Беларусь

Т.И. Аронова, О.Н. Кулич

Центр геофизического мониторинга Национальной академии наук Беларуси, г. Минск, centr@cgm.org.by

Сейсмологические наблюдения на территории Беларуси в 2002 г. проводились станциями «Минск», «Нарочь», «Солигорск», «Гомель» (рис. 1), расположение которых осталось прежним [1].

Рис. 1. Сеть сейсмических станций Беларуси и карта эпицентров сейсмических событий за 2002 г.

1 – энергетический класс K_P ; 2 – сейсмическая станция; 3 – населенный пункт; 4 – г. Минск; 5 – государственная граница.

Центром геофизического мониторинга НАН Беларуси были заказаны в Геофизической службе РАН два комплекта цифровых сейсмических станций SDAS с комплектом сейсмоприемников СМ-3-ОС. Они были установлены на геофизических обсерваториях «Плещеницы» (5 июня 2002 г.) и «Нарочь» (28 ноября). Параметры сейсмических станций по состоянию на 2002 г. приведены в табл. 1, 2.

Таблица 1. Сейсмические станции Беларуси (в хронологии их открытия), работавшие в 2002 г., и их параметры

№	Станция		Дата		Координаты			Аппаратура			
	Название	Код	открытия	закрытия	φ°, Ν	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max},$
							м	прибора	нента		С
1	Минск	MIK	03.01.1963		54.50	27.88	196	ССМ-СКМ	N	10320	0.98-1.5
	(Плещеницы)								Е	9820	1.11-1.6
									Z	11000	1.10-1.5
								ССМ-СКД	Ν	500	1.56-7.6
									E	500	1.58-8.9
									Z	590	1.94-8.2
			05.06.2002						SDAS – цифровая		ровая

№	Станция		Дата		Координаты			Аппаратура			
	Название	Код	открытия	закрытия	φ°, N	λ° , Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,
							м	прибора	нента		С
2	Нарочь	NAR	17.08.1979	30.09.1989	54.92	26.73	167				
			01.10.1989		54.90	26.78	189	ССМ-СКМ	Ν	16690	0.69-0.9
									Е	10530	0.75-1.1
									Z	13950	0.77-1.0
								ССМ-СКД	Ν	980	1.87-10.2
									Е	990	1.92-11.8
									Ζ	1060	2.01-10.7
								ССМ-СД	Ν	140	3.88-18.3
									Е	190	5.39–52.7
									Z	320	5.02-26.9
								ССМ-КПЧ	Ν	100	3.43-18.9
									Е	110	4.14-46.7
									Z	160	3.42-29.2
			01.01.1998						CSD	-20 — ци	фровая
			28.11.2002						SDAS – цифровая		фровая
3	Гомель	GML	02.04.1982	01.02.1989	52.30	31.00	132				
			01.02.1989	31.12.1997	52.60	31.08	159				
			01.01.1998						CSD	-20 — ци	фровая
4	Солигорск	SOL	01.01.1983		52.75	27.78	-436				
			00.01.1998		52.84	27.47	-436	ССМ-СКМ	Ν	26190	0.59–1.2
									E	26660	0.35-0.7
									Z	27250	0.72 - 1.2

Таблица 2. Данные об аппаратуре цифровых станций

Название станции	Тип АЦП и сейсмометра	Перечень имеющихся каналов и их	Частотный диапазон, Гц	Частота опроса данных,	Эффективная разрядность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/с</i>)
		характеристики		Гц		
Гомель	CSD-20-SL-210	BH(N,E,Z)v	0.01-10	20	22	5.8·10 ⁸
	CSD-20-SL-220	LH(N,E,Z)v	0.01-10	1	22	$5.8 \cdot 10^8$
Нарочь	CSD-20-SL-210	BH(N,E,Z)v	0.01-10	20	22	$5.8 \cdot 10^8$
-	CSD-20-SL-220	LH(N,E,Z)v	0.01-10	1	22	$5.8 \cdot 10^8$
	SDAS-CM-3-OC	BH(N,E,Z)v	0.02-10	20	16	$3.6 \cdot 10^8$
		LH(N,E,Z)v	0.02-10	20	16	$1.2 \cdot 10^7$
Минск	SDAS-CM-3-OC	BH(N,E,Z)v	0.02-10	20	16	$3.6 \cdot 10^8$
		LH(N,E,Z)v	0.02-10	20	16	$1.2 \cdot 10^7$

В течение 2002 г. сейсмичность на территории Беларуси проявилась, как и ранее [1], лишь в Солигорском горно-промышленном районе. Методика определения основных параметров регистрируемых толчков, по сравнению с таковой в [1], не изменилась. Локализация местных сейсмических событий производилась по данным одной станции – «Солигорск». Эпицентральные расстояния определялись по разнице времен (t_S-t_P) вступлений *S*- и *P*- волн с использованием регионального годографа [2]. Расчеты по определению азимутов на эпицентры проводились на основе полярности первых вступлений [3]. Для определения энергетического класса K_P сейсмических событий использовалась номограмма Т.Г. Раутиан [4], а их магнитуды получены пересчетом из энергетических классов K_P по формуле Т.Г. Раутиан [5]:

$$K_{\rm P} = 4 + 1.8 \, M.$$

Общее число зарегистрированных событий составило N=90 [6]. Из них наименьшее значение $K_{\rm P}=4.1$, наибольшее – $K_{\rm P}=8.4$ для толчков, зарегистрированных 14 февраля в $03^{\rm h}56^{\rm m}$ и 21 июля в $03^{\rm h}05^{\rm m}$ соответственно. Карта эпицентров всех событий показана на рис. 1.

Распределение числа сейсмических событий по энергетическим классам и суммарной выделившейся сейсмической энергии по месяцам представлено в табл. 3.

Месяц			$K_{ m P}$		N_{Σ}	ΣE ,	
	4	5	6	7	8		Дж
Ι	_	_	1	_	_	1	$0.0016 \cdot 10^9$
II	1	3	4	2	2	12	$0.2452 \cdot 10^9$
III	_	1	6	3	_	10	$0.0583 \cdot 10^9$
IV	1	1	3	4	_	9	$0.0561 \cdot 10^9$
V	_	_	3	4	_	7	$0.0585 \cdot 10^9$
VI	_	_	7	5	1	13	$0.1611 \cdot 10^9$
VII	_	2	4	5	1	12	$0.3325 \cdot 10^9$
VIII	_	3	2	6	_	11	$0.0514 \cdot 10^9$
IX	_	2	4	_	1	7	$0.0574 \cdot 10^9$
Х	_	_	1	2	1	4	$0.0711 \cdot 10^9$
XI	—	1	2	1	_	4	$0.0193 \cdot 10^9$
XII	_	-	_	_	—	_	_
Всего	2	13	37	32	6	90	1.1125·10 ⁹

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2002 г.

Рассматривая ход сейсмического процесса в течение года, можно отметить, что максимумы высвобождения сейсмической энергии приходятся на февраль (диапазон энергетических классов $K_p=4-8$) и июль ($K_p=5-8$), а максимумы числа событий N – на февраль–апрель и июнь–август. Минимальные значения выделившейся энергии приходятся на январь и ноябрь–декабрь, а для числа событий – январь и октябрь–декабрь (рис. 2).

Сопоставление данных 2002 г. с долговременными средними оценками N и ΣE за период 1983–2001 гг. (табл. 4) показало, что уровень выделившейся в 2002 г. сейсмической энергии выше такового в 2001 г. в 1.8 раза, но в 3.2 раза ниже среднего его значения за 19 лет.

Рис. 2. Распределение числа сейсмических событий (1) и выделившейся энергии (2) за 2002 г.

Год			N_{Σ}	ΣΕ,				
	4	5	6	7	8	9	_	Дж
1983	_	_	8	4	10	1	23	$2.2 \cdot 10^{9}$
1984	_	2	10	21	12	_	45	$2.5 \cdot 10^{9}$
1985	_	_	1	9	12	1	23	$5.0 \cdot 10^9$
1986	_	_	3	13	29	_	45	$5.3 \cdot 10^9$
1987	_	_	5	10	5	_	20	$1.0 \cdot 10^{9}$
1988	_	7	8	9	2	_	26	$0.5 \cdot 10^9$
1989	_	2	1	2	7	_	12	$1.6 \cdot 10^9$
1990	_	2	17	25	45	_	89	$7.7 \cdot 10^9$
1991	_	_	6	11	13	_	30	$3.0 \cdot 10^9$
1992	_	1	2	10	_	_	13	$1.7 \cdot 10^9$
1993	_	_	2	10	20	_	32	$4.8 \cdot 10^9$
1994	-	1	4	15	16	-	36	$2.7 \cdot 10^9$
1995	_	1	6	12	25	-	44	$4.2 \cdot 10^9$

Таблица 4. Годовые значения числа событий разных энергетических классов *К*_Р и их суммарной сейсмической энергии на территории Беларуси за 1983–2001 гг. и 2002 г.

Год Кр								ΣΕ,
	4	5	6	7	8	9		Дж
1996	_	1	4	23	46	_	74	8.2·10 ⁹
1997	_	17	22	31	14	—	84	$2.6 \cdot 10^9$
1998	_	14	22	25	26	_	87	$3.7 \cdot 10^9$
1999	_	_	15	25	39	_	79	$7.3 \cdot 10^9$
2000	_	_	5	11	9	_	25	$1.7 \cdot 10^9$
2001	-	6	22	20	2	_	50	$0.6 \cdot 10^9$
Среднее за 19 лет	-	4.91	8.58	15.05	18.44	1.00	44.05	3.49·10 ⁹
2002	2	13	37	32	6		90	1.1·10 ⁹

В целом по региону после периода сейсмической активности в 1996–1999 гг. наметился спад сейсмической активности в 2000 г. (рис. 3). Затем в 2001–2002 гг. произошло возрастание сейсмической активности, которое проявляется увеличением общего числа событий за счет слабых ($K_P \le 7.5$) событий, поэтому годовые значения суммарной выделившейся энергии в период 2000–2002 гг. остаются ниже среднего значения за 19 лет $\Sigma E=3.49 \cdot 10^9 \ Дж$ (табл. 4).

Рис. 3. Распределение числа сейсмических событий (1) и суммарной выделившейся энергии (2) по годам с 1983 г. по 2002 г.

В реальном времени все 90 событий за 2002 г. изображены условными масштабными прямыми по временной оси на рис. 4, на котором видны период затишья в январе и абсолютного затишья с середины ноября по декабрь.

Рис. 4. Распределение во времени сейсмических событий разных классов К_Р

Распределение всех сейсмических событий за 2002 г. по часовым интервалам за сутки показано на рис. 5. На графике видны периоды повышения числа событий в дневное время – 8–9^h и 17^h. Анализируя частоту реализации сейсмических событий в разные годы, можно отметить, что нет четкого проявления максимумов числа событий в определенное время суток.

Рис. 5. Распределение сейсмических событий по часам суток

В тектоническом плане основная часть событий, зарегистрированных в 2002 г., приурочена к зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы. Сопоставление пространственного распределения очагов землетрясений с тектоникой показывает, что большинство разломов здесь активны в сейсмическом отношении [7]: сейсмические события группируются вдоль разломов различного направления или их звеньев, а также сконцентрированы в зонах их пересечения (рис. 6). Наблюдается приуроченность землетрясений к следующим разломам: субмеридионального простирания – суперрегиональному Стоходско-Могилевскому и субширотного простирания – суперрегиональному Северо-Припятскому, региональным: Ляховичскому, Речицкому, Червонослободско-Малодушенскому, Копаткевичскому. Отдельные землетрясения попадают в зоны пересечения субмеридиональных и субши-

ротных разломов. Частично эпицентры сейсмических событий располагаются вдоль южной и северной границ шахтного поля Солигорского горно-промышленного района.

Рис. 6. Карта проявления сейсмотектонических процессов в Припятском прогибе

1 – энергетический класс K_P; 2 – населенный пункт; 3 – река; 4–6 – разломы, проникающие в чехол (4 – суперрегиональные, ограничивающие крупнейшие надпорядковые структуры); 5 – региональные, ограничивающие крупные структуры I, II порядка; 6 – локальные); 7–9 – разломы, не проникающие в чехол (7 – суперрегиональные, разграничивающие крупнейшие области разного возраста переработки; 8 – региональные, разграничивающие крупные области разного возраста переработки; 8 – региональные, разграничивающие крупные области разного возраста переработки; 9 – локальные); 10 – разломы (цифры в кружках): 1 – Северо-Припятский, 2 – Налибокский, 3 – Ляховичский, 4 – Речицкий, 5 – Червонослободско-Малодушинский, 6 – Копаткевичский, 7 – Шестовичский, 8 – Сколодинский, 9 – Выжевско-Минский, 10 – Стоходско-Могилевский, 11 – Кричевский, 12 – Чечерский); 11 – граница шахтных полей Солигорского горнопро-мышленного района.

Литература

- 1. Аронова Т.И. Беларусь // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 243–247.
- 2. Аронов А.Г. Региональные годографы сейсмических волн запада Восточно-Европейской платформы // Сейсмологический бюллетень. Минск: ОКЖИОП, 1996. – С. 136–149.
- 3. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 4. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 5. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности (Тр. ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 6. Аронова Т.И (отв. сост.), Кулич О.Н. Беларусь. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 7. **Аронова Т.И.** Особенности проявления сейсмотектонических процессов на территории Беларуси // Літасфера. – 2006. – № 2 (25). – С. 103–110.