<u> II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348.436

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ А.И. Захарова, Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск aiz@ifz.ru

Для 14 землетрясений земного шара с очагами в земной коре (рис. 1) представлены основные и динамические параметры очагов. Двенадцать из них возникли в Тихоокеанском сейсмическом поясе: шесть — в Курило-Камчатской зоне с магнитудами MS=5.8—6.3, по одному — в районе Аляски с MS=7.0, Тайваня с MS=7.3, Марианских островов с MS=7.2 и о. Суматры с MS=7.0, в Молуккском проливе с MS=6.9 и в море Банда с MS=7.1. Два землетрясения произошли в Альпийско-Гималайском сейсмическом поясе (в Индии — с MS=7.8 и в Китае — с MS=7.1).

Рис. 1. Карта эпицентров землетрясений за 2001 г., для которых построены спектры по цифровым сейсмограммам на станции «Обнинск»

Наиболее сильным в 2001 г. было разрушительное землетрясение 26 января с магнитудой MS=7.8 в Индии, шт. Гуджарат. Отметим, что в 2001 г., как на территории России, так и на территории стран СНГ, не было сильных землетрясений с MS \ge 7.0.

Основные параметры очагов землетрясений (время возникновения t_0 и координаты гипоцентра φ , λ , h, магнитуды) даны в табл. 1 из двух бюллетеней: I — Сейсмологического бюллетеня Γ С РАН [1]; Π — бюллетеня Международного сейсмологического центра (ISC) [2]. Значения гипоцентров в Π и Π получены по временам первых вступлений Π -волн на основе одного и того же годографа Джеффриса-Буллена [3], но по разным системам наблюдений. Параметры землетрясений варианта Π попределены в Π Гарвардском университете США по методу тензора момента центроида (ТМЦ), использующего при расчетах волновые формы от продольных до поверхностных волн [2]. Различия значений t_0 , φ , λ , λ по варианту Π от Π и Π связаны Π стем, что решения по Π и Π локализуют начальную фазу процесса в очаге, а Π — максимальную. Параметры Π 0, Π 1, Π 2, Π 3, Π 3, Π 3, Π 4, Π 5, Π 5, Π 5, Π 5, Π 6, Π 8, Π 8, Π 8, Π 9, Π 9,

Таблица 1. Сведения о землетрясениях за 2001 г.

No	Дата,	Вари-	t_0 ,	3	пицентр			Магн	итуды	Район	
	д м	ант	ч мин с	φ°,N	λ°,E	h, км	Mw		MPLP	MS	
				' '	,	,		$m_{\rm b}$			
1	10.01	I	16 02 42.2	56.92	-153.68	27	7.1	6.7	7.0	7.0	Район острова Кадьяк
		II	16 02 43.6	56.99	-153.46	33		6.1		6.9	1
		III	16 02 54.5	56.99	-153.56	21	7.0				
2	26.01	I	03 16 42.3	23.38	70.29	33	7.6	7.2	7.8	7.8	Индия
		II	03 16 40.3	23.44	70.31	16		6.9		7.9	
		III	03 16 54.9	23.63	70.24	20	7.7				
3	13.02	I	19 28 29.1	-4.79	102.54	33	7.4	6.5	6.9	7.0	Южная Суматра
		II	19 28 30.5	-4.75	102.48	34		6.2		7.2	
		III	19 28 45.1	-5.40	102.36	21	7.4				
4	24.02	I	07 23 48.4	1.41	126.29	33	7.3	6.8	7.3	6.9	Молуккский пролив
		II	07 23 50.5	1.33	126.34	56		6.5		6.9	
		III	07 23 57.8	1.55	126.42	43	7.1				
5	23.03	I	11 30 10.7	44.08	148.01	34	6.2	5.9	6.6	6.0	Курильские острова
		II	11 30 12.0	44.12	148.04	43		5.8		5.7	
		III	11 30 16.0	44.12	148.38	46	6.0				
6	25.05	I	00 40 56.0	44.56	148.24	66	7.0	6.3	6.8	6.9	Курильские острова
		II	00 40 50.6	44.21	148.35	33		6.1		6.7	
	2105	III	00 40 57.6	44.18	148.61	32	6.7				
7	24.06	I	13 18 55.1	44.38	148.07	53	6.3	6.3		6.3	Курильские острова
		II	13 18 50.0	44.19	148.45	20		5.8		5.7	
	02.00	III	13 18 58.8	44.43	148.70	35	6.0	6.0	6.4	()	D
8	02.08	I	23 41 10.1	56.20	163.73	46	6.5	6.0	6.4	6.2	Восточное побережье
		II	23 41 06.7	56.25	163.77	16	()	5.9		6.2	Камчатки
9	00.10	III	23 41 12.3	56.26	163.93	17 21	6.3	6.0	6.6	6.2	V
9	08.10	I II	18 14 22.6	52.57	160.36	41	6.8	6.0	6.6	6.3 6.4	У восточного побере- жья Камчатки
		III	18 14 25.4 18 14 32.2	52.54 52.59	160.30	28	6.5	6.0		0.4	жья камчатки
10	09.10	I	23 53 37.3	47.81	160.56 155.01	36	0.3	6.3	7.1	5.8	Variati aidia aattiana
10	09.10	II	23 53 37.3	47.71	155.07	47		6.4	7.1	5.7	Курильские острова
		III	23 53 38.6	47.79	155.24	22	5.9	0.4		3.7	
11	12.10	I	15 02 17.1	12.93	144.97	33	7.2	6.9	7.2	7.2	Южнее Марианских
11	12.10	II	15 02 17.1	12.72	144.98	62	1.2	6.7	1.2	1.4	островов
		III	15 02 13.0	12.72	145.08	42	7.0	0.7			островов
12	19.10	I	03 28 45.0	-04.02	123.92	33	7.1	6.4	7.1	7.1	Море Банда
	12.10	II	03 28 44.0	-04.09	123.98	33	,	6.1	,	7.2	
		III	03 28 58.4	-04.31	124.11	19	7.5	0.1			
13	14.11	I	09 26 09.9	35.89	90.58	10	6.8	6.2	6.8	7.5	Провинция Цинхай
-		II	09 26 10.4	35.93	90.59		- • •	6.1	- , -	8.0	1 - , —
		III	09 27 15.9	35.80	92.91	15	7.8				
14	18.12	I	04 03 01.5	24.15	122.78	33	6.8	6.3	7.0	7.3	Район Тайваня
		II	04 03 00.4	23.92	122.81	28		6.3		7.2	
		III	04 03 04.5	24.00	122.79	16	6.8				

В І представлены магнитуды MPSP, MPLP по продольным волнам и MS – по поверхностным. Кроме того, здесь приведены моментные магнитуды Mw, рассчитанные на основе величины сейсмического момента M_0 , определенного по цифровым сейсмограммам сейсмической станции «Обнинск» (см. ниже, в табл. 3). Расчет сейсмического момента Mw выполнен по формуле Н. Канамори [4]:

$$Mw=\frac{2}{3} \lg M_0 - 10.7$$

в единицах « ∂ ина·см». В II даны магнитуды m_b по продольным волнам и Ms – по поверхностным. В III – моментные магнитуды Mw, полученные по методу ТМС и взятые из [2].

Относительно магнитуд m_b и MPSP, полученных по продольным P-волнам, следует отметить, что для одиннадцати землетрясений значения $m_b < MPSP$, для двух — равны между собой. Разница этих значений объясняется методикой их расчета. Для m_b выбирается интервал записи P-волн в пределах 5 c от вступления, в то время как для MPSP он может быть увеличен до 40–60 c [5]. Максимальное различие магнитуд MPSP и m_b составляет 0.6 единицы магнитуды для землетрясения 1. Сравнение магнитуд MS(MOS) и Ms(ISC) по поверхностным волнам показывает, что в основном различия заключены в интервале 0.1–0.2 единицы магнитуды. Максимальная разница в 0.5 единиц получена только для землетрясения 12, что, возможно, связано с разной выборкой данных для расчета.

Магнитуды Mw(I) и Mw(III) для землетрясений 3, 13 равны, для 2, 11, 12 Mw(I) меньше Mw(III) и для восьми землетрясений 1, 4–10 – Mw(I) превышает Mw(III) на 0.1–0.4 единицы магнитуд. Отмечаемые различия, вероятно, связаны с различной методикой определения: Mw(I) определены по одному типу волн на одной станции, в то время как при расчете Mw(III) рассматривается вся сейсмограмма на многих станциях. (Информация о сейсмической обстановке в районах землетрясений 26 января (2), 25 мая (6), 8 октября (9) и 14 ноября (13) за 2001 г. помещена на сайте http://www.ceme.gsras.ru).

В табл. 2 приведены механизмы очагов шести землетрясений 1, 3, 5, 6, 8, 13, для которых в ГС РАН получены решения по знакам первых вступлений *P*-волн [1] для модели двойной пары сил. Здесь же помещены решения, полученные по методу ТМЦ [6] из [2]. Для остальных землетрясений из списка табл. 1 решения по ТМЦ и описания механизмов даны в работе [7] наст. сб.

	1	1																	1
No	Дата,	t_0 ,	h,	Магнитуды			Oc	Оси главных напряжений						Нодальные плоскости					Источник
	д м	ч мин с	км	Mw	MS	<i>MPSP</i>		T		N		P		NP1		NP2			
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	10.01	16 02 42.2	27	7.0	7.0	6.7	51	299	4	34	38	126	242	7	119	33	84	86	MOS
		16 02 54.5	27	7.0			53	333	2	240	37	148	224	8	74	60	82	92	HRV
3	13.02	19 28 29.1	33	7.4	7.0	6.5	50	50	9	309	38	211	253	11	34	130	84	99	MOS
		19 28 45.1	21	7.4			60	26	4	122	29	214	315	16	103	121	74	86	HRV
5	23.03	11 30 10.7	34	6.0	6.0	5.9	68	276	18	59	12	153	265	36	121	48	60	69	MOS
		11 30 16	46	6.0			71	268	11	32	16	125	231	31	112	26	61	77	HRV
6	25.05	00 40 56.0	66	6.7		6.3	64	287	5	27	26	119	220	20	104	25	71	85	MOS
8	02.08	23 41 10.1	46	6.3	6.2	6.0	5	245	78	0	10	154	290	79	-176	199	86	-11	MOS
		23 41 12.3	17	6.3			31	245	56	37	13	147	282	59	166	191	78	32	HRV
13	14.11	09 26 09.9	10	7.8	7.5	6.2	4	303	74	45	16	212	348	76	-171	256	81	-14	MOS
		09 26 15.9	15	7.8			13	319	59	207	28	56	94	61	-12	190	80	-150	HRV

Таблица 2. Параметры механизмов очагов за 2001 г. по [1, 2]

Ниже дано краткое описание механизмов очагов, приведенных на рис. 2.

Рис. 2. Стереограммы механизмов очагов землетрясений 2001 г. в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернены области волн сжатия.

Решения механизма очага землетрясения 10 января (1) близ о. Кадьяк, по данным [1] и [2], близки. Землетрясение произошло под действием близких по величине сжимающих напряжений, ориентированных на юго-восток, и растягивающих, направленных на северо-запад. Обе нодальные плоскости имеют простирание северо-восток—юго-запад, одна из них — пологая, тип движения — надвиг с компонентами правостороннего сдвига по NP1 в [1] и левостороннего в [2]. Другая плоскость NP2 — крутопадающая, тип движения — чистый взброс в [2] и взброс с компонентой сдвига по NP2 в [1].

Решения механизма очага землетрясения 13 февраля (3) в районе Южной Суматры, по данным [1] и [2], также близки. Землетрясение произошло под действием близких по величине сжимающих напряжений, ориентированных на юго-запад, и растягивающих, направленных на северо-восток. Тип движения в очаге по крутой плоскости NP2 – взброс с компонентами сдвига – правостороннего в [1] и левостороннего в [2]. По пологой плоскости NP1 – надвиг с компонентами сдвига: левостороннего в [1] и правостороннего в [2].

Решения механизма очагов землетрясения 23 марта (5) в районе Курильских островов, по данным [1] и [2], также близки. Землетрясение произошло под действием сжимающих напряжений, ориентированных на юго-восток. Простирание крутопадающих нодальных плоскостей — северо-восточное. Тип движения в очаге по обеим плоскостям в [1] и [2] — взброс с компонентами сдвига, по NP1 — правостороннего и по NP2 —левостороннего.

Для землетрясения 25 мая (6) в районе Курильских островов решение, полученное по *Р*-волнам и опубликованное в [1], близко к таковому по данным Гарварда [2]. Последнее помещено в табл. 4 [8]. При сравнении решений видно, что они также близки и подобны механизму очага землетрясения 23 марта (5). Оно также произошло под действием сжимающих напряжений, ориентированных на юго-восток. Простирание плоскостей — северо-восточное, но одна из плоскостей *NP*1 залегает полого, другая *NP*2 — круто. По плоскости *NP*1 — тип движения — надвиг с элементами правостороннего сдвига, по *NP*2 — взброс с элементами левостороннего сдвига.

Механизм очага землетрясения 2 августа (8) в районе Камчатки представляет сдвиг по обеим нодальным плоскостям крутого залегания в решениях [1] и [2]. Землетрясение произошло под действием близких по величине сжимающих напряжений, ориентированных на юго-запад, и растягивающих, направленных на северо-запад.

Механизм очага землетрясения 14 ноября (13) в районе Цхинкая представляет сдвиг по обеим нодальным плоскостям крутого залегания в решениях [1] и [2]. Землетрясение произошло под действием близких по величине сжимающих напряжений, ориентированных на юговосток, и растягивающих, направленных на юго-запад.

Динамические параметры очагов в табл. 3 рассчитаны по спектрам продольных волн, зарегистрированных цифровой аппаратурой IRIS – STS-1 на станции «Обнинск» (OBN) на телесейсмических расстояниях Δ =40°–92°. Станционные спектры, приведенные к очагу, показаны на рис. 3. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота f_{Π} точки перелома спектра, частота угловой точки f_0 по станции «Обнинск» [9, 10]. На их основе рассчитаны динамические параметры (сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения), а также величины разрыва в очагах (длина L) и подвижки (\bar{u}) [11]. Для получения значений L, \bar{u} , $\Delta \sigma$ использовалась дислокационная модель Брюна [12], которая нашла широкое применение в сейсмологической практике.

Tаблица 3. Характеристики спектров P -волн и динамические параметры очагов землетря	ce-
ний по записям цифровой аппаратуры IRIS – STS-1 на станции «Обнинск»	

No	Дата,	t_0 ,	Mw	MS	Δ°	$\Omega_0 \cdot 10^{-4}$,		$f_0 \cdot 10^{-2}$,	$M_0 \cdot 10^{19}$,	$L\cdot 10^3$,	Δσ·10 ⁵ ,	ησ·10 ⁵ ,	ū,
	д м	ч мин с				м∙С	Гц	Гц	Н∙м	М	H/M^2	H/M^2	М
1	10.01	16 02 42.2	7.1	7.0	68.01	1.10	2.7	8.7	4.7	56	9.4	15	0.54
2	26.01	03 16 42.3	7.6	7.8	40.36	9.55	6.9	14.1	31.0	34	276	36	9.76
3	13.02	19 28 29.1	7.4	7.0	80.49	2.51	3.4	9.3	12.0	52	30	5.8	1.61
4	24.02	07 23 48.4	7.3	6.9	88.69	1.41	1.8	14.4	9.2	71	9.0	5.4	0.66
5	23.03	11 30 10.7	6.2	6.0	65.41	0.063	3.2	21.4	0.25	24	6.3	8.8	0.16
6	25.05	00 40 56.0	7.0		65.12	0.55	4.6	11.2	4.2	52	10	_	0.25
7	24.06	13 18 55.1	6.4	6.0	65.20	0.063	2.3	11.5	0.48	50	1.3	10	0.30
8	02.08	23 41 10.1	6.5	6.2	61.00	0.089	13.8	25.1	0.62	24	16	16	0.17
9	08.10	18 14 22.6	6.8	6.3	63.05	0.40	2.6	9.1	1.5	54	3.3	4.2	0.19

№	Дата, д м	t ₀ , ч мин с	Mw	MS	Δ°	$\Omega_0 \cdot 10^{-4},$ $\mathcal{M} \cdot \mathcal{C}$	f _n ·10 ⁻² , Γų	f ₀ ·10 ⁻² , Гц	M ₀ ·10 ¹⁹ , Н:м	$L\cdot 10^3$,	$\Delta \sigma \cdot 10^5, \ H/\text{M}^2$	$\overline{\eta} \sigma \cdot 10^5$, H/M^2	и, м
10	09.10	23 53 37.3	6.4	5.8	65.2	0.1	2.6	18.2	0.41	27	7.3	2.7	0.20
11	12.10	15 02 17.1	7.2	7.2	89.70	1.00	2.7	10.5	6.9	36	51	20	1.94
12	19.10	03 28 45.0	7.1	7.1	91.75	0.54	10.0	14.4	4.3	34	38	23	0.89
13	14.11	09 26 09.9	6.8	7.5	41.25	0.58	14.4	19.0	1.9	26	38	206	1.35
14	18.12	04 03 01.5	6.8	7.3	68.43	0.48	8.3	12.9	2.0	38	13	98	1.02

Рис. 3. Очаговые спектры P-волн, записанных на станции «Обнинск» Номера спектров соответствуют номерам землетрясений в табл. 1.

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за **2000** год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2000–2001.
- 2. Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- 3. **Jeffreys H., Bullen K.E.** Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. 65 p.
- 4. **Hanks T.C., Kanamori H**. A Moment Magnitude Scale // J. Geophys. Res. 1979. **84**. № 135. P. 2348–2350.
- 5. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях ЕССН СССР. – М.: Наука, 1982. – 272 с.
- 6. **Dzievonski A., Chou T. and Woodhouse J.** Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. 86. № B4. P. 2825–2852.
- 7. **Чепкунас Л.С.**, **Болдырева Н.В.** Оперативная обработка землетрясений мира по телесейсмическим наблюдения ГС РАН. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 8. Старовойт О.Е., Захарова А.И., Рогожин Е.А., Михайлова Р.С., Пойгина С.Г. Северная Евразия. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 9. **Захарова А.И., Чепкунас Л.С.** Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 10. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. 1985. № 2. С. 60—70.
- 11. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология 1989. № 2. С. 66—79.
- 12. **Brune J.N.** Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. 75. № 26. P. 4997–5009.