Северный Кавказ

И.П. Габсатарова

Геофизическая служба РАН, г. Обнинск, ira@gsras.ru

В 2001 г. на Северном Кавказе, включающем административные территории Краснодарского, Ставропольского краев и пяти автономных республик России (Карачаево-Черкесской, Кабардино-Балкарской, Чеченской, Ингушетии, Северной Осетии-Алании), проводились наблюдения сетью сейсмических станций, состоящей:

- из аналоговых станций «Анапа», «Махачкала», «Пятигорск», «Сочи», «Цей», «Гофицкое», оснащенных короткопериодными сейсмографами СКМ-3;
- цифровой станции «Кисловодск», оборудованной широкополосным сейсмометром STS-1;
- четырехкомпонентной микрогруппы «Кисловодск» (табл. 1, 2);
- радиотелеметрических пунктов «Кисловодск», «Гумбаши», «Шиджатмаз», «Куба-Таба», «Нагутская» (табл. 3);
- новых станций «Альфа-ГЕОН» в шести населенных пунктах Северной Осетии-Алании: Владикавказ, Ардон, Заманкул, Чикола, Фиагдон, Цей (табл. 4).

N⁰	Стан	нция		Дата	Ко	ординат	ы		Аппара	атура	
	Название	Ко,	д	открытия	φ°, N	λ°, Ε	$h_{\rm v}$,	Тип	Ком-	V _{max}	$\Delta T_{\rm max}$,
		межд.	рег.		•		м	прибора	понента		С
1	Пятигорск	PYA		06.10.1909	44.041	43.075	571	CKM-3	(N, Z, E)	10800	0.4-1.0
2	Сочи	SOC		1928	43.570	39.763	180	CKM-3	(N, Z, E)	10000	0.2-1.4
										5000	0.2-1.4
				17.07.2001				CM-OC	(N, Z, E)	цифров	ая SDAS
3	Махачкала*	MAK		08.12.1951	42.946	47.504	42	CM-3	(N, Z, E)	6100	0.4-1.3
										3000	0.4-1.3
4	Анапа	ANN		07.03.1968	44.881	37.314	58	CKM-3	(N, Z, E)	28100	0.25-0.8
5	Кисловодск	KIV		14.09.1988	43.956	42.689	1210				
				03.02.1994	43.955	42.686	1054	STS-1	(N, Z, E)	цифров	ая IRIS
				(перенесена)							
6	Цей	ZEI		17.10.1988	42.788	43.901	1926	CKM-3	(N, Z, E)	40000	0.2-1.2
										20000	0.2-1.4
7	Гофицкое*	GOF		11.03.1994	45.058	43.043	293	CM-3	(N, Z, E)	10850	0.45-1.0
8	Гумбаши	GUMR	Gum	01.12.1990	43.776	42.247	2312	СМ3-КВ	(N, Z, E)	F	ТС
9	Кисловодск	KIV	Kiv	01.12.1990	43.956	42.689	1210	СМ3-КВ	(N, Z, E)	F	TC
10	Куба-Таба	KUBR	Kub	01.12.1990	43.800	43.410	665	СМ3-КВ	(N, Z, E)	F	ТС
11	Нагутская	NAGR	Nag	26.05.1991	44.447	42.761	583	СМ3-КВ	(N, Z, \overline{E})	I	ТС
12	Шиджатмаз	SHAR	Sha	21.09.1995	43.743	42.669	2096	СМ3-КВ	(N, Z, E)	F	ТС

Таблица 1. Сейсмические станции ГС РАН на Северном Кавказе в хронологии их открытия, работавшие в 2001 г., и параметры аналоговой аппаратуры¹ по [1]

Примечание. * - координаты уточнены в 2004 г.

На станции «Сочи» с 17 июня введена в опытную эксплуатацию 16-ти разрядная цифровая сейсмическая аппаратура SDAS «Геотех» (Обнинск) с широкополосными сейсмометрами СМ3-ОС, работавшая до конца года параллельно с аналоговой станцией. Кроме того, в г. Обнинск регулярно поступали:

¹ В таблицу включены параметры короткопериодных приборов, используемых для анализа записей региональных событий.

- результаты обработки дагестанских станций в виде предварительных бюллетеней землетрясений восточной части Северного Кавказа, которые использовались при составлении каталога землетрясений на территории Северного Кавказа в целом;
- Крымский сводный бюллетень (Симферополь) отдела сейсмологии Института геофизики НАНУ;
- станционный бюллетень «Тбилиси»;
- станционные данные четырех станций Азербайджана («Баку», «Гянджа», «Шемаха», «Шеки»).

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>), акселерограф – отсчет/(<i>м/c</i> ²)
Кисловодск	IDA MK8 + STS-1	BH(N, Z, E)v	0.0028-5	20	24	$7.10 \cdot 10^{10}$
	IDA MK8 + STS-1	LH(N, Z, E)v	0.0028-0.25	1	16	$7.10 \cdot 10^{10}$
	IDA MK8 + STS-1	VH(N, Z, E)v	0.0028-0.025	0.1	16	$7.10 \cdot 10^{10}$
	IDA MK8 + STS-1	VM(N, Z, E)a	0-0.0028	0.1	16	$1.50 \cdot 10^{9}$
	IDA MK8 + CMG-3T	EG(N, Z, E)v	0.01–25	100	16	$3.00 \cdot 10^{9}$
	IDA MK8 + CMG-3T	LG(N, Z, E)v	0.01–25	100	16	$2.00 \cdot 10^7$
	IDA MK8 + FBA-23	SH(N, Z, E)a	0–25	100	16	$6.20 \cdot 10^4$
	IDA MK8 + FBA–23	SL(N, Z, E)a	0-0.25	1	16	$4.00 \cdot 10^5$
Кисловодск-ARRAY	PTC + CM3–KB	(N, Z, E)v	0.5–16	40	16	$1.15 \cdot 10^{9}$
Сочи	SDAS – CM3–OC	BH(N, Z, E)	0.02–7	20	16	$2.88 \cdot 10^{10}$
	SDAS – CM3–OC	BL(N, Z, E)	0.02–7	20	16	$4.60 \cdot 10^{9}$
Гумбаши	PTC + CM3–KB	(N, Z, E)v	0.5-20	50	16	$8.14 \cdot 10^{10}$
Кисловодск	PTC + CM3–KB	(N, Z, E)v	0.5–20	50	16	$8.14 \cdot 10^{10}$
Куба-Таба	PTC + CM3–KB	(N, Z, E)v	0.5-20	50	16	$8.14 \cdot 10^{10}$
Нагутская	PTC + CM3–KB	(N, Z, E)v	0.5–20	50	16	$8.14 \cdot 10^{10}$
Шиджатмаз	PTC + CM3–KB	(N, Z, E)v	0.5–20	50	16	$8.14 \cdot 10^{10}$

Таблица 2. Данные об аппаратуре цифровых станций ГС РАН

Сейсмические наблюдения в Северной Осетии были начаты еще в 2000 г. на базе Геофизического центра экспериментальной диагностики Владикавказского научного центра РАН [2] и Северо-Осетинской опытно-методической сейсмологической партии (С-ООМСП), являющейся филиалом ГС РАН. Задача партии – проведение комплексных сейсмологических и геофизических наблюдений, обработка данных на базе стационарных и мобильных наблюдательных сетей на территории республики. В 2001 г. С-ООМСП располагала мобильной сетью из шести сейсмических станций (рис. 1, табл. 3), ведущих регистрацию землетрясений в ждущем режиме.

Таблица 3. Сейсмические станции совместной эксплуатации Северо-Осетинской опытнометодической сейсмологической партии (С-ООМСП ГС РАН) и Геофизического центра экспериментальной диагностики Владикавказского научного центра РАН в 2001 г.

Название станции	Код (рег.)	Координат о° N	гы станции λ° Е	$h_{y},$
Ардон	ARD	43° 11.47′	44° 16.73′	400
Владикавказ	VLD	43° 01.21′	44° 39.84′	700
Заманкул	ZAM	43° 20.85′	44° 24.46′	500
Чикола	CHI	43° 01.79′	43° 55.36′	540
Фиагдон	FIG	42° 49.93′	44° 18.41′	1300
Цей	CEY	42° 47.26′	43° 54.03′	1900

Как указано в [3], с 2000 г. система сбора информации радиотелеметрической системы на полигоне Кавказских Минеральных Вод была переведена из триггерного режима в непрерывный, что, конечно, сказалось на объеме каталога землетрясений. Число землетрясений, проходящих в 2001 г. сводную обработку в Информационно-обрабатывающем центре в г. Обнинске увеличилось в 1.7 раза и стало равным N_{Σ} =408 [4] вместо N_{Σ} =239 в 2000 г. [5] (только землетрясения по сети «NC»).

На рис. 2 показана диаграмма чисел землетрясений, записанных каждой из станций ГС РАН (ZEI, ANN, GOF, МАК, РҮА, SOC). Такие землетрясения составили 60% от их числа в сводном каталоге [4]. Остальные 40% событий обработаны в г. Кисловодске, в локальном центре Кавказских Минеральных Вод, и в г. Махачкале, в Дагестан-ском центре. Из рис. 2 видно, что информативность пунктов наблюдений (KIV, SHA, GUM, KUB, NSG) радиотелеметрической системы существенно выше указанных выше станций ЦОМЭ ГС РАН. Радиотелеметрическая система регистрирует около 70% всех землетрясений Северного Кавказа.

Новым элементом в обработке землетрясений в 2001 г. явилась организация регулярной передачи информации в г. Обнинск фрагментов волновых форм из Владикавказа по электронной почте (рис. 3). Обработка записей проводилась в Информационно-обрабатывающем центре ГС РАН, результаты использовались при составлении регионального каталога Северного Кавказа [4].

Предполагалось, что использование локальной сети РСО-Алании позволит снизить уровень энергетической представительности в центральной и восточной частях Северного Кавказа до $K_{min}=7-8$. Однако параметры аппаратуры и алгоритма сбора данных со станций «Альфа-ГЕОН» не были настроены на непрерывный мониторинг слабой сейсмичности. Эти станции регистрировали только события с $K_P \ge 9.5$. И все же детальность мониторинга в данном районе повысилась, учитывая отсутствие станций в Чечне и Ингушетии (станция «Грозный» закрыта

Рис. 1. Схема расположения станций С-ООМСР ГС РАН на территории Республики Северная Осетия-Алания в 2001 г.

Рис. 2. Относительное участие пунктов радиотелеметрической системы (1) и станций (2) в составлении сводного бюллетеня по региону Северного Кавказа (из 464 событий, прошедших сводную обработку в ИОЦ в г. Обнинске)

в августе 1994 г. [6]) и близость станций РСО-Алании к этим республикам. На рис. 3 показаны цифровые записи «Альфа-ГЕОН», позволившие, например, более уверенно определить в Терско-Сунженском прогибе положение очагов серии землетрясений 7 мая 2001 г., описанной ниже.

Методика сводной обработки в 2001 г., по сравнению с таковой в [3], не изменилась. В основном она базировалась на использовании комплекса программ НУРО-71 [7] и местных скоростных разрезов земной коры [8–10], которые были осреднены для отдельных зон Северного Кавказа – западной, центральной и восточной [11]. Для всех землетрясений определен энергетический класс *К*_Р по номограмме Т.Г. Раутиан [12] и для многих из них – магнитуда *МРVA* с использованием калибровочной функции для Кавказа [13].

Рис. 3. Трехкомпонентные записи станциями «Альфа-ГЕОН» на территории Республики Северная Осетия – Алания

1, 2, 3 – коды каналов вертикальной компоненты (1) и горизонтальных компонент N–S(2) и E–W(3).

В результате на территории Северного Кавказа и в приграничной с Грузией и Азербайджаном 30-км полосе были локализованы 816 событий с K_P =3.6–12.6 [3], из которых 70 помечены в [4] как «взрыв» или «возможно, взрыв». Большая часть взрывов локализована в Карачаево-Черкессии, вблизи пос. Усть-Джегута.

Карта эпицентров всех событий приведена на рис. 4. В настоящей статье анализируются землетрясения, произошедшие в западной и центральной частях Северного Кавказа. Землетрясения в его восточной части (Дагестан и Каспийское море) описаны в отдельной статье [14].

Распределение землетрясений по классам приводится, как и в [3], по районам, в основном совпадающим с административным делением Северного Кавказа, и отдельно в Черном и Каспийском морях (табл. 4). Суммарная сейсмическая энергия в 2001 г. равна $\Sigma E=41.679 \cdot 10^{11} \ \text{Дж}$, что почти на порядок выше таковой в 2000 г. и в 1999 г. ($\Sigma E=4.69 \cdot 10^{11} \ \text{Дж}$ [3], $\Sigma E=1.84 \cdot 10^{11} \ \text{Дж}$ [15]).

Повышение сейсмической активности наблюдалось на окраинах: на западе – в Черном море, на севере – в Краснодарском крае и в Ростовской области (в Манычском прогибе Скифской платформы), на востоке – в Каспийском море. Пространственное распределение сейсмич-

ности имело, как и ранее [16, 17], мозаичный характер, связанный с отдельными сейсмотектоническими блоками и зонами их сочленения (рис. 5). На западе, как подмечено в [18], эпицентры концентрируются преимущественно на двух участках – Сочинском и Анапском, и практически полностью отсутствуют в центральной части побережья Черного моря (рис. 6). При этом, как правило, землетрясения приурочены к известным активным разломам [19].

N⁰	Район	Kp										N_{Σ}	$\Sigma E \cdot 10^{11}$,
		4	5	6	7	8	9	10	11	12	13	_	Дж
1	Черное море				9	11	7	4	2			33	3.940
2	Краснодарский край		1		2	12	3	5	1			24	1.138
3	Ставропольский край	18	20	44	34	19	5	1				141	0.134
4	Карачаево-Черкессия	1	3	6	13	3	2	1				29	0.220
5	Кабардино-Балкария	1	2	6	19	16	1					45	0.027
6	Северная Осетия			3	15	16	6	3	3			46	2.413
7	Ингушетия и Чеченская республика			4	14	39	24	8	2			91	2.184
8	Ростовская обл., Манычский прогиб					1				1		2	31.623
9	Дагестан		20	74	67	61	21	6	1			250	12.002
10	Каспийское море				4	20	17	9	3		1	54	45.223
	Всего	20	46	137	177	198	86	37	12	1	1	714	98.904

Таблица 4. Распределение числа землетрясений Северного Кавказа по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по районам

Далее рассматривается более детально проявление сейсмичности в каждом районе с привлечением отдельных элементов карты потенциальных очагов Северного Кавказа и глубинных разломов (рис. 5) по [19].

В **Черном море** (№ 1) в 2001 г. зарегистрировано в три раза больше землетрясений, чем в 2000 г. (33 вместо 11). Все они приурочены к зоне Черноморского глубинного разлома (рис. 5, рис. 6), при этом проявление сейсмичности этого разлома началось в северной его части, напротив Анапы. Здесь возник рой землетрясений в мае–июне (табл. 5).

N⁰	Дата,	t_0 ,	Эпицентр		, <i>K</i> _P	N⁰	Дата,	t_0 ,	Эпиц	ентр	h,	K _P
	дм	ч мин с	ϕ , N λ	, Е <i>к</i> л	1		дм	ч мин с	φ [°] , N	λ [°] , Ε	км	
1	28.05	02 56 13.8	44.51 37	.37 19	8.6	14	16.06	05 00 42.5	44.75	37.05	5	7.7
2	15.06	10 27 47.5	44.75 37	.05 5	7	15	16.06	06 35 08	44.75	37.05	5	8.4
3	15.06	11 00 51.3	44.75 37	.05 5	6.8	16	16.06	07 18 03	44.75	37.05	5	8.7
4	15.06	11 15 37.0	44.75 37	.05 5	7	17	16.06	08 01 00	44.75	37.05	5	8
5	15.06	11 31 28.5	44.75 37	.05 5	7.3	18	16.06	09 48 41.5	44.75	37.05	5	8.6
6	15.06	12 53 18.0	44.75 37	.05 5	7.2	19	16.06	10 28 40.5	44.75	37.05	5	8.4
7	15.06	15 12 57.5	44.75 37	.05 5	7.7	20	17.06	13 15 03	44.78	37.03	5	9.9
8	15.06	15 48 05.5	44.75 37	.05 5	7.9	21	17.06	14 38 43.0	44.78	37.03	5	9.8
9	15.06	17 08 07.5	44.75 37	.05 5	7.9	22	18.06	14 15 53.5	44.78	37.03	5	8.8
10	15.06	17 28 50.5	44.75 37	.05 5	7.5	23	18.06	16 53 47.6	44.78	37.03	5	7.7
11	15.06	17 49 25.5	44.75 37	.05 5	7.4	24	19.06	09 27 03	44.78	37.03	5	6.7
12	16.06	04 24 11.5	44.75 37	.05 5	7.8	25	20.06	11 26 52.0	44.78	37.03	5	7.3
13	16.06	04 43 46.0	44.75 37	.05 5	7.7							

Таблица 5. Список землетрясений Анапского роя в мае-июне 2001 г.

За три недели было зарегистрировано 25 землетрясений с K_P =6.7–9.9, пик роя пришелся на 17 июня, когда в 13^h15^m и в 14^h38^m произошли два толчка с K_P =9.9 и 9.8 соответственно, вызвавшие в Анапе (27 км) сотрясения с интенсивностью *I*=2–3 балла. Немного юго-восточнее этого роя 18 октября в 17^h28^m произошло в 36 км от Анапы ощутимое (2 балла) землетрясение с K_P =9.2, эпицентр которого находился в зоне Черноморского глубинного разлома. Землетрясение 18 октября, возможно, является форшоком удаленного на 150 км более сильного (K_P =11.0) землетрясения 19 октября в 08^h56^m, локализованного на том же разломе. Оно было ощутимым (*I*=3–4 балла – в Лазаревском (30 км), Сочи (53 км) и 3 балла – в Адлере (70 км)).

110

Рис. 5. Наложение наиболее сильных (*K*_P≥9.6) землетрясений 2001 г. на фрагмент схемы «вычисленных значений учебных и прогнозируемых оценок *M*_{max}, сопоставленных с разрывной тектоникой Кавказского регион, составленной Г.И. Рейснером, Е.А. Рогожиным [19]

Цифрами на карте и в виде отдельных заштрихованных зон показаны прогнозируемые в [19] величины $M_{\rm max}$: 1–8.0±0.2, 2–7.5±0.2, 3–7.0±0.2, 4–6.5±0.2, 5–6.0±0.2. Зоны тектонических нарушений: 6 – первого порядка (а – реальные, б – предполагаемые); 7 – второго порядка (а – реальные, б – предполагаемые); 8 – землетрясения $K_{\rm P}$ =10, 11 и 12 соответственно размерам кругов.

Обозначение и название некоторых разломов І-го порядка: И-Т – Индоло-Томашевский, АНП – Анапский, СВ – Северский, Ч – Черноморский, К-Л – Кахетино-Лечхумский, Че – Черкесский, А-Е – Армавиро-Ессентукский, Ц-К – Центрально-Казбекский, А-К – Адайком-Казбекский, П-Т – Пшекиш-Тырныаузский, С-А – Северо-Аджарский, Цх-К – Цхинвали-Казбекский, ВЛ – Владикавказский, Кар – Карабогазский, М – Манычский (Новочеркасский), Кр – Красногвардейский, Ц-Кас – Центрально-Каспийский.

Если в 2000 г. практически вся территория **Краснодарского края** (**№** 2) была асейсмичной, за исключением граничной полосы с Грузией и Карачаево-Черкессией [3], то в 2001 г. ситуация изменилась. Во-первых, 30 января в $15^{h}47^{m}$ произошло землетрясение в Нижней Кубани с $K_{\rm P}$ =10.7 (рис. 5), вызвавшее сотрясения с I=4 балла в станицах Крыловская и Павловская [4]. Его зарегистрировали 14 станций (табл. 6) сети ГС РАН и Крыма на расстояниях от 300 до 530 км, но хорошего окружения при локации по региональным данным получить не удалось, т.к. пустой азимутальный створ составил GAP=248°. Соответственно, ошибка в определении эпицентра велика (до 30 км). Можно предположить, что событие 30 января является предвестником уникального Сальского землетрясения 22 мая 2001 г. в $19^{h}37^{m}$ с $K_{\rm P}$ =12.5, поскольку они оба относятся к сейсмоактивной зоне Манычского прогиба, несмотря на 200-км расстояние между ними. Сальское землетрясение рассматривается в отдельной статье [20] наст. сб.

Продолжались в 2001 г. рои землетрясений вблизи станции «Сочи». Если в 2000 г. [3] они происходили в прибрежье, то 2001 г. – на суше.

Первый рой из девяти землетрясений (табл. 7) произошел с 11 по 18 января в зоне сочленения поперечной Пшехско-Адлерской разломной зоны с Краснополянским разломом продольного простирания (рис. 6) [18], где ранее произошли сильные 7-ми и 7–8-ми балльные Краснополянские землетрясения 21 и 27 декабря 1955 г. с M=4.3 и 4.4 [21]. Первое землетрясение роя 11 января в 01^h37^m с K_P =9.7 локализовано в 30 км юго-западнее упомянутых Крас-

нополянских землетрясений. Наиболее значительные толчки в рое произошли 15 января: в $08^{h}40^{m}$ с $K_{P}=10.7$, в $10^{h}21^{m}$ с $K_{P}=9.7$ и в $20^{h}56^{m}$ с $K_{P}=10.0$. Все они ощущались на территории Центрального района курорта Сочи с интенсивностью до 3 баллов.

Рис. 6. Наложение эпицентров землетрясений западной части Северного Кавказа в 2001 г. на схему неотектоники Северо-Западного Кавказа и прилегающих территорий, составленную А.Н. Овсюченко [18]

Условные обозначения из [18]: 1 – оси антиклинальных складок в неоген четвертичных отложениях; 2 – флексурноразрывные зоны. Активные разломы: 3 – сбросы, штрихи направлены в сторону опущенного крыла; 4 – взбросы и надвиги, штрихи направлены в сторону поднятого крыла; 5 – разломы с неустановленной кинематикой: а – генеральные, б – локальны. Неотектонические структуры: 6 – Индоло-Кубанский предгорный массив; 7 – локальные платформенные прогибы; 8 – области умеренных поднятий; 9 – Керченско-Таманская область интенсивных складчатых дислокаций; 10 – орогенное сооружение Кавказа; 11 – локальные платформенные валы; 12 – эпицентры землетрясений 2001 г. в соответствии с размером круга (сверху вниз) с K_P =11, 10, 9, 8, 7.

Разломные структуры, обозначенные на карте: 1 – Анапская зона; 2 – Ахтырская зона; 3 – Черноморская зона; 4 – Бабичевский разлом; 5 – Маркотхский; 6 – Малопанасенковский; 7 – Новороссийская поперечная зона; 8 – Кузнецовский; 9 – Полковничий; 10 – Белокаменская поперечная зона; 11 – Воронцовский; 12 – Краснополянский; 13 – Главный Кавказский; 14 – Пшехско-Адлерская поперечная зона.

Агенство	$t_0,$	δt_0 ,		Γ	ипоцентј	центр			Магнитуда		С	еть	
	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	h,	δh ,		n	Min	Max	GAP,
							км	км		стан-	dist,	dist,	0
										ций	0	0	
ИОЦ, г. Обнинск	15 47 17.5		46.79	0.1	40.14	0.1	6	1	$K_{\rm P} = 10.7 \pm 0.3$	14	2.51	4.8	248
Оперативный	15 47 20.85	2.08	46.50		39.80		10f		MPSP=4.0	11			
бюллетень													
NEIC	15 47 20.77	1.01	46.496		40.084		10f			6	3.14	24.22	156
IDC	15 47 20.85	1.36	46.4754		40.1603		0f		<i>Mb</i> =3.6, <i>ML</i> =3.4	9	3.09	24.25	156
ISC	15 47 20.77	0.67	46.62		39.931		10f			14	2.52	24.08	150

Таблица 6. Параметры землетрясения 30 января в 15^h47^m с *K*_P=10.7 по данным различных центров

Примечание. f – фиксированная глубина.

N⁰	Дата,	<i>t</i> ₀ ,	Эпиг	центр	h,	$K_{\rm P}$	Ι,
	д м	ч мин с	φ [°] , N	λ°, Ε	КМ		баллы
1	11.01	01 37 50.3	43.83	39.87	5	9.7	
2	15.01	08 40 35.0	43.83	39.78	5	10.4	Сочи – Дагомыс, Центральный район, Бытха – 3 балла
3	15.01	10 21 31.4	43.72	39.94	5	9.7	Сочи – Центральный район – 2–3 балла, Кудепста – 2 балла
4	15.01	20 56 52.6	43.78	39.88	5	10.0	Сочи в Центральном районе – 2–3 балла
5	16.01	02 22 11.0	43.87	39.83	5	8.5	
6	16.01	03 47 11.8	43.83	39.88	5	8.1	
7	16.01	03 04 59.4	43.87	39.74	5	8.2	
8	18.01	00 26 21.6	43.85	39.78	5	8.3	
9	18.01	01 42 34.8	43.88	39.78	5	8.0	

Таблица 7. Список землетрясений Краснополянско-Сочинского роя в январе 2001 г.

В Краснодарском крае следует отметить еще одно землетрясение 14 июня в $08^{h}15^{m}$ с $K_{P}=10.2$ на северо-восточном крыле Индоло-Кубанского предгорного прогиба, в зоне его сочленения с областями умеренных поднятий Скифской платформы.

В Ставропольском крае (\mathbb{N} 3) локализовано около 140 землетрясений (табл. 4, рис. 4). Как и в 2000 г.? близ Ставрополя локальной сетью Кавминводского геодинамического полигона ГС РАН и комплексным гефизическим пунктом «Гофицкое» зафиксировано проявление сейсмической активности в тектонической зоне Ставропольского свода на Расшеватском разломе II порядка. Самое заметное (K_P =9.1) землетрясение произошло здесь 31 мая в 09^h31^m. По-прежнему наблюдалась слабая сейсмичность в зоне сочленения Черкесского и Армавиро-Ессентукского разломов I порядка, где также отмечены три роя землетрясений.

Первый рой зафиксирован между Кисловодском и Ессентуками с 7 по 9 января (табл. 8), с максимальным (K_P =9.6) толчком 8 января в 13^h16^m с интенсивностью 3–4 балла в Кисловодске (4.5 км) и Ессентуках (19 км).

№	Дата, д м	t ₀ , ч мин с	Эпицентр σ N λ E	h, км	K _P	N⁰	Дата, дм	t ₀ , Ч мин с	Эпиі ത° N	центр λ°Е	h, км	K _P
1	07.01	10 50 05 2	42.05 42.71	5	4.4	0	02.01	22 12 44 20	42.07	10, E	7	1 1
1	07.01	19 30 03.2	45.95 42.71	5	4.4	0	08.01	22 12 44.20	45.97	42.72	/	4.4
2	08.01	13 16 49.40	43.92 42.75	5	9.6	9	08.01	22 13 25.40	43.98	42.72	8	4
3	08.01	13 39 22.50	43.95 42.71	5	4.3	10	08.01	22 19 26.50	43.97	42.72	8	3.6
4	08.01	15 58 32.50	43.95 42.72	5	6	11	09.01	07 59 15.10	43.97	42.72	6	4.4
5	08.01	15 59 52.43	43.96 42.76	5	6.5	12	09.01	14 27 25.00	43.97	42.73	7	4.1
6	08.01	17 24 34.10	43.96 42.71	7	3.7	13	09.01	14 47 18.00	43.95	42.74	7	3.7
7	08.01	20 58 36.30	43.96 42.72	7	4.5							

Таблица 8. Список землетрясений роя в январе 2001 г.

Второй рой (табл. 9) зафиксирован 21–24 апреля в районе г. Зеленокумск. Рой локализован в зоне сочленения структур Скифской платформы разного знака: Восточно-Ставропольской впадины и Ногайской ступени. Максимальный толчок с *К*_P=8.2 возник на завершающей стадии роя.

№	Дата,	t	0,	Эпиі	центр	h,	K_{P}	N
	дм	ч м	ин с	φ°, N	λ°, E	км		
1	21.04	17 43	42.72	44.26	44.11	13	7.6	9
2	21.04	17 45	38.64	44.25	44.14	14	7.7	10
3	21.04	17 47	49.24	44.29	44.11	13	7.9	11
4	21.04	17 52	23.40	44.19	44.00	8	6.9	12
5	21.04	19 20	37.70	44.36	44.01	17	7.6	13
6	21.04	19 48	31.10	44.31	43.97	7	6.5	14
7	21.04	19 49	38.70	44.45	43.90	7	6.7	1.
8	22.04	00 12	38.50	44.19	44.01	5	7.6	

Таблица 9. Список землетрясений роя в апреле 2001 г.

№	Дата,	t_0	,	Эпиг	центр	<i>h</i> ,	$K_{\rm P}$
	дм	ч ми	н С	φ [°] , N	λ [°] , Ε	км	
9	22.04	00 33	37.90	44.41	43.92	12	6.5
10	22.04	00 39	04.1	44.35	43.95	10	6.6
11	22.04	01 30	02.9	44.18	44.02	5	6.3
12	22.04	02 04	13.80	44.08	44.09	17	6.6
13	22.04	02 05	35.00	44.40	43.98	18	7.4
14	22.04	02 07	53.86	44.28	44.14	14	8.2
15	22.04	04 14	38.50	44.40	43.97	12	7.5

Эпицентр

λ, E

42.82

φ, N

44.02

 $h, K_{\rm P}$

км

10

5.6

Третий рой из 15 землетрясений (табл. 10) реализовался в основном во второй половине августа. Максимальными (K_P =9.2 и 9.4) были два толчка, произошедшие 19 августа в 08^h49^m и 9 сентября в 04^h59^m. Оба были ощутимы, соответственно в Кисловодске (17 км) с *I*=3–4 балла и в Пятигорске (21 км) с *I*=3 балла.

N₂	Дата,		t),	Эпи	центр	h,	K _P	
	дм		ч мі	ин С	φ [°] , N	λ [°] , Ε	км		
1	19.08	08	48	09.98	44.02	42.78	14	7.5	
2	19.08	08	49	36.20	44.03	42.81	0	9.2	
3	19.08	08	57	52.99	44.01	42.78	14	6.5	
4	19.08	09	01	29.12	44.02	42.83	10	6.3	
5	19.08	09	07	04.31	44.02	42.78	13	6.7	
6	19.08	14	04	49.40	44.79	42.41	18	8.2	
7	22.08	10	28	23.76	44.05	43.11	0	7.4	
8	25.08	01	00	28.28	44.03	42.83	10	6.4	

Таблица 10. Список землетрясений роя в августе 2001 г.

27.08 01 31 33.60 44.42 42.57 14 7 28.08 03 11 51.41 44.02 42.84 9 6.1 28.08 21 49 16.04 44.39 42.53 16 7.1 31.08 18 15 33.16 43.94 43.07 14 7.1 05.09 04 59 06.7 44.01 42.81 14 9.4 09.09 21 07 44.02 42.78 15 7.4 11.73

 t_0 ,

ч мин с

17.16

50

13

Дата,

д м

25.08

В горной части **Карачаево-Черкесской Республики** (**№** 4) зарегистрировано 29 землетрясений (табл. 4). Наиболее значительное ($K_P=10.3$) из них было локализовано вблизи северозападной границы с Краснодарским краем 24 января в $19^{h}42^{m}$ (рис. 4). Серия из 10 землетрясений с $K_P=4.2-8.5$ (табл. 11) произошла в мае-июне на юге и приурочена к Пшекиш-Тырныаузской зоне разломов.

Таблица 11. Список землетрясений в Пшекиш-Тырныаузской зоне разломов в мае-июне 2001 г.

№	Дата,	$t_0,$,	Эпицентр		h,	K _P	№	Дата,	t_0	,	Эпиі	центр	h,	K _P
	дм	ч ми	н С	φ [°] , N	λ [°] , Ε	км			дм	ч ми	н С	φ [°] , N	λ°, Ε	км	
1	10.05	08 26	50.90	43.30	41.61	15	6.6	6	17.05	02 46	00.5	43.25	41.89	9	7.5
2	16.05	00 30	58.80	43.93	42.46	3	4.2	7	17.05	13 45	05.2	43.26	41.88	4	7.2
3	16.05	06 46	20.60	43.32	41.82	10	6.7	8	19.05	07 05	57.50	43.26	42.04	23	7
4	16.05	08 49	30.70	43.30	41.90	23	5.6	9	09.06	20 59	01.8	43.23	41.67	2	6.1
5	17.05	01 58	24.20	43.32	41.80	2	8.5	10	15.06	13 11	55.30	43.49	41.78	16	7

Кроме того, на этой территории отмечено еще 5 событий категории «возможно, взрыв» и 47 взрывов (табл. 12). Идентифицированные по методике [22] взрывы произошли в карьерах «Джеганах» и «Цемзавод» вблизи Усть-Джегуты. Класс их энергии составил *К*_P=6.9–8.6.

Таблица 12. Список взрывов в Карачаево-Черкессии в 2001 г.

N⁰	Дата,	<i>t</i> ₀ , Эпиц		центр	K_{P}	N⁰	Дата,	t_0 ,	Эпиц	ентр	K_{P}
	дм	ч мин с	φ°, N	λ°, Ε			д м	ч мин с	φ°, Ν	λ°, Ε	
1	11.01	11 04 36.82	44.09	42.07	8.2	15	17.05	08 43 53.22	44.10	42.08	7.6
2	12.01	10 40 48.15	44.07	42.07	8.1	16	17.05	11 01 44.69	44.07	42.08	8.6
3	06.02	09 24 17.40	44.06	42.05	8	17	18.05	11 10 20.19	44.06	42.10	8
4	16.02	10 17 55.27	44.04	42.04	8	18	31.05	09 16 06.53	44.10	42.08	7.5
5	21.02	12 48 28.69	44.08	42.06	7.6	19	04.06	10 39 37.19	44.07	42.10	6.9
6	24.02	11 36 10.71	44.08	42.06	7.1	20	07.06	11 17 28.48	44.07	42.10	8.1
7	16.03	11 25 25.00	44.07	42.03	8.3	21	09.06	13 30 00.34	44.07	42.08	7.7
8	23.03	13 00 23.79	44.11	42.04	5.2	22	20.06	15 15 09.56	44.10	42.08	8.4
9	26.03	12 00 20.28	44.10	42.02	5.2	23	22.06	10 27 14.37	44.07	42.07	8
10	26.04	11 54 39.93	44.05	42.04	8.1	24	27.06	10 59 40.52	44.08	42.09	8
11	27.04	12 38 39.42	44.09	42.09	8.2	25	04.07	09 25 32.36	44.09	42.09	7.4
12	28.04	10 40 13.17	44.06	42.07	8.1	26	11.07	09 51 24.83	44.07	42.09	7.8
13	29.04	10 44 19.82	44.08	42.09	8.1	27	17.07	12 12 56.22	44.08	42.09	8.1
14	05.05	11 31 43.50	43.91	41.95	6.9	28	18.07	10 23 51.53	44.07	42.08	8.7

										1	
N⁰	Дата,	<i>t</i> ₀ ,	Эпиц	ентр	$K_{\rm P}$	N⁰	Дата,	<i>t</i> ₀ ,	Эпицентр		K_{P}
	д м	ч мин с	φ°, N	λ°, Ε			д м	ч мин с	φ°, N	λ°, Ε	
29	23.07	10 20 59.26	44.07	42.09	7.2	41	18.09	10 29 18.44	44.06	42.07	7.9
30	27.07	12 00 06.51	44.08	42.09	8.4	42	20.09	12 03 31.34	44.08	42.11	7.9
31	30.07	10 06 00.94	44.08	42.10	7.9	43	27.09	11 52 55.41	44.10	42.06	7.3
32	08.08	09 47 35.97	44.07	42.08	7.8	44	03.11	11 06 29.87	44.07	42.09	7.9
33	09.08	10 55 23.90	43.93	41.88	8	45	05.11	12 31 48.41	44.08	42.10	7.8
34	10.08	11 38 59.94	44.07	42.08	8.6	46	14.11	13 37 29.08	44.07	42.08	7.9
35	13.08	10 06 40.04	44.10	42.11	8.2	47	26.11	13 45 26.93	44.06	42.08	7.9
36	16.08	13 06 09.47	43.97	41.75	8	48	04.12	12 50 00.91	44.10	42.07	7.4
37	21.08	10 52 58.09	44.06	42.07	7.9	49	05.12	11 48 05	43.92	41.83	7.7
38	23.08	11 16 31.01	44.07	42.10	7.6	50	06.12	11 22 51.40	44.06	42.08	8
39	30.08	11 41 22.94	44.06	42.09	7.9	51	19.12	11 19 06.16	44.09	42.07	7.9
40	17.09	13 36 02.65	43.90	41.81	8.2	52	27.12	09 47 11.26	44.06	42.08	7.8

Анализ времени взрывов на рис. 7 показал, что они производились в рабочее время в интервале 9–13 часов по Гринвичу, т.е. в 12–16 часов по московскому времени (рис. 7). Большая часть взрывов подтверждалась априорными сведениями, полученными из карьеров.

Рис. 7. Диаграмма распределения взрывов в карьерах Усть-Джегуты по времени

События «возможно, взрыв» происходили также в этом временном интервале суток, но в районе г. Карачаевска. Ранее, в 90-х гг. прошлого века, там производили взрывы. Однако в последние годы сведений о взрывах в этом районе не было.

На территории **Кабардино-Балкарии** (\mathbb{N} 5) зарегистрировано 45 землетрясений (табл. 5) с K_p =4.1–8.9, значительная часть которых приурочена к Кабардинскому участку Армавиро-Невинномысского разлома (рис. 5). В это число входят 12 сейсмических толчков (табл. 13) с K_p =5.9–8.8, эпицентры которых располагались вблизи известных карьеров Тырныаузского горно-обогатительного комбината и отнесены в категории «возможно, взрыв».

N⁰	Дата,	$t_0,$	Эпицентр		$K_{ m P}$	Nº	Дата,	t_0 ,	Эпицентр		K_{P}
	дм	ч мин с	φ°, Ν	λ°, Ε			д м	ч мин с	φ°, N	λ°, Ε	
1	11.01	19 48 00.86	43.41	42.84	7.6	7	12.05	19 28 06.96	43.35	42.86	6.9
2	16.01	10 32 01.4	43.77	43.45	6.4	8	18.05	18 50 01.7	43.41	42.85	6.7
3	17.01	20 58 33.96	43.42	42.83	7.1	9	25.05	18 50 45.42	43.40	42.80	6.1
4	11.02	21 41 44.60	43.36	42.79	8.8	10	27.05	05 12 18.90	43.38	42.87	7.4
5	12.02	18 43 24.74	43.38	42.84	5.9	11	17.07	19 30 05.23	43.39	42.83	6.9
6	11.05	15 42 50.30	43.29	43.45	6.9	12	25.07	19 00 12.94	43.39	42.84	6.7

Таблица 13. Список взрывов в Кабардино-Балкарии в 2001 г.

В этом районе сложность из-за неофициальных взрывов. И если ранее, когда комбинат производил взрывы для добычи руды и имелась априорная информация о них, взрывы производились здесь в основном в дневное время (от 8 до 18 часов по Гринвичу [23]), то теперь время суток их проведения отличается от прежнего и наблюдается от 18 до 21 часов по Гринвичу (рис. 8). Все эти толчки имели характерный для взрывов вид записи на станции «Кисловодск» (рис. 9), сопоставимый вид с эталонными взрывами 1993 г., за исключением различий в характере записи поверхностной волны, что может говорить, например, о том, что взрывы 2001 г. могли быть заглубленного заложения.

Рис. 8. Распределение толчков вблизи района Тырныауз по времени, отнесенных к категории «возможно, взрыв», произошедших в январе, феврале, мае и июле 2001 г.

На территории Республики Северная Осетия – Алания ($\mathbb{N} \diamond 6$) зарегистрировано 46 землетрясений (табл. 4), 25 из которых локализовано в Терско-Кумской низменности на границе с Ставропольским краем. Самые сильные из них произошли 23 декабря в $12^{h}41^{m}$ с $K_{P}=10.9$, 23 декабря в $15^{h}12^{m}$ с $K_{P}=10.7$ и 25 декабря в $06^{h}03^{m}$ с $K_{P}=10.9$ с близкими гипоцентрами: 43.80°N. 44.47°E, $h=17 \kappa m$; 43.74°N, 44.44°E, $h=17 \kappa m$; 43.80°N, 44.47°E, $h=20 \kappa m$ соответственно. Ощутимыми были второе (3 балла – в Моздоке (9 κm)) и третье (4–5 баллов – в Русском (15 κm), Серноводском (25 κm); 3 балла – в Моздоке (8.5 κm)) землетрясения.

Зафиксированная сейсмическая активизация приурочена к Терско-Сунженской складчатой зоне, находящейся в пределах Терско-Каспийского передового прогиба. Проявления сейсмичности здесь связаны как с глубинными

разломами «кавказского» направления (Срединным, Сунженским), так и с активными в новейшее время диагональными шовными зонами. Свидетельством тому является землетрясение 03.08.1989 г. с MLH=5.0, $I_0=7$ баллов [24], приуроченное к диагональной Бенойско-Эльдаровской шовной зоне, эпицентр которого с координатами 43.49°N, 45.23°E, $h=13 \ \kappa m$ расположен в 30– 50 κm восточнее эпицентров указанных выше трех декабрьских землетрясений.

Остальные проявления сейсмичности на территории этой республики имели рассеянный характер и по энергии не превышали $K_P=9$.

Рис. 9. Записи вертикальной компоненты станции «Кисловодск» части сейсмических событий, классифицируемых как «возможно, взрывы» в зоне Тырныаузского обогатительного комбината, в сравнении с записями трех «эталонных» взрывов в этом месте в 1993 г.

а – нефильтрованные записи, б – фильтрованные в полосе 4–16 Гц, принятой по методике распознавания взрывов [22], как наиболее представительной для поиска дискриминантов.

На территории **Ингушетии и Чеченской Республики** (**N** ${}^{\circ}$ **7**) в 2001 г. отмечено около 90 землетрясений с $K_{\rm P}$ =6.0–10.8 (табл. 4). Как и в 2000 г., сейсмичность концентрировалась в двух очаговых зонах, однако они отмечены в других местах.

Первая группа, локализованная в приграничье со Ставропольским краем, реализовалась 7 мая, практически в течение нескольких часов (рис. 10). Сильнейшее (*K*_P=10.8) из них отмечено в упомянутой выше Бенойско-Эльдаровской диагональной шовной зоне, вблизи очага землетрясения 03.08.1989 г. [24].

Во втором группе, напротив, выделение сейсмической энергии растянуто во времени и продолжалось в течение всего года (рис. 11). Самое сильное (K_P =10.8) событие зарегистрировано 14 июня в 22^h08^m. Эта серия локализована в 30 км к югу-юго-востоку от г. Грозного (рис. 4) и в 20 км к северо-востоку от очагов трех сильных землетрясений в Черных горах, произошедших 28.07.1976 г. с *MLH*=6.4, K_P =15 [25], I_0 =8 [26] и 6–7-балльных землетрясений 04.03.1984 г. в 10^h01^m и в 19^h24^m с *MLH*=5.2, K_P =12.5 и *MLH*=5.3, K_P =12.4 соответственно [27–29]. По карте потенциальных очагов Северного Кавказа (рис. 5) видно, что вторая группа принадлежит зоне Чеченской впадины

Рис. 10. Временной ряд землетрясений 7 мая 2001 г. в Бенойско-Эльдаровской шовной зоне

с M_{max} =7.0. Растянутый во времени процесс можно объяснить значительной раздробленностью среды после указанных сильных толчков прошлых лет.

Рис. 11. Временной ряд землетрясений на территории Черных гор в Чеченской Республике

Литература

- 1. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва–Обнинск: ГС РАН, 2001. 86 с.
- 2. Заалишвили В.Б., Невская Н.И., Харебов А.К. Анализ инструментальных записей схода ледника Колка по данным локальной сети сейсмических наблюдений // Вестник Владикавказского научного центра. 2004. 4. № 3. С. 58–64.
- 3. Габсатарова И.П. Северный Кавказ (без Дагестана) // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 85–94.
- 4. Габсатарова И.П., Амиров С.Р. (отв. сост.), Селиванова Е.А., Девяткина Л.В., Иванова Л.Е., Мусалаева З.А., Гамидова А.М., Сагателова Е.Ю., Абдуллаева А.Р. Северный Кавказ. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 5. Габсатарова И.П., Амиров С.Р. (отв. сост.), Селиванова Е.А., Девяткина Л.В., Иванова Л.Е., Мусалаева З.А., Гамидова А.М., Сагателова Е.Ю., Абдуллаева А.Р. Северный Кавказ // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – (На СD.).

- 6. Габсатарова И.П., Девяткина Л.В. Северный Кавказ (без Дагестана) / Землетрясения Северной Евразии в 1994 году. М.: ГС РАН, 2000. С. 24–29.
- 7. Lee W.H.K. and Lahr J.C. HYPO-71 (Revised): A computer program for determining hypocenter, magnitude and first motion patting of local earthquakes // USGS Survey open-file report. – 1976. – June. – P. 75–311.
- Мурусидзе Г.Я. Строение земной коры и верхней мантии в Грузии и сопредельных районах по сейсмологическим и сейсморазведочным данным. – Тбилиси: Мецниереба, 1976. – 170 с.
- 9. **Краснопевцев Г.В.** Глубинное строение Кавказского сейсмоактивного региона. М.: Недра, 1984. 112 с.
- 10. Файтельсон А.М. и др. Отчет о сейсмических работах партии № 48 СРГЭ НПО «Нефтегеофизика» в 1980–1982 гг. М.: Фонды ВГФ, 1982.
- Захарова А.И., Габсатарова И.П. Сейсмологические наблюдения и обработка данных на Северном Кавказе // Современное состояние сейсмических наблюдений и их обобщение. Методические работы ЕССН. Выпуск 4. – Минск: Наука, 1993. – С. 51–55.
- 12. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 13. Соловьёва О.Н., Агаларова Э.Б., Алимамедова В.П., Гасанов А.Г., Геодакян Э.Г., Гюль Э.К., Дарахвелидзе Л.К., Петросян М.Д., Фабрициус З.Э., Хромецкая Е.А. Калибровочные функции для определения магнитуды кавказских землетрясений по короткопериодной волне *P* на малых эпицентральных расстояниях // Интерпретация сейсмических наблюдений. – М.: МГК АН СССР, 1983. – С. 65–72.
- 14. Амиров С.Р., Асманов О.А., Даниялов М.Г., Левкович Р.А., Мирзалиев М.М, Осокина А.Ш. Дагестан. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 15. Габсатарова И.П. Северный Кавказ (без Дагестана) // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 83–86.
- Рогожин Е.А. Современная геодинамика и потенциальные очаги землетрясений Кавказского региона // Современные математические и геологические модели природной среды. – М.: ОИФЗ РАН, 2002. – С. 244–254.
- 17. Захарова А.И., Старовойт О.Е., Яковлев Ф.Л. Блоковая сейсмичность Северного Кавказа // Дискретные свойства геофизической среды. – М.: Наука, 1989. – С. 137–148
- Овсюченко А.Н. Соотношение различных форм современных тектонических деформаций на Северо-Западном Кавказе // Исследования по сейсмотектонике и современной геодинамике. – М.: ИФЗ РАН, 2006. – С. 89–104.
- 19. Шолпо В.Н., Рейснер Г.И., Рогожин Е.А. Идеи академика Гамбурцева в сейсмотектонике //Физика Земли. 2004. № 5. С. 68–79.
- 20. Габсатарова И.П., Чепкунас Л.С., Бабкова Е.А., Татевосян Р.Э., Плетнев К.Г. Сальское землетрясение 22 мая 2001 года с *MS*=4.7, *I*₀=6–7 (Северный Кавказ). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.)
- 21. Ананьин И.В. (отв. сост). XIV. Европейская часть СССР, Урал и Западная Сибирь [1467–1974 гг.; *М*≥3.0; *I*₀≥4] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 465–470.
- 22. Габсатарова И.П. Методика выявления взрывов в ряде районов действующих карьеров Северного Кавказа // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 347–358.
- 23. Chernobay I.P., Gabsatarova I.P. Source classification in the Northern Caucasus // Physics of the Earth and Planetary Interiors. 1999... 133. P. 183–201.
- 24. Богачкин Б.М., Габсатарова И.П., Захарова А.И., Лякумович Б.Я., Новицкая Н.А., Рогожин Е.А., Старовойт О.Е. Землетрясение 3.08.1989 г. на Северном Кавказе // Землетрясения в СССР в 1989 г. – М.: Наука, 1993. – С. 32–44.
- 25. Папалашвили В.Г. (отв. сост.), Дарахвелидзе Л.К., Лабадзе Л.В., Чиковани В.В., Саргсян Г.В., Израйлевский А. Региональный каталог Кавказа // Землетрясения в СССР в 1976 году. М.: Наука, 1980. – С. 127–137.
- 26. Папалашвили В.Г., Баграмян А.Х., Гоцадзе О.Д., Кулиев Ф.Т. Землетрясения Кавказа // Землетрясения в СССР в 1976 году. – М.: Наука, 1980. – С. 13–15.

- 27. Папалашвили В.Г. (отв. сост.), Агаларова Э.Б., Кахиани Л.К., Саргсян Г.В., Казанцева Т.Н. Региональный каталог Кавказа // Землетрясения в СССР в 1984 году. – М.: Наука, 1987. – С. 194–203.
- 28. Агаларова Э.А., Гасанов А.Г., Гедакян Э.Г., Гоцадзе О.Д., Каспаров В.А., Папалашвили В.Г., Пирузян С.А., Саргсян Г.В., Светлов А.Б., Тутберидзе Н.П., Шафадиев Р.Н., Шенгелия И.С. Землетрясения Кавказа // Землетрясения в СССР в 1984 году. М.: Наука, 1987. С. 19–34.
- 29. Абелев Е.Г., Антонов В.В., Габсатарова И.П., Захарова А.И., Иванова Т.П., Лякумович Б.А., Новицкая Н.Ф., Старовойт О.Е., Чепкунас Л.С. Землетрясения 4 марта 1984 г. на Северном Кавказе // Землетрясения в СССР в 1984 году. М.: Наука, 1987. С. 35–44.