<u> V. МЕТОДИЧЕСКИЕ ВОПРОСЫ</u>

УДК 550.348.098.64 (477.8)

ВЗАИМОСВЯЗИ ЭНЕРГЕТИЧЕСКИХ КЛАССОВ и МАГНИТУД ЗЕМЛЕТРЯСЕНИЙ КАРПАТ Р.С. Михайлова, Е.В. Артемова, О.П. Каменская

Геофизическая служба РАН, г. Обнинск, raisa@gsras.ru

Практическая необходимость решения поставленной задачи в наст. сб. вызвана сравнением чисел землетрясений для территории Карпатского региона в 2002 г. по данным регионального каталога [1], с одной стороны, и списка землетрясений [2] для этой же территории, выбранных из бюллетеня ISC [3], с другой. Соответствующие числа оказались равными 46 и 206, т.е. разнятся в 4 раза, что и вызвало предпринятое специальное исследование. Их карты эпицентров приведены на рис. 1, из которых видно, что основное различие в числе событий касается коровых и глубоких землетрясений Вранча, регистрируемых на территории Румынии, которая включается традиционно в пределы Карпатского региона.

Рис. 1. Карты эпицентров землетрясений Карпатского региона за 2002 г. по данным регионального каталога (а) и бюллетеня ISC (б)

Представляет интерес выяснить возможность дополнения регионального каталога землетрясений Карпат [1] новыми сведениями из ISC. Прежде всего, нет сомнения о необходимости включить в региональный каталог четыре события (табл. 1), опубликованные без координат в подробных данных Сейсмологического бюллетеня Украины (СБУ) [4], для которых в ISC координаты даны.

№	Агентство	Дата,	t_0 ,	δt_0 ,	Эпиг	Эпицентр		Эпицентр		Эпицентр		h,	δh ,	Магни	туды	$K_{ m P}$
		д м	ч мин с	С	φ°, N	λ°, Ε	км	км	км	^MPSP/n	#Md/n					
1	СБУ	26.02	23 24 48		_	_		3/к				9.5				
	ISC	26.02	23 24 50.1	0.83	45.83	26.55	15	139								
	BUC	26.02	23 24 50.5		45.76	26.63		139			#3.8/4					
2	СБУ	08.04	08 44 10		_	_		100				10.2				
	MOS	08.04	08 44 09.4		45.55	26.52		149		^4.5/1						
	ISC	08.04	08 44 09.3	0.97	45.57	26.59	9	150	7.3							
	BUC	08.04	08 44 10.1		45.54	26.57		149	6.5		#3.9/4					
3	СБУ	05.08	21 02 08		_	_		100				10				
	ISC	05.08	21 02 06	1.3	45.52	26.51	8	148	8.5							
	BUC	05.08	21 02 08		45.53	26.47		139	10		#4.1/5					
4	СБУ	25.09	17 20 37		_	_		100				10				
	ISC	25.09	17 20 31.8	0.6	45.59	26.72	8	142								
	BUC	25.09	17 20 32.4	0.6	45.55	26.66		142	4		#4.1/7					

Таблица 1. Сравнение времени в очаге для четырех землетрясений 2002 г. по [1 и 3]

Как видим, значения времени в очаге t_0 для этих землетрясений достаточно близки по всем источникам. Также близки их координаты по данным ISC и BUC. Однако предпочтительным вариантом следует считать, по-видимому, определения координат гипоцентров агентством BUC (Румыния), с которыми эти четыре землетрясения можно включить в региональный каталог [1].

В общем же случае важно предварительно исследовать совместимость координат очагов в [1] и [3], для которых имеются параллельные данные. Таких событий оказалось 19 (табл. 2).

№	Агентство	Дата,	$t_0,$	δt_0 ,	Эпиг	центр	δ,	h,	δh ,	Ma	агнитуды		$K_{\rm P}/n$
		дм	ч мин с	С	φ°, N	λ°, E	км	км	км	MSHA/n	MSM/n	Md/n	MLH/n
										$\#m_{\rm b}/n$		#Md	
1	Рег.	03.01	17 43 17.0	0.6	49.38	25.58	3	6		3.1/2		3.6/4	10.8/6
													3.7/1
	ISC	03.01	17 43 19	1.4	49.46	25.62	31	8	12	4.0/7			
2	Рег.	25.01	10 06 17.8	0.8	45.70	26.66	4	137	6	3.1/3	4.4/1	3.5/2	9.9/5
	ISC	25.01	10 06 17.9	0.4	45.64	26.76	5	138	4	3.9/3		#4.3/6	
3	Рег.	08.03	23 24 33.4	0.7	45.69	26.55	4	143	5	3.2/1		3.3/1	8.8/2
	ISC	08.03	23 24 33	11	45.72	26.60	9	143	8			#3.9/7	
4	Рег.	11.03	08 05 03.5	0.3	44.95	25.77	2	10				3.7/1	9.5/1
	ISC	11.03	08 05 03.9	0.60	44.93	25.81	3	10		3.8/4		#3.8/6	
5	Рег.	16.03	22 39 07.6	0.6	45.63	26.59	3	147	6	2.7/3		3.8/3	10.1/8
	ISC	16.03	22 39 07	0.24	45.56	26.54	3	147		3.7/9		#4.7/7	
6	Рег.	03.05	18 31 58.3	0.6	45.63	26.37	3	169	6	3.7/4	4.4/2	3.8/14	11.5/19
	ISC	03.05	18 31 59.6	0.16	45.63	26.33	2	158	2	4.4/37		#5.1/8	
7	Рег.	15.05	04 26 14.9	0.5	45.60	26.39	2	166	4	2.8/2	3.7/1	2.8/4	10.8/8
	ISC	15.05	04 26 16	1.2	45.58	26.40	9	153	8			#4.3/5	
8	Рег.	14.06	23 49 15.5	0.4	45.67	26.62	2	136	4	2.8/2	3.8/1	3.3/7	10.2/8
	ISC	14.06	23 49 14.7	0.31	45.67	26.60	4	140	4	3.9/9		#4.3/6	
9	Рег.	14.07	20 18 03.1	0.6	45.58	26.36	2	134	4	2.5/2	3.4/1	3.8/1	8.7/3
	ISC	14.07	20 18 02.9	0.75	45.55	26.46	6	134	5			#4.2/8	
10	Рег.	03.08	12 40 15.2	0.8	45.72	26.65	5	145	10	3.5/3	4.6/1	3.5/9	11.0/13
	ISC	03.08	12 40 16.1	0.24	45.69	26.61	3	146	3	4.0/27		#4.9/5	
11	Рег.	06.08	06 19 51.8	1.4	45.43	27.25	9	33				3.1/4	10.1/6
	ISC	06.08	06 19 52.1	0.58	45.76	27.26	5	28				3.5/5	
12	Рег.	16.08	08 18 00.2	0.4	45.56	26.57	2	140	4	2.4/3	3.4/1	2.9/3	8.9/7
	ISC	16.08	08 18 02.1	0.56	45.47	26.55	6	129				#3.9/5	

Таблица 2. Параметры 19 землетрясений за 2002 г., «общих» в [1 и 3]

ВЗАИМОСВЯЗИ ЭНЕРГЕТИЧЕСКИХ КЛАССОВ и МАГНИТУД ЗЕМЛЕТРЯСЕНИЙ КАРПАТ Р.С. Михайлова, Е.В. Артемова, О.П. Каменская

N₂	Агентство	Дата,	$t_0,$	δt_0 ,	Эпиі	центр	δ,	h,	δh ,	Ma	агнитуды	I	$K_{\rm P}/n$
		дм	ч мин с	С	φ°, N	λ°, E	км	км	км	MSHA/n	MSM/n	Md/n	MLH/n
										#m _b ∕n		#Md	
13	Рег.	16.08	12 18 16.0	0.7	46.43	27.84	5	25	10	2.3/2	3.3/1	2.4/3	8.7/4
	ISC	16.08	12 18 15	2.3	46.58	27.67	11	13	8			3.5/4	
14	Рег.	27.08	06 46 51.3	0.4	45.55	26.50	2	155	4	2.5/2	3.7/1	3.1/4	9.5/8
	ISC	27.08	06 46 51.5	0.44	45.55	26.41	5	151	4	2.9/1		#4.3/5	
15	Рег.	06.09	05 04 01.3	0.6	45.69	26.59	3	116	8	3.4/3	4.3/1	3.6/14	11.5/16
													4.8/1
	ISC	06.09	05 04 01.9	0.2	45.59	26.40	3	103	2	4.1/13		#4.4/8	
16	Рег.	10.09	15 09 33.6	0.7	45.86	26.97	3	137	6	2.7/3	3.9/1	2.8/6	9.3/8
	ISC	10.09	15 09 33.9	0.4	45.73	26.85	5	130		3.4/3		#4.3/5	
17	Рег.	03.11	20 30 20.9	0.7	45.98	26.87	4	78	19	2.6/2		2.9/7	9.6/8
	ISC	03.11	20 30 19.8	0.4	45.78	26.91	4	113	5	4.0/2		#4.3/5	
18	Рег.	30.11	08 15 46.5	0.6	45.76	26.60	3	185	7	3.9/3	5.1/1	4.2/9	11.7/13
													4.5/2
	ISC	30.11	08 15 46.8	0.1	45.69	26.50	2	172	1	5.0/78		5.3/6	
19	Рег.	30.12	15 41 34.5	1.0	45.53	26.25	10	158	9	2.6/3		3.0/3	9.5/5
	ISC	30.12	15 41 34.3	0.3	45.71	26.56	4	157	3	4.1/9		#4.5/6	

Изображение двойных решений на рис. 2 свидетельствует о небольших расхождениях между ними, что позволяет с большей долей уверенности использовать координаты очагов землетрясений из бюллетеней ISC для включения их в региональный каталог. Остается найти формулы перехода от магнитуд MS, MPSP - B [5], Ms, m_b , Md (BUC) в [3] к энергетическим классам K_P в [1], рассматривая, однако, этот вопрос более широко во времени (начиная с первого выпуска Сборника «Землетрясения Северной Евразии в 1992 году» [6]) и дополняя приведенный выше перечень из пяти магнитуд еще четырьмя региональными – MLH, MSM, MSHA, Md.

Исходные данные – каталоги землетрясений Карпат за 11 лет, с 1992 по 2002 г. [1, 7–16]. Общее число локализованных землетрясений за этот период составило 371, их распределение по годам представлено на рис. 3.

На диаграмме хорошо виден рост числа землетрясений с 2000 г. Разделение землетрясений по глубине на коровые и глубокие (табл. 3) показывает, что число глубоких землетрясений варьирует достаточно случайно относительно среднегодового их числа N_{ср}=12.4. Для коровых землетрясений ситуация иная – средние числа землетрясений за 1992-1999 гг. и 2000-2002 гг., соответственно, равны N_{cp}=17.1 и N_{cp}=32.7, т.е. различаются почти в два раза. Это связано с введением в практику сейсмических наблюдений цифровых станций (типа DAS-03), разработанных и изготовленных в Институте геофизики им. С.И. Субботина НАН Украины (ИГ НАНУ) [17], и увеличением числа локализованных слабых землетрясений с очагом в земной коре.

Рис. 3. Числа локализованных землетрясений в регионе Карпаты за 1992-2002 гг.

Год	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	Сумма
N в 3/к	18	15	18	21	13	20	15	17	34	33	31	235
Δh	100-170	80–180	90–160	90–160	100-140	80–160	90–145	90–160	90–150	86–152	78–185	
<i>N</i> гл.	18	11	14	8	10	17	11	15	6	11	15	136
N_{Σ}	36	26	32	29	23	37	26	32	40	43	46	371

Примечание. Δh – диапазон глубин очагов землетрясений Вранча, локализованных с 1992 г. по 2002 г.

Величина землетрясений Карпат в присылаемых в *ped*. каталогах для всех землетрясений без исключения оценивается значением энергетического класса K_P по шкале Т.Г. Раутиан [18]. Согласно [19, 20], энергетическая классификация землетрясений Карпат базировалась на использовании максимальных амплитуд в продольной и поперечной волнах по номограмме Т.Г. Раутиан [18, 21] с использованием эпицентральных расстояний для коровых землетрясений и гипоцентральных [22] – для глубоких.

Параллельные оценки величины землетрясений по магнитудам разных типов (пример в табл. 2) определены не для всех землетрясений. Чаще всего определяется магнитуда *MSHA* по максимальным смещениям в объемной *S*-волне по записи короткопериодных приборов СКМ-3 по формуле из [23]:

$$MSHA = \lg A_{Smax} - 1.32 \lg \Delta$$
, км

Для более сильных землетрясений определялась стандартная магнитуда *MLH* [24], когда на записи широкополосных приборов СКД, установленных на станциях «Львов», «Ужгород», «Косов» [25], выделялась максимальная фаза поверхностной волны Релея. Для унификации магнитудных определений *MSHA* слабых и сильных землетрясений района Вранча и приведения их к стандартной магнитуде *MLH* в [20] была предложена следующая формула:

$$MLH = 0.84 MSHA + 1.52.$$

Кроме того, традиционно во всех каталогах [1, 6–16] приведены магнитуды *MSM*, взятые из каталогов Молдовы. Магнитуда *MSM* определяется по максимальной фазе *S*-волны на одной из горизонтальных составляющих записи землетрясения станциями Молдовы. Согласно [26], для определения магнитуд Карпатских землетрясений были построены калибровочные кривые для *P*- и *S*-волн от коровых и подкоровых землетрясений Карпат. Работа была проделана И.М. Черной в 1986 г. в соответствии с рекомендациями руководителей магнитудной группы

комиссии ЕССН О.Н. Соловьевой и Н.Н. Михайловой. Она описана в отчете Молдавской опытно-методической партии (МОМП) за 1986 г. [27]. Полученные калибровочные кривые применяются для определения магнитуд по максимальной фазе продольных волн (*MPV*) и поперечных волн (*MSM*).

С 2000 г., в связи с вводом цифровых станций, в каталоге землетрясений Карпат [15] появились магнитуды *Md* по общей длительности колебаний на записи по методике А.С. Маламуда [28]. Рассчет магнитуды по длительности записи производится по формулам:

Md=2.40 lgt (*мин*)+ 1.65, при *M*>4 и

Md=2.67 lgτ (*мин*)+ 1.65, при *M*≤4.

Разные формулы для слабых и сильных землетрясений обусловлены тем, что вступление поверхностных волн, возникающих только при сильных (*K*_P>11) землетрясениях, резко наращивает длительность записи.

Здесь, поскольку используются румынские данные, уместно отметить, что идея применения длительности записи для классификации землетрясений и ее реализация принадлежит румынскому сейсмологу Е. Бистричане [29]. Только он рассматривал в основном сильные землетрясения и, соответственно, изучал продолжительность колебаний в поверхностных волнах. Его идея была подхвачена в Таджикистане А.С. Маламудом, который применил ее как к сильным, так и к слабым землетрясениям, используя не часть, а всю запись, т.е. общую длительность колебаний всех волн. В самой Румынии идея Е. Бистричане была развита позже К. Раду [30], который предложил измерять на сейсмограмме продолжительность колебаний, отсчитываемую от момента вступления *S*-волны.

При подготовке к публикации сборников «Землетрясения Северной Евразии» набор региональных магнитуд в каталогах землетрясений Карпатского региона ежегодно дополняется в *ped.* еще четырьмя типами: *MS* (MOS), *MPSP* (MOS) из Сейсмологических бюллетеней ГС РАН (MOS) [5] и *Ms* (ISC), m_b (ISC) из бюллетеней Международного сейсмологического центра (ISC) [3] по поверхностным и объемным волнам, поскольку они служат связующим звеном региональных и мировых данных. И только для Карпат отдельно были добавлены также публикуемые в бюллетенях ISC магнитуды *Md* (BUC) по длительности записи, определяемые в Румынии.

Ниже рассмотрены землетрясения, выбранные из каталогов [1, 7–16], для которых имелись значения энергетических классов K_P , с одной стороны, и разного типа магнитуды – с другой. Они представлены в разделе VIII наст. сб. в виде сводного каталога [31] землетрясений Карпат за 1992–2002 гг. и использованы в целях установления количественных уравнений перехода типа $K_P = f(M_i)$ там, где это оказалось возможным.

Наименьшее число пар (n=2) за исследуемый период – 1992–2002 гг. – было для функций $K_P=f(MS)$ и $K_P=f(MS)$ (табл. 4).

N⁰	Год	Дата, д м	t ₀ , ч мин	с	$\delta t_0, c$	Эпиі φ°, N	(ентр λ°, Е	б, км	h, км	δh, км	MLH/n ^MS/n	M MSHA/n	laгниту, <i>MSM/n</i>	ды ^MPSP/n #mb/n	Md/n #Md	К _Р	Источ- ник
											#Ms/n			Ū			
1	1993	01.03	07 42	2	0.5	49.27	21.05	10	0–33		3.8/2	3.0/5		#3.9/1		10.8	[7]
			41.5								^3.4/1						
2	1993	23.05	17 19	9	0.5	45.35	25.4	10	0–33		4.4/3	3.7/8	4.6/3	^5.0/7	#4.9	12.2	[7]
			22.5								^4.1/8			#4.9/31			
3	2000	08.03	22.1	1	0.5	45.81	26.77	5	80	10	5.2/2	4.0/4	4.4/2	^4.8/8	4.4/14	12.7/12	[14]
			29.2								#4.0/5			#4.6/39	#4.9		
4	2002	30.12	15 4	1	1.0	45.53	26.25	10	158	9	(3.7)/1	2.6/3		^4.5/1	3.0/3	9.5/5	[1]
			34.5								#3.5/1			#4.1/9	#4.5		

Таблица 4. Копия сведений о четырех землетрясениях с параллельными определениями $K_{\rm P}$ и *MS*, *Ms* за 1992–2002 гг. из [31]

Примечание. Знаками ^ и # выделена информация, введенная *ред*. в каталоги [1, 7–16] из MOS и ISC соответственно.

Разумеется, что эти сведения не могут быть использованы для анализа. Объем остальной информации о числе пар измерений разных оценок величины землетрясений представлен в табл. 5 по отдельным годам (и в сумме) для всех локализованных землетрясений и для всех глубин их очагов.

N⁰	Год	Магнитуды												
		MLH	MS	#Ms	MSHA	MSM	^MPSP	#m _b	#Md	Md				
									BUC	рег.				
1	1992	7	_	_	36	23	9	15	19	_	36			
2	1993	4	2	_	26	15	4	13	15	_	26			
3	1994	_	_	_	28	24	5	11	22	_	32			
4	1995	3	_	_	27	12	1	8	12	_	29			
5	1996	3	_	_	23	15	8	12	14	_	23			
6	1997	4	_	_	30	27	6	15	25	_	37			
7	1998	2	_	_	24	13	3	9	13	_	26			
8	1999	6	_	_	32	15	4	14	15	_	32			
9	2000	2	_	1	40	9	5	6	10	17	40			
10	2001	4	_	_	41	13	6	8	15	36	44			
11	2002	3	_	1	44	12	14	12	15	42	46			
	Всего	38	2	2	351	178	65	123	175	95	371			

Таблица 5. Число измерений разных магнитуд и энергетического класса *К*_P за каждый год для локализованных землетрясений Карпат по [31]

Для исследования функции типа $K_P = f(MLH)$ имеется 38 пар значений энергетических классов и стандартных магнитуд *MLH* (табл. 5) по поверхностным волнам. Разумеется, были выбраны лишь прямые измерения *MLH*, а не пересчетные из *MSHA* значения. Карта их эпицентров изображена на рис. 4. Здесь и далее исследование функций взаимосвязи энергетического класса с магнитудами проводится отдельно для коровых и глубоких землетрясений.

В результате был получен следующий вид функции $K_P = f(MLH)$:

$$K_{\rm P}$$
=(5.35±0.98) + (1.51±0.27) *MLH* при *r*=0.887 – для очагов в земной коре, (1)

$$K_{\rm P}$$
=(1.13±1.12) + (2.27±0.23) *MLH* при *r*=0.787 – для глубоких очагов Вранча. (2)

Как видим, параметры уравнений заметно разнятся для коровых и глубоких землетрясений и не согласуются, особенно для глубоких событий, с широко применяемым в сейсмологической практике уравнением Т.Г. Раутиан [21]

$$K=4+1.8 M$$
, (3)

которое традиционно используется для пересчета классов K_P в «большие» M, под которыми подразумеваются *MLH*, или *MS*, или *Ms*. Правда, число пар n=35 параллельных определений невелико. Необходимо далее накапливать их и уточнять параметры уравнений (1) и (2).

Для исследования функции типа $K_P = f(MSM)$ в [31] имеется 178 пар значений энергетических классов K_P и магнитуд *MSM* (табл. 5) по данным станций Молдовы. Карта их эпицентров изображена на рис. 5.

Рис. 5. Карта эпицентров землетрясений за 1992–2002 гг., для которых параллельно измерены $K_{\rm P}$ и *MSM* (а), и графики зависимости $K_{\rm P}=f(MSM)$ для коровых (б) и глубоких (в) землетрясений

При расчете методом ортогональной регрессии были получены следующие уравнения:

$$K_{\rm P}$$
=(3.78±0.48) + (1.79±0.15) *MSM* при *r*=0.787 – для очагов в земной коре, (4)

Эти результаты самые интересные, особенно для очагов в земной коре, поскольку почти в точности соответствуют параметрам уравнения Т.Г. Раутиан. По-видимому, магнитуды *MSM* более эквивалентны *MLH*, чем реально измеренные *MLH* по соответствующей методике. Возможно, что именно эти магнитуды целесообразно применять для прямой оценки «большой» магнитуды *M*, без каких-либо пересчетов.

Для исследования функции типа $K_P = f(MSHA)$ в табл. 3 имеется самая большая выборка из 351 пар значений. Карта их эпицентров изображена – на рис. 6,а, а корреляционные поля для коровых и глубоких землетрясений на рис. 6,б, в. Поле эпицентров коровых землетрясений занимает обширную территорию.

Рис. 6. Карта эпицентров землетрясений за 1992–2002 гг., для которых параллельно измерены $K_{\rm P}$ и *MSHA* (а), и графики зависимости $K_{\rm P}=f(MSHA)$ для коровых (б) и глубоких (в) землетрясений

Уравнения рассчитанных прямых имеют вид:

$$K_{\rm P}$$
=(4.66±0.07) + (2.11±0.04) *MSHA* при *r*=0.940 – для очагов в земной коре, (6)

Значения параметров в обоих уравнениях несколько превышают таковые в (3), однако все же достаточно близки. Отмечая высокие значения коэффициента корреляции исследуемых величин (*r*÷0.94), можно достаточно уверенно применять уравнения (6) и (7) для взаимных переходов, поскольку они, как и все другие, рассчитаны методом ортогональной регрессии.

Последним параметром для оценки величины землетрясений, который содержится в оригиналах каталогов Карпат за последние годы 2000–2002 гг. [1, 15, 16], является описанная выше магнитуда по длительности записи по формулам А.С. Маламуда. Исходные данные для установления уравнений связи $K_P = f [Md (per.)]$ представлены на карте эпицентров землетрясений (рис. 7,а) и двух графиках (рис. 7,6, в) для коровых и глубоких землетрясений соответственно. Расчет по этим данным уравнений ортогональной регрессии привел к следующим результатам:

$$K_{\rm P}$$
= 5.05(±0.17) + 1.51(±0.07) *Md* (рег) при *r*=0.912 – для очагов в земной коре, (8)

$$K_{\rm P} = 0.96(\pm 0.65) + 2.66(\pm 0.19) Md$$
 (рег) при $r = 0.813 - для$ глубоких очагов. (9)

В этих формулах за 2000–2002 гг. при достаточно высоких коэффициентах корреляции (0.912 и 0.813) получены очень разные параметры в зависимости от глубины очага, что пока не очень понятно. По-видимому, необходимы дальнейшие уточнения этих формул на больших объемах исходных данных.

Следующим моментом настоящего исследования является привлечение магнитуд, добавляемых *ped*. в оригиналы присланных каталогов. Это магнитуды *MS* и *Ms* по поверхностным волнам, число пар которых (n=2) слишком мало, поэтому о них ничего сказать нельзя. Больше информации оказалось для магнитуд *MPSP* и m_b по объемным волнам, для которых n=65 и 123 соответственно. Наконец, наибольшее число пар (n=175) имеем для магнитуды *Md* (BUC) по длительности записи землетрясений на станциях Румынии (табл. 5). Все исходные данные для наглядности изображены детально на трех картах эпицентров и на шести корреляционных графиках (8,a,6,в; 9,a,6,в; 10,a,6,в).

ВЗАИМОСВЯЗИ ЭНЕРГЕТИЧЕСКИХ КЛАССОВ и МАГНИТУД ЗЕМЛЕТРЯСЕНИЙ КАРПАТ Р.С. Михайлова, Е.В. Артемова, О.П. Каменская

Рис. 7. Карта эпицентров землетрясений за 2000–2002 гг., для которых параллельно измерены K_P и Md (per) (a), и графики зависимости K_P=f(Md (per)) для коровых (б) и глубоких (в) землетрясений

Рис. 8. Карта эпицентров землетрясений за 1992–2002 гг., для которых параллельно измерены *K*_P и *MPSP* (MOS) (а), и графики зависимости *K*_P=*f* (*MPSP* (MOS)) для коровых (б) и глубоких (в) землетрясений

Рис. 9. Карта эпицентров землетрясений за 1992–2002 гг., для которых параллельно измерены K_P и m_b (ISC) (a), и графики зависимости $K_P = f(m_b$ (ISC)) для коровых (б) и глубоких (в) землетрясений

Рис. 10. Карта эпицентров землетрясений за 1992–2002 гг., для которых параллельно измерены *К*_P и *Md* (BUC) (а), и графики зависимости *K*_P=*f* (*Md* (BUC)) для коровых (б) и глубоких (в) землетрясений

Соответствующие три пары рассчитанных уравнений ортогональной регрессии имеют вид:

MPSP:

$$K_{\rm P}$$
= -8.25(±3.9) + 4.29(±0.87) *MPSP* (MOS) при *r*=0.319 – для коровых очагов, (10)

 $m_{\rm b}$:

$$K_{\rm P}$$
= 2.89(±0.96) + 2.01(±0.26) $m_{\rm b}$ (ISC) при r =0.738 – для коровых очагов, (12)

$$K_{\rm P}$$
= 0.86(±0.51) + 2.42(±0.13) $m_{\rm b}$ (ISC) при r =0.797 – для глубоких; (13)

Md(BUC):

Самые низкие коэффициенты корреляции (0.319 и 0.605) оказались для зависимости типа K=f(MPSP), поэтому эти данные абсолютно ненадежные и их нельзя применять для каких-либо пересчетов. Более высокие коэффициенты корреляции (0.738 и 0.797) характеризуют зависимости типа $K=f(m_b)$. По-видимому, в некоторых случаях, когда есть данные m_b в ISC, их можно использовать для расчета K_P , что и было сделано *ped*. при формировании списка [2] землетрясений в дополнение к региональному каталогу [1] за 2002 г. Такого же уровня достоверности, несмотря на большее число пар параллельных измерений, достигли и последние в этой группе два уравнения типа K=f[Md (BUC)]. В уравнениях (14) и (15) при несколько больших наклонах прямых, составляющих 2.40 и 2.61 соответственно, получены очень низкие значения отрезков, отсекаемых этими прямыми на оси значений K_P , равные 0.55 и –1.19. Не вдаваясь в дальнейший анализ, представляется целесообразным ограничиться лишь рабочим диапазоном рассмотренных пар значений $K_P=f[Md$ (BUC)] (рис. 10) и табличным вариантом перехода от Md (BUC) к K_P (табл. 6) для 206 извлеченных из ISC новых землетрясений в дополнительном списке землетрясений [2] для Карпатского региона в 2002 г.

Md	$K_{ m P}$		Md	$K_{ m P}$		Md	$K_{ m P}$		Md	I	ζ _P
(BUC)	коровые	глубокие	(BUC)	коровые	глубокие	(BUC)	коровые	глубокие	(BUC)	коровые	глубокие
2.1	6.5	5.5	3.1	8.4	7.6	4.1	10.3	9.9	5.1	12.2	12.0
2.2	6.7	5.7	3.2	8.6	7.8	4.2	10.5	10.1	5.2	12.4	12.2
2.3	6.9	5.9	3.3	8.8	8.0	4.3	10.7	10.3	5.3	12.6	12.4
2.4	7.1	6.1	3.4	9.0	8.3	4.4	10.9	10.5	5.4	12.8	12.6
2.5	7.3	6.3	3.5	9.2	8.5	4.5	11.1	10.7	5.5	13.0	12.9
2.6	7.5	6.6	3.6	9.3	8.7	4.6	11.2	10.9	5.6		13.0
2.7	7.7	6.8	3.7	9.6	9.0	4.7	11.4	11.1	5.7		13.2
2.8	7.8	7.0	3.8	9.7	9.1	4.8	11.6	11.3	5.8		13.4
2.9	8.0	7.2	3.9	9.9	9.4	4.9	11.8	11.5	5.9		13.7
3.0	8.2	7.4	4.0	10.1	9.6	5.0	12.0	11.7	6.0		13.9

Таблица 6. Таблица перехода от Md(BUC) к К_Р для коровых и глубоких землетрясений

Литература

- 1. Руденская И.М. (отв. сост.), Чуба М.В., Гаранджа И.А., Келеман И.Н., Стасюк А.Ф., Пронишин Р.С., Вербицкий Ю.Т., Нищименко И.М., Пронишин М.Р., Степаненко Н.Я., Симонова Н.А. Карпаты. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 2. Артемова Е.В., Михайлова Р.С. Землетрясения Карпат по станциям Румынии из ISC: дополнение к региональному каталогу за 2002 г. (См. раздел VIII (Дополнительные данные) в наст. сб.).
- 3. Bulletin of the International Seismological Centre for 2002 Berkshire: ISC, 2003–2004.

- 4. Руденская И.М., Чуба М.В., Гаранджа И.А., Келеман И.Н., Стасюк А.Ф., Пронишин Р.С., Вербицкий Ю.Т., Нищименко И.М., Пронишин М.Р. Каталог и подробные данные о землетрясениях Карпатского региона за 2002 г. // Сейсмологический бюллетень Украины за 2002 год. – Симферополь: ОС ИГ НАНУ, 2004. – С. 40–74.
- 5. Сейсмологический бюллетень (ежедекадный) за 2002 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2002–2003.
- 6. Землетрясения Северной Евразии в 1992 году. М.: ГС РАН, 1997. 300 с.
- 7. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.Н., Чуба М.В., Черная И.М. Карпаты // Землетрясения Северной Евразии в 1992 году. М.: ГС РАН, 1997. С. 135–136.
- 8. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.М., Москаленко Т.П., Чуба М.В. Карпаты // Землетрясения Северной Евразии в 1993 году. – М.: ГС РАН, 1999. – С. 148–149.
- 9. Руденская И.М. (отв. сост), Гаранджа И.А., Келеман И.М., Симонова Н.А., Чуба М.В. Карпаты // Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 185–186.
- 10. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.М., Чуба М.В., Симонова Н.А. Карпаты // Землетрясения Северной Евразии в 1995 году. М.: ГС РАН, 2001. С. 205.
- 11. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.М., Чуба М.В., Симонова Н.А., Степаненко Н.Я. Карпаты // Землетрясения Северной Евразии в 1996 году. – М.: ГС РАН, 2002. – С. 221– 222.
- 12. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.М., Чуба М.В., Стародуб Г.Р., Пронишин М.Р., Симонова Н.А. Карпаты // Землетрясения Северной Евразии в 1997 году. – Обнинск: ГС РАН, 2003. – (На CD).
- Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.М., Пронишин Р.С., Пронишин М.Р., Чуба М.В., Щепиль О.И., Симонова Н.А. Карпаты // Землетрясения Северной Евразии в 1998 году. – Обнинск: ГС РАН, 2004. (На CD).
- 14. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.Н., Чуба М.В., Симонова Н.А, Пронишин Р.С., Стасюк А.Ф., Стародуб Г.Р., Пронишин М.Р. Карпаты // Землетрясения Северной Евразии в 1999 году. – Обнинск: ГС РАН, 2005. (На СD).
- 15. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.Н., Чуба М.В., Пронишин Р.С., Стасюк А.Ф., Пронишин М.Р., Симонова Н.А Карпаты // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. (На CD).
- 16. Руденская И.М. (отв. сост.), Гаранджа И.А., Келеман И.Н., Чуба М.В., Пронишин Р.С., Стасюк А.Ф., Вербицкий Ю.Т., Пронишин М.Р., Степаненко Н.Я., Симонова Н.А Карпаты // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. (На СD).
- 17. **Пронишин Р.С., Стасюк А.Ф., Чуба М.В., Симонова Н.А., Степаненко Н.Я.** Карпаты // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 51–57.
- 18. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. Труды ИФЗ АН СССР; № 32(199). М.: Наука, 1964. С. 88–93.
- 19. Костюк О.П., Руденская И.М., Москаленко Т.П. Землетрясения Карпат // Землетрясения в СССР в 1985 г. М.: Наука, 1988. С. 48–53.
- 20. Костюк О.П., Москаленко Т.П., Руденская И.М. Землетрясения Карпат // Землетрясения Северной Евразии в 1993 г. М.: ГС РАН, 1999. С. 10–14.
- 21. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. Труды ИФЗ АН СССР; № 9(176). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 22. Каток А.П. Об использовании номограммы Раутиан для энергетической классификации глубоких Памиро-Гиндукушских землетрясений // Магнитуда и энергетическая классификация землетрясений. Т. 2. М.: АН СССР, 1974. С. 139–143.
- 23. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. 535 с.
- 24. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 25. Пронишин Р.С., Стасюк А.Ф., Чуба М.В., Гаранджа И.А., Келеман И.Н., Степаненко Н.Я., Алексеев И.В., Симонова Н.А. Карпаты. (См. раздел I (Обзор сейсмичности) в наст. сб.).

- 26. Степаненко Н.Я., Пронишин Р.С., Михайлова Р.С. К вопросу об уточнении параметров землетрясений Карпат в каталоге за 2002 г. (См. раздел VIII (Дополнительные данные) в наст. сб.).
- 27. Магнитудная классификация землетрясений Вранчского очага (Отчет о результатах сейсмологи ческих работ в 1986 г.). Кишинев: Фонды МОМП, 1987. 57 с.
- 28. Маламуд А.С. Использование длительности колебаний для энергетической классификации землетрясений // Магнитуда и энергетическая классификация землетрясений. Т. 2. – М.: Наука. – 1974. – **2.** – С. 180–192.
- 29. Bisztricsany E. A new method for the determination of the magnitude earthquakes // Geofis. Kõzl. 1958. 7. № 2.
- 30. Radu C. Determinarea magnitudinii cutremurelor Carpatice pe baza duratei de oscillatie // St. Si cercet. Geofís. Acad. R.C.R. 1968. 2. № 6.
- 31. Руденская И.М., Михайлова Р.С. Энергетические классы и магнитуды землетрясений Карпат за 1992–2002 гг. (См. раздел VIII (Дополнительные данные) в наст. сб.).