ПРИАМУРЬЕ И ПРИМОРЬЕ

Т.А. Фокина, Н.С. Коваленко, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

Параметры землетрясений региона определены на основе инструментальных данных, полученных на станциях региональной сейсмической сети (табл. 1), претерпевшей в течение 2001 г. некоторые изменения: 1 октября в Приморье была восстановлена сейсмическая станция «Терней», которая не работала с марта 1994 г. [1]; станция «Горный», напротив, 24 ноября временно прекратила работу в связи с переносом ее в другое место. В сводной обработке использованы также данные сейсмических сетей Сахалина [2], Прибайкалья [3], Якутии [4], Курило-Охотского региона [5], а также бюллетеней ЦОМЭ ГС РАН [6], NEIC, JMA, ISC [7].

Таблица 1. Сейсмические станции Приамурья и Приморья (в хронологии их открытия), работавшие в 2001 г., и их параметры

№	о Станция			Дата	Кос	ординать	I				
	Название	Ко	д	открытия	φ°, N	λ° , Ε	h,	Тип	Компо-	$V_{\rm max}$ /	$\Delta T_{\rm max}$,
		межд.	рег.				м	прибора	нента	чувствитель-	С
										ность	
1	Николаевск-	NKL	НКЛ	25.07.1970	53.15	140.680	15	СКМ-3	N, E, Z	60000	0.27-0.65
	на-Амуре								N, E, Z	29000	0.28-0.64
									N, E, Z	11500	0.27–0.63
								СКД	N, E, Z	1043	0.20–20
									N, E, Z	500	0.15–17
									N, E, Z	200	0.15–15
								C-5-C	N, E, Z	100	0.016-4.58
								Велосиграф	N, E, Z	27.2 c	0.047–4.58
								C-S-C CCP3-M	N	$0.00215 c^2$	0.06-1.0
									E	$0.00201 c^2$	0.06-1.0
									Ζ	$0.00220 c^2$	0.06-1.0
								ОСП-2М	Ν	$0.04 c^2$	0.02-1.57
									E	$0.04 c^2$	0.019–2.1
									Ζ	$0.04 c^2$	0.021-2.0
2	Бомнак	BMKR	БМН	14.02.1974	54.710	128.85	342	СКМ-3	E, Z	281000	0.50-0.66
									E, Z	98940	0.40–0.67
									Ν	67670	0.37–0.67
									Ν	26140	0.35–0.66
								Велосиграф С-5-С	N, E, Z	27.2 c	0.014–4.6
								050	NEZ	2.72 c	0 014-4 6
								ОСП-2М	NZ	$0.03 c^2$	0.02 - 3.0
								00112111	E	$0.03 c^2$	0.02 - 2.0
								CCP3-M	Ν	$0.00208 c^2$	0.067-11.0
									Е	$0.00203 c^2$	0.064-11.0
									Ζ	$0.00209 c^2$	0.052-10.9
3	Кировский	KRSR	КРС	02.04.1974	54.433	126.971	455	СКМ-3	N, E, Z	158200	0.45-0.72
									N, E, Z	67450	0.37-0.72
								Велосиграф	N, E, Z	27.2 c	0.014-4.6
								C-5-C			
									N, E, Z	$2.72 c_{2}$	0.014-4.6
								ОСП-2М	Ν	$0.03 c^2$	0.019–3.3
									Е	$0.03 c^2$	0.019–2.9
									Ζ	$0.03 c^2$	0.019–3.5

N⁰	Стан	ция		Дата	Кос	рдинать	I		Аг	паратура	
	Название	Ко	д	открытия	φ°, N	λ°, Ε	<i>h</i> ,	Тип	Компо-	$V_{\rm max}$	$\Delta T_{\rm max}$,
		межд.	рег.				м	прибора	нента	чувствитель-	С
			-							ность	
4	Ясный	YASR	ЯСН	25.12.1974	53.290	127.980	330	СКМ-3	N, E, Z	160000	0.45-0.67
									N, E, Z	67920	0.37-0.67
5	Зея	ZEA	ЗЕЯ	10.06.1976	53.760	127.30	273	СКМ-3	Ζ	20700	0.3-0.8
									N, E, Z	10300	0.3-0.7
									N,E	5150	0.3-0.7
								СКД	N, E, Z	1040	0.2–18
									N, E, Z	500	0.2–18
								Велосиграф С-5-С	N, E, Z	27.2 c	0.014–4.6
									N, E, Z	$2.72 c_{2}$	0.014-4.6
								ОСП-2М	Ν	$0.05 c^2$	0.02–2.3
									E	$0.05 c^2$	0.02-2.1
									Z	$0.05 c^2$	0.02–3.4
								P33	N, E, Z	50.1	0.2–18.0
(Γ	CDMD	LDIT	00 12 1070	50 7(0	126 422	450	СЬМ	7	1.1	0.25
0	1 орный (временно	GKNK	IPH	08.12.1978	50.769	130.422	450	CKM-5	L NE7	8/300	0.28 - 0.64
	остановлена								N, E, Z N E Z	32940 26135	0.23 - 0.03
	24 11 2001 г.)							Велосиграф	$\mathbf{N}, \mathbf{L}, \mathbf{Z}$ $\mathbf{N} \in \mathbf{Z}$	20133 27.5 c	0.24 - 0.01 0.05 - 4.59
	21.11.20011.)							С-5-С	1 1 , <i>L</i> , <i>L</i>	27.5 0	0.05 4.57
									N, E, Z	2.75 c	0.05-4.59
								ОСП-2М	N	$0.04 c^2$	0.02-1.92
									E	$0.04 c^2$	0.02-1.84
									Ζ	$0.04 c^2$	0.019–2.6
								CCP3-M	Ν	$0.0029 c^2$	0.067-11.0
									E	$0.0029 c^2$	0.066-11.0
									Z	$0.0029 c^2$	0.061-11.0
7	Экимчан	EKMR	ЭКМ	25.11.1979	53.072	132.95	543	СКМ-3	N, E, Z	131600	0.37–0.67
								Damaariaat	N, E, Z	59025 27.2 -	0.29-0.65
								С-5-С	N, E, Z	21.2 C	0.085-4.0
									NEZ	2.72.c	0 014-4 6
								ОСП-2М	N. E	$0.04 c^2$	0.02 - 1.1
								00112111	Z	$0.04 c^2$	0.02 - 2.0
8	Терней			01.02.1982	45.036	136.603	50	СКМ-3	N, E, Z	60700	0.3-0.6
	(остановлена			01.10.2001					N, E, Z	28900	0.28-0.6
	в марте 1994 г.)								N, E, Z	11500	0.27-0.6
								СКД	N, E, Z	1043	0.20-20.0
									N, E, Z	501	0.15-17.0
									N, E, Z	200	0.15-17.0
								Велосиграф	N, E, Z	27.2 с	0.045-4.5
								C5C		0.50	0.045 1.5
									N, E, Z	$2.72 c_{2.000}$	0.045-4.5
								OCH-2M	N, E, Z	0.04 <i>c</i> ⁻	0.02 - 2.6

Методика определения основных параметров землетрясений [8–10], механизмов их очагов [11–13], а также схема деления региона на сейсмоактивные районы, по сравнению с таковыми в 2000 г. [14], не изменились.

В 2001 г. на территории региона определены параметры 598 землетрясений с K_P =4.1–12.2 с гипоцентрами в земной коре ($h \le 30 \ \kappa m$) и четырех глубокофокусных с $h=355-562 \ \kappa m$ с MSHA=4.3-4.8. Для трех землетрясений имеются макросейсмические данные [15]; для двух определены механизмы очагов [16] по знакам первых вступлений волн P и Pg, с использованием знаков и смещений во вступлениях SV и SH-волн (для уточнения решений). Из общего числа решений выбраны те, которые согласуются с распределением знаков первых смещений в P, SV, SH, Pg, SgV, SgH-волнах. Карта эпицентров землетрясений и стереограмм механизмов очагов представлена на рис. 1. В табл. 2 приведено распределение коровых землетрясений по

энергетическому классу *К*_Р, а глубокофокусных – по магнитуде *MSHA*, и суммарная сейсмическая энергия по районам.

Рис. 1. Карта эпицентров землетрясений Приамурья и Приморья за 2001 г.

1 – энергетический класс $K_{\rm P}$; 2 – магнитуда *MSHA*; 3 – глубина *h* гипоцентра, *км*; 4 – сейсмическая станция; 5 – номер и граница условного района; 6 – диаграмма механизма очага землетрясения (нижняя полусфера, зачернена область сжатия); 7 – места производства промышленных взрывов; 8 – государственная граница.

Построенный по годовым значениям чисел землетрясений разных классов график повторяемости изображен на рис. 2. Отметим прежде всего на его основе уровень энергетической представительности K_{\min} для всего региона по прямолинейной части графика: он соответствует K_{\min} =8. Уравнение данного графика в диапазоне $K_{\rm P}$ =8–12 характеризуется следующими параметрами:

$$lgN(K_{\rm P}) = (6.17 \pm 0.55) - (0.505 \pm 0.05) K_{\rm P}.$$
 (1)

Таблица 2. Распределение коровых землетрясений по энергетическому классу *K*_P, глубокофокусных – по магнитуде *MSHA*, и суммарная сейсмическая энергия Σ*E* по районам региона Приамурья и Приморья в 2001 г.

һ≤30 км										
N⁰	Районы				N_{Σ}	$\Sigma E \cdot 10^{12}$,				
		≤6	7	8	9	10	11	12		Дж
1	Становой	37	113	36	7	2	1	2	198	0.739
2	Янкан-Тукурингра-Джагдинский	47	62	37	9	2	1	—	158	0.063
3	Зейско-Селемджинский		32	11	_	_	_	—	55	0.003
4	Турано-Буреинский		51	89	17	4	1	—	169	0.104
5	Сихотэ-Алиньский	-	_	1	2	_	_	_	3	0.003
6	Приграничный	_	2	9	2	2	—	—	15	0.013
	Всего	103	260	183	37	10	3	2	598	0.925
h>300 км										
N⁰	Район		MSHA						N_{Σ}	$\Sigma E \cdot 10^{12}$,
			4.0							Дж
5	Сихотэ-Алиньский		3			1			4	0.153

Примечание: При составлении таблицы величина всех землетрясений приводилась к магнитуде *MLH* путем пересчета из классов *K*_P для землетрясений с *h*≤30 *км* и из магнитуд *MSH* с *h*>300 *км* по следующим соотношениям: *MLH*=(*K*_P-4)/1.8 [17] и *MLH*=(*MSH*-1.71)/0.75 [18, 19]. Для второго соотношения вводилась поправка за глубину очага.

Сравнивая суммарное число землетрясений и сейсмической энергии за 2001 г. (табл. 2) с таковыми за 1992–2000 гг. (табл. 3), отметим систематическое уменьшение количества выделившейся энергии, наблюдаемое в течение последних четырех лет: $20.41 \cdot 10^{12} \, \square \, m$ – в 1998 г. [21], $5.99 \cdot 10^{12} \, \square \, m$ – в 1999 г. [8], $1.69 \cdot 10^{12} \, \square \, m$ – в 2000 г., $0.92 \cdot 10^{12} \, \square \, m$ – в 2001 г. Хотя в изменении суммарного числа землетрясений с $K_P \ge 8$ за те же годы ($N_{\Sigma} = 184$, 169, 209, 235 соответственно) наблюдается уменьшение в 1999 г., а в следующие два года – наоборот, увеличение.

Год			N_{Σ}	$\Sigma E \cdot 10^{12}$				
	8	9	10	11	12	13	_	Дж
1992	131	28	15	6	1	_	181	1.6000
1993	77	41	11	3	2	1	135	12.4400
1994	144	31	13	12	2	1	203	12.3000
1995	136	20	13	4	_	_	173	0.5600
1996	123	45	11	5	_	_	184	0.7456
1997	109	29	22	3	3	_	166	2.6943
1998	116	49	10	7	_	2	184	20.4063
1999	102	46	11	5	5	_	169	5.9882
2000	142	48	13	3	3	_	209	1.6847
Среднее за 9 лет	120	37.44	13.22	5.333	1.778	0.444	178.2	6.4910
2001	183	37	10	3	2	_	235	0.925

Таблица 3. Распределение числа землетрясений с очагом в земной коре по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* за 1992–2001 гг.

Средние числа землетрясений разных классов за 1992–2000 гг. в табл. 3 удобно использовать при расчете параметров долговременного графика повторяемости, изображенного на рис. 3, который имеет вид:

$$lgN(K_{\rm P}) = (5.86 \pm 0.15) - (0.473 \pm 0.014) K_{\rm P}.$$
 (2)

Среднее долговременное значение угла наклона γ графика повторяемости, равное $\gamma = -0.47 \pm 0.01$, можно считать достаточно надежным ввиду строгой прямолинейности графика во всем диапазоне $K_{\rm P} = 8 - 12$. Годовое значение $\gamma = -0.50$ несколько выше, но выше и ошибка его определения, равная $\sigma_{\gamma} = 0.05$, так что можно считать их достаточно близкими по величине.

Рис. 2. График повторяемости землетрясений Приамурья и Приморья за 2001 г.

Рис. 3. График повторяемости землетрясений Приамурья и Приморья за 1992–2000 гг.

Рассмотрим каждый из районов в отдельности.

Становой район (\mathbb{N} 1) – самый активный, на его долю пришлось почти 80 % суммарной сейсмической энергии региона (табл. 2). Пик сейсмичности пришелся на апрель: самое сильное (MLH=4.4, K_P =12.2) землетрясение года (3 на рис. 1) произошло 8 апреля в 05^h09^m на глубине h=20 км. Эпицентр землетрясения находился в ненаселенной местности, поэтому макросейсмические данные отсутствуют. Интерпретация механизма очага в [16] позволяет установить, что очаг находился под воздействием горизонтального напряжения сжатия и вертикального растяжения. Одна из возможных плоскостей разрыва имеет восток–северо-восточное простирание и сравнительно крутое падение на северо-восток, вторая – западное–юго-западное простирание с падением на северо-запад. Подвижка в очаге – чистый взброс по обеим плоскостям. Это землетрясение сопровождалось афтершоками (табл. 4), самый сильный (K_P =10.8) из которых (4 на рис. 1) произошел через 3 *мин* после основного толчка.

N⁰	Дата,	$t_0,$	Эпи	центр	h,	$K_{ m P}$						
	д м	Ч МИН С	φ°, Ν	λ°, Ε	КМ							
Основной толчок												
	08.04	05 09 31.7	55.41	133.01	20	12.2						
Афтершоки												
1	08.04	05 12 06.0	55.39	132.93		10.8						
2	08.04	05 42 49.2	55.42	133.14		8.2						
3	08.04	06 42 52.6	55.34	132.99	10	9.0						
4	08.04	09 41 34.2	55.42	133.03	6	8.2						
5	12.04	14 22 06.2	55.33	132.94		7.7						

Таблица 4. Основные параметры главного толчка и афтершоков землетрясения 8 апреля в 05^h09^m с K_P=12.2

В течение мая и июня происходили землетрясения в районе Прибрежного хребта, самое сильное (MLH=4.1, K_P =11.9) из них (7 на рис. 1) зарегистрировано 20 июня в 13^h57^m на глубине h=9 км. Его очаг находился под воздействием близгоризонтального напряжения растяжения и более крутого сжатия. Углы падения нодальных плоскостей DP=71° для NP1и DP=19° для NP2 определили подвижки по ним типа сброса и поддвига соответственно. Простирание NP1 – северо-восточное, NP2 – юго-западное (рис. 1). На правом фланге Прибрежного хребта, в районе мыса Отличительный, 21 мая в 11^h42^m произошло землетрясение с K_P =10.5 (6 на рис. 1). Становой хребет характеризуется умеренной сейсмической активностью: самое заметное (K_P =10.2) землетрясение произошло 21 февраля в 05^h52^m на глубине h=8 км (2 на рис. 1). В Янкан-Тукурингра-Джагдинском районе (№ 2) продолжается спад сейсмической активности как по числу землетрясений (N=158 вместо N=231 в 2000 г.), так и по суммарной энергии ($\Sigma E=0.063 \cdot 10^{12} \ Дж$ вместо $0.151 \cdot 10^{12} \ Дж$ [14]). Изменилось несколько и расположение гипоцентров. Самое сильное ($K_P=10.9$) землетрясение района (10 на рис. 1), зарегистрированное 6 сентября в $10^{h}42^{m}$ на глубине $h=30 \ \kappa m$, локализовано в западной части района. Активизация сейсмичности отмечена восточнее Зейского водохранилища, где 21 февраля в $02^{h}44^{m}$ произошло землетрясение с $K_P=10.2$ на глубине $h=18 \ \kappa m$ (1 на рис. 1). Западнее Зейского водохранилища, в районе хр. Тукурингра, расположилась группа эпицентров землетрясений, энергетический класс которых не превышал $K_P \leq 9.6$. Вблизи Зейской ГЭС за весь год не было зарегистрировано ни одного землетрясения с $K_P \geq 8.6$.

В Зейско-Селемджинском районе (\mathbb{N} 3) в 2001 г. сейсмическая активность проявилась весьма слабыми землетрясениями, не было ни одного землетрясения 9-го класса и выше, и только три имели $K_P > 8.0$ (16 октября в $03^{h}58^{m}$ с $K_P = 8.5$, 8 ноября в $01^{h}11^{m}$ с $K_P = 8.1$, 8 декабря в $03^{h}17^{m}$ с $K_P = 8.1$). Тем не менее в целом в этом районе в 2001 г. число землетрясений увеличилось почти вдвое (55 вместо 29), однако их суммарная энергия вдвое уменьшилась (0.003 $\cdot 10^{12} \ Дж$ вместо 0.006 $\cdot 10^{12} \ Дж$).

На территории **Турано-Буреинского района** (**№** 4) зарегистрировано почти столько же землетрясений (N=169), что и в 2000 г. (N=164), но количество сейсмической энергии уменьшилось в 4 раза ($0.104 \cdot 10^{12} \ \squaremetric{D}{m}$ вместо $0.422 \cdot 10^{12} \ \squaremetric{D}{m}$). Самое сильное ($K_P=10.9$) землетрясение зарегистрированы 28 октября в $16^{h}21^{m}$ на глубине $h=16 \ \kappa m$ (11 на рис. 1). Его эпицентр находился южнее пос. Экимчан, где в 2000 г., чуть западнее, произошло землетрясение с $K_P=11.5$ [14]. Возможно, эта территория остается активной из-за воздействия промышленных взрывов и заполнения Бурейского водохранилища.

Рядом с пос. Кульдур выделяется группа эпицентров землетрясений, самое сильное $(K_{\rm P}=10.5)$ из которых произошло 25 августа в $13^{\rm h}58^{\rm m}$ (8 на рис. 1). Три землетрясения этой группы (8 февраля в $21^{\rm h}37^{\rm m}$ с $K_{\rm P}=9.1$, 11 апреля в $23^{\rm h}10^{\rm m}$ с $K_{\rm P}=9.2$, 14 сентября в $17^{\rm h}06^{\rm m}$ с $K_{\rm P}=9.5$) ощущались в пос. Кульдур с интенсивностью сотрясений в 2–3 балла. Два толчка зарегистрировано на границе с Китаем: 3 сентября в $03^{\rm h}09^{\rm m}$ на глубине $h=13 \ \kappa m$ с $K_{\rm P}=10.4$ (9 на рис. 1) и 21 сентября в $12^{\rm h}45^{\rm m}$ с $K_{\rm P}=9.6$.

На территории района продолжались взрывные работы (рис. 1). Как правило, энергетический класс промышленных взрывов не превышает $K_P \le 8.7$, но проблема распознавания взрывов и слабых землетрясений, по-прежнему, ждет решения [20].

В Сихотэ-Алиньском районе (\mathbb{N} 5) сложно объективно оценить сейсмическую обстановку из-за удаленности сейсмических станций, лишь 1 октября на территории района начала работать станция «Терней». Удалось определить параметры семи землетрясений: трех коровых (18 января в $11^{h}03^{m}$ с K_{P} =8.0, 27 апреля в $07^{h}10^{m}$ с K_{P} =8.6 и 15 июня в $15^{h}40^{m}$ с K_{P} =9.5), про-изошедших в центральной части Хабаровского края, и четырех глубокофокусных, с эпицентрами в Приморье (11 апреля в $07^{h}52^{m}$ с MPVA=4.9, 15 мая в $23^{h}46^{m}$ с MPVA=4.1, 15 июля в $19^{h}38^{m}$ с MPVA=4.1, 24 ноября в $11^{h}50^{m}$ с MPVA=3.6). Глубины их очагов, соответственно, равны 527, 355, 562 и 560 км [15]. Самое сильное из них локализовано севернее Владивостока (5 на рис. 1).

В Приграничном районе (\mathbb{N} 6) в 2001 г. уровень сейсмичности по числу землетрясений снизился незначительно, зарегистрировано лишь 15 землетрясений с K_P =7.1–9.9 вместо 18 в 2000 г. Но по уровню энергии снижение очень резкое (0.638·10¹² Дж до 0.013·10¹² Дж). Самым сильным (K_P =9.9) было землетрясение, произошедшее на границе с Китаем 24 апреля в 14^h35^m. Необходимо заметить, что недостаток информации не позволяет реально оценить сейсмическую обстановку в этом районе.

Литература

^{1.} Шолохова А.А., Оскорбин Л.С., Бобков А.О., Паршина И.А., Рудик М.И. Приамурье и Приморье // Землетрясения Северной Евразии в 1994 году. – М.: ГС РАН, 2000. – С. 80–83.

^{2.} Фокина Т.А., Паршина И.А., Рудик М.И., Сафонов Д.А. Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).

- 3. Мельникова В.И., Гилёва Н.А., Масальский О.К. Прибайкалье и Забайкалье. (См. раздел I (Обзор сейсмичности) в наст. сб.)
- 4. Козьмин Б.М. Якутия. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 5. Фокина Т.А., Брагина Г.И., Рудик М.И., Сафонов Д.А. Курило-Охотский регион. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 6. Сейсмологический бюллетень (ежедекадный) за 2001 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2001–2002.
- 7. Bulletin of the International Seismological Centre for 2001. Berkshire: ISC, 2002-2003.
- 8. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 9. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Проблемы сейсмической опасности Дальневосточного региона. (Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI). – Южно-Сахалинск: Институт морской ГиГ ДВО РАН, 1997. – С. 179–197.
- 10. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 11. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. М.: ГС РАН, 2001. С. 95–99.
- 13. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 14. Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 153–156.
- 15. Коваленко Н.С. (отв. сост.), Крючкова О.В., Величко Л.Ф. Приамурье и Приморье. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 16. Коваленко Н.С. (отв. сост.). Приамурье и Приморье. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- 17. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Тр. ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 18. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. – 1967. – № 2. – С. 13–23.
- 19. Соловьёв С.Л., Соловьёва О.Н. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 20. Годзиковская А.А. Местные землетрясения и взрывы. М.: Наука, 2000. 108 с.