*=3 балла. Люди, которые в это время не спали, ощущали толчок. Ранее, еще до начала инструментальных наблюдений, здесь происходили землетрясения с интенсивностью в эпицентре до 6–7 баллов: 31.01.1797 г. с I_{0} =6 баллов в с. Ракошино; 02.08.1936 г. с I_{0} =6–7 баллов в с. Антоновка. Более сильное землетрясение 2002 г., произошедшее 9 августа в $17^{h}28^{m}$ с K_{P} =8.2, локализовано в южной части описываемого разлома в районе с. Страбичево, где 18.01.1924 г. произошло землетрясение с I_{0} =5–6 баллов [7, 8].

Участок полосы эпицентров близширотного простирания сформирован тремя группами толчков: между станциями «Тросник» и «Нижнее Селище», вблизи станции «Рахов» и станции «Черновцы». К первой из них относятся четыре события почти равной энергии (7 февраля в $22^{h}31^{m}$ с K_{P} =7.4, 14 февраля в $06^{h}30^{m}$ с K_{P} =7.4, 13 марта в $12^{h}36^{m}$ с K_{P} =7.5, 21 августа в $11^{h}02^{m}$ с K_{P} =7.4), ко второй – три (17 апреля в $13^{h}15^{m}$ с K_{P} =8.3, 27 апреля в $17^{h}00^{m}$ с K_{P} =7.1, 19 сентября в $13^{h}56^{m}$ с K_{P} =7.6), к третьей – два (26 марта в $18^{h}06^{m}$ с K_{P} =8.0, 26 апреля в $12^{h}14^{m}$ с K_{P} =9.1). Два землетрясения с K_{P} =7.4, произошедшие 14 февраля и 21 августа с очагами в районе Нижнего Селища, приурочены к Перипенинскому глубинному разлому, главной сейсмотектонической линии Закарпатья, разграничивающей Карпаты и Закарпатский внутренний прогиб (рис. 3). По историческим данным, именно в этой зоне сосредоточены эпицентры сильнейших карпатских землетрясений, но в 2002 г. здесь наблюдался спад сейсмической активности. Эпицентры землетрясений 7 февраля, 13 марта и 19 сентября с близкими классами K_P =7.4–7.6 совпадают с разломом, являющимся северной границей миоценовых разломов, на которую накладывается зона более молодых плиоценовых разломов [5]. Этот район характеризуется блоковой структурой, высокой подвижностью и активной магматической деятельностью (эффузивной и интрузивной). Разрывные нарушения разного возраста происходят преимущественно в северовосточном квадранте. Северной границей района является разлом, заложенный в нижнем сармате. Это – важная сейсмотектоническая линия Закарпатья. Указанная линия является осью района, повышенная сейсмичность которого давно обратила на себя внимание. Она объединяет группу эпицентров, в том числе – эпицентры частых землетрясений в Хусте, Тересве, Сигете, проявившихся в прошлом с интенсивностью до 6–7 баллов [5].

Третий участок рассматриваемой полосы эпицентров образован тремя толчками: 30 марта в $08^{h}35^{m}$ с $K_{P}=9.0$, 29 июля в $14^{h}48^{m}$ с $K_{P}=8.9$, 16 августа в $12^{h}18^{m}$ с $K_{P}=8.7$. Такие события в этой части исследуемой территории происходят крайне редко.

Глубокие землетрясения характеризуют устойчивую во времени и пространстве область **Вранча** (район **№** 2), в Румынии. Здесь сетью сейсмических станций Украины и Молдовы зарегистрировано 23 землетрясения с K_P =7.9–11.7. Очаги 20 из них размещены в верхней мантии на глубинах 50–185 *км* [3]. Координаты очагов определены для 16 глубокофокусных землетрясений, одного – в Предкарпатском прогибе, в районе Рымникул–Сэрат (6 августа в 06^h19^m с K_P =10.1) и одного – в юго-западной части сейсмоактивного района, в районе Плоешты (11 марта в 08^h05^m с K_P =9.5), а остальные 14 землетрясений локализованы во Вранче.

В 2002 г. на территории Молдовы отмечено шесть ощутимых землетрясений из области Вранча с промежуточной глубиной очага: 25 января, 16 марта, 3 мая, 3 августа, 6 сентября и 30 ноября (табл. 4). Максимальная наблюденная интенсивность сотрясений не превышала четырех баллов по шкале MSK-64. Для пяти землетрясений с MSM=4.0–4.6 макросейсмические сведения собраны только по г. Кишиневу. Исходя из телефонных сообщений на сейсмическую станцию «Кишинев», вышеперечисленные землетрясения проявились в столице Молдовы с интенсивностью I_k (табл. 4.) Кроме того, в данной таблице приведены Mw из каталога ROMPLUS [9].

N⁰	Дата, д м	t ₀ , ч мин	MSM	Mw	φ°, Ν	λ°, Ε	h, км	<i>I</i> _k , MSK-64	Δ, <i>км</i>	AZM
1	25.01	10 06	4.0	4.0	45.63	26.71	128	2	225	46
2	16.03	22 39	3.9	4.3	45.55	26.46	142	2	240	48
3	03.05	18 31	4.6	4.6	45.58	26.33	162	3	250	50
4	03.08	12 40	4.0	4.4	45.67	26.63	141	2	225	48
5	06.09	05 04	4.3	4.1	45.64	26.43	105	2	230	50
6	30.11	08 15	4.5	4.7	45.62	26.55	166	3–4	220	50

Таблица 4. Интенсивность сотрясений в г. Кишиневе в 2002 г. от землетрясений зоны Вранча и параметры очагов по данным [9]

Для последнего, наиболее сильного в этом году, землетрясения 30 ноября есть данные по республике. С целью выявления его макросейсмического эффекта были разосланы 30 анкет постоянным сейсмокорреспондентам. Ответ получен из 22 населенных пунктов, причем в 13 из них опрошенные люди и сами корреспонденты не заметили каких-либо признаков колебаний почвы.

Село Джурджулешты Вулканештского района, (Δ =130 км). Сейсмокорреспондент Д.З. Никулесяну, находясь в момент землетрясения в стоящей машине, ощутил медленное горизонтальное колебание, услыхал вой собаки.

Село Паику Кагульского района, (Δ =130 км). Отдельные люди, находящиеся в помещении и в спокойном состоянии, ощутили колебания в направлении с севера на юг, почувствовали легкую вибрацию пола, услышали слабое дребезжание окна.

Город Кишинев, (Δ =220 км). На сейсмической станции зарегистрировано множество телефонных звонков, в основном с верхних этажей зданий. На нижних этажах землетрясение проявилось слабее, колебания ощущали люди, которые находились в спокойном состоянии. В некоторых районах слышался гул, отдельные люди пугались (третий этаж).

Село Кицканы Слободзейского района, (Δ =260 км). Некоторые люди ощутили слабый толчок, слышался гул.

Город Тирасполь, (Δ =265 км). Ощущалось многими людьми, находящимися в спокойном состоянии. Почувствовали два толчка в направлении с юга на север. Слабо качались электрические лампочки, листья цветов.

В табл. 5 представлены пункты-баллы, а на рис. 4 показано распределение интенсивности землетрясения 30 ноября на территории Молдовы.

<u>4 балла</u> <u>3 балла</u> <u>210</u>	
1 с. Джурджулешты 130 103 5 с. Батыр 210 2 г. Кагул 125 82 7 с. Кицканы 260 3 с. Паику 125 78 8 г. Тирасполь 260 4 г. Кишинев 220 50 2 2 2 2	64 62 64 63

Таблица 5. Макросейсмические сведения о землетрясении 30 ноября в 08^h15^m с K_P=11.7 и h=185 км

N⁰	Пункт	Δ, км	AZM °	Nº	Пункт	Δ, <i>км</i>	AZM °
11 12 13 14 15	<u>Не ощущалось</u> с. Гаваносы с. Ковурлуй г. Комрат с. Дезгинже г. Чадыр-Лунга	140 170 170 170 175	88 56 68 64 78	$ \begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \end{array} $	 с. Князевка с. Балаурешты с. Коштангалия г. Калараш г. Бельцы с. Кырнацены г. Штефан Водэ 	175 175 195 210 245 245 250	55 42 59 37 24 65 68

Рис. 4. Распределение интенсивности сотрясений при землетрясении 30 ноября 2002 г. в $08^{h}15^{m}$ с K_{P} =11.7 и *h*=185 км

Решение механизма очага этого землетрясения получено в четырех агентствах – MOLD, SED, ZUR, MED (табл. 6, рис. 4).

Таблица 6. Параметры механизма очага землетрясения 30 ноября в 08^h15^m с K_P=11.7 и *h*=185 км

Агентство	$t_0,$	h,	М	0	Оси гла	авных напряжений				Нодальные плоскости					
	ч мин с	км			Т		N P		NP1			NP2			
				PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
SED	08 15 47	156	$4.7m_{\rm b}$	31	256	16	156	55	43	153	77	-106	56	20	-39
ZUR	08 15 46	156	4.8 <i>Mw</i>	29	248	9	153	59	47	151	75	-100	3	18	-59
MED	08 15 46.8	171	4.8 <i>Mw</i>	42	251	14	148	45	43	147	88	-104	51	14	-7
MOLD	08 15 46.8	165	$5.0m_{\rm b}$	50	257	35	41	18	145	27	70	53	275	42	150

Как видно из табл. 6, три первых решения, построенные по методу тензора момента, практически совпадают. Согласно им, напряжения сжатия и растяжения наклонны к горизонту. Напряжение сжатия ориентировано на северо-восток, напряжение растяжения субширотно. Подвижка в очаге по плоскости NP1 – сброс с компонентами сдвига, по NP2 – сдвиг с компонентами сброса. Четвертый вариант механизма MOLD получен на основе данных о знаках первых вступлений Р-волн (общее число знаков n=63, из них 9 – не согласованы с принятым решением). Ось растяжения, как и в первых случаях, субширотна, но наклонена к горизонту под углом *PL*_T=50°, превышающим таковой (*PL*_P=18°) для оси сжатия. Направление оси сжатия – юго-восточное. В соответствии с этим решением подвижки в очаге по NP1 – взброс с компонентами сдвига, а по NP2 – сдвиг с компонентами взброса, что не согласуется с типом подвижек с определениями механизма очага по тензору момента. Положение нодальных плоскостей по простиранию также различаются (рис. 5). Противоречивые результаты определения механизма очага различными методами могут свидетельствовать о сложном характере разрыва в очаге землетрясения. Если учесть, что определение тензора момента производится по всей сейсмограмме, а первые вступления относятся к началу записи, то, возможно, сначала в очаге наблюдалось взбросовое движение, сменившееся в процессе вспарывания сбросом.

Рис. 5. Возможные решения механизма очага землетрясения 30 ноября 2002 г. с *К*_P=11.7

В слабом сейсмоактивном районе **Буковина** (**N** ${}^{\circ}$ 5) произошло пять землетрясений с $K_{\rm P}$ =7.8–9.1. Очаги трех землетрясений расположены в районе г. Черновцы. Одно из них, произошедшее 26 апреля в 12^h14^m с $K_{\rm P}$ =9.1 [3], сопровождалось афтершоком с $K_{\rm P}$ =7.8, зарегистрированным в тот же день в 20^h24^m [10].

Очаги двух Буковинских землетрясений локализованы на территории Молдовы. Эпицентр землетрясения 30 марта в $08^{h}15^{m}$ с $K_{P}=9.0$ расположен на Средне-Прутской равнине, а 29 июля в $14^{h}48^{m}$ с $K_{P}=8.9$ – в районе Костешты-Стинкского водохранилища. В прошлом, 02.04.1988 г., здесь произошло довольно сильное землетрясение, которое проявилось на территории Молдовы с интенсивностью $I_{0}=5$ баллов в эпицентре [11].

На карте эпицентров не нанесены пять землетрясений с K_P =9–10: 11 февраля в 16^h41^m с K_P =9.5, 11 февраля в 20^h24^m с K_P =9.2, 12 октября в 18^h49^m с K_P =9.1, 23 августа с K_P =8.2, 23 октября в 02^h52^m с K_P =9.7, эпицентры которых находятся в Венгрии. Они ощущались в эпицентральной зоне с интенсивностью *I* до 5 баллов. Их эпицентры находятся на расстоянии 140 и 190 км от государственной границы с Украиной. Еще для двух землетрясений в пределах Венгрии (8 мая в 14^h56^m с K_P =8.2, 19 сентября в 14^h47^m с K_P =7.2) эпицентры определить не удалось [11].

Литература

- 1. Пронишин Р.С., Стасюк А.Ф., Чуба М.В., Симонова Н.А., Степаненко Н.Я., Алексеев И.В. Карпаты // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – С. 52–63.
- 2. Пронишин Р.С., Стасюк А.Ф., Чуба М.В., Симонова Н.А., Степаненко Н.Я. Карпаты // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 51–57.
- З. Руденская И.М. (отв. сост.), Чуба М.В., Гаранджа И.А., Келеман И.Н., Стасюк А.Ф., Пронишин Р.С., Вербицкий Ю.Т., Нищименко И.М., Пронишин М.Р., Степаненко Н.Я., Симонова Н.А. Карпаты. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).

- 4. **Пронишин Р.С., Вербицкий С.Т., Стасюк А.Ф.** Микулинецкое землетрясение 3 января 2002 года с *MLH*=3.7, *K*_P=10.8, *I*₀=6 (Украина). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 5. Гофштейн И.Д. Неотектоника Карпат Киев: АН УССР, 1964. С. 174–175.
- 6. Карта разрывных нарушений и основных зон линиаментов юго-запада СССР (4 листа; M: 1:1 000 000). М.: Мингео СССР, 1988.
- 7. Костюк О.П., Москаленко Т.П. (отв. сост.), Евсеев С.В., Роман А.А., Сагалова Е.А., Шебалин Н.В. І. Карпаты [1091–1974 гг.; *М*≥4.5, *I*₀≥5 (неглубокие землетрясения); *m*_{PV}≥5.5, *I*₀≥6 (глубокие землетрясения)] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 36–54.
- Костюк О.П. Землетрясения Восточных Карпат // Proceedings of the Symposium on the Analysis of Seismicity and on Seismic Risk, Liblice, 17–22 October 1977. – Prague, 1978. – P. 115–125.
- 9. Rompulus cftalogue RoNet analog seismogramc Hypo/Hypoplus program (ROMPLUS). *www.infp.ro/catal/catal.html*
- Руденская И.М., Чуба М.В., Гаранджа И.А., Келеман И.Н., Стасюк А.Ф., Пронишин Р.С., Вербицкий Ю.Т., Нищименко И.М., Пронишин М.Р. Каталог и подробные данные о землетрясениях Карпатского региона за 2002 год // Сейсмологический бюллетень Украины за 2002 год. – Симферополь: ОС ИГиГ НАНУ, 2004. – С. 40–74.
- 11. Костюк О.П., Руденская И.М., Москаленко Т.П., Пронишин Р.С. Землетрясения Карпат // Землетрясения в СССР в 1988 году. М.: Наука, 1991. С. 22–32.