ОПЕРАТИВНАЯ ОБРАБОТКА ЗЕМЛЕТРЯСЕНИЙ МИРА ПО ТЕЛЕСЕЙСМИЧЕСКИМ НАБЛЮДЕНИЯМ ГС РАН

Л.С. Чепкунас, Н.В. Болдырева

Геофизическая служба РАН, г. Обнинск- luba@gsras.ru

В Геофизической службе России (ГС РАН) в оперативном режиме производится сбор и сводная обработка станционных данных о землетрясениях с выпуском оперативных сейсмологических каталогов и сейсмологических бюллетеней. В них публикуются данные о параметрах очагов землетрясений, для которых минимальные из магнитудных оценок M по объемным и поверхностным волнам соответствуют M>4 для территории России, M>4.5 – для территории Северной Евразии и M>5.5 – для остальной территории Земли [1].

Телесейсмическая сеть ГС РАН на территории всей России и в Антарктиде в 2001 г. состояла из:

– одиннадцати станций с цифровой аппаратурой – «Кисловодск», «Ловозеро», «Москва», «Новолазаревская», «Обнинск», «Пулково», «Соликамск», «Сочи», «Сторожевое», «Арти» и «Талая» (на станциях «Арти» и «Талая» цифровая аппаратура эксплуатировалась ГС РАН совместно с Институтом геофизики Уральского отделения РАН (ИГ УрО РАН) и Байкальского филиала ГС СО РАН соответственно;

– одиннадцати аналоговых станций – «Анапа», «Владивосток», «Воронеж», «Гофицкое», «Кульдур», «Махачкала», «Мирный», «Печеры», «Пятигорск», «Свердловск», «Цей»;

- шести станций радиотелеметрической системы (РТС) в Кисловодске;

- микрогруппы «Кисловодск».

Основные сведения о станциях ГС РАН приведены в табл. 1, 2 из [2].

№	Станци	ія	Дата	Ка	оординаты			Апг	аратура	
	Название	Код	открытия	φ°, N	λ°, E	h _y ,	Тип	Компо-	$V_{\rm max},$	$\Delta T_{\rm max}$,
						м	прибора	нента	чувствит-ть	С
1	Анапа	ANN	07.03.1968	44°48'	37°26'	35	СКМ-3	(N, Z, E)	28100	0.25-0.80
								(N, Z, E)	12500	0.25-0.80
							СКД	(N, Z, E)	1040	0.20-19.0
							C-5-C	(N, E)v	2.8 c	0.01-4.5
								(N, Z, E)	0.1 <i>c</i>	0.01-4.5
			11.07.2002				SDAS	– цифрова	я станция	
2	Арти	ARU	14.09.1988	56°25'49"	58°33'45"	250	IRIS/I	DA		
3	Владивосток	VLA	06.12.1929	43°07'12"	131°53'36"	73	CKM-3	(N, Z, E)	20000	0.20-1.20
								(N, Z, E)	10000	0.20-1.20
							СКД	(N, Z, E)	1000	0.20-20.0
							CCP3-M	(N, Z, E)a	$0.002 c^2$	0.1
4	Воронеж	VRS	20.12.1996	51°43'52'	39°12'	161	СМ3-КВ	(N, Z, E)	5000	0.30-2.0
5	Гофицкое	GOF	19.03.1994	45°03'30"	43°02'02"	294	CM-3	(N, Z, E)	10850	0.45-1.00
							СКД	(N, Z, E)	570	0.20-18.0
6	Гумбаши	GUMR	1990	43°46'32"	42°14'50"	2312	Пункт	PTC		
7	Кисловодск	KIV	14.09.1988	43°57'22"	42°41'20"	1210	IRIS/IDA – цифровая станция			
			03.02.1994	43°57'19"	42°41'11"	1054				
			(перенесена)							
8	Куба-Таба	KUBR	1990	43°49'43"	43°25'50""	618	Пункт	PTC		
			00.12.1997	43°48'00"	43°24'35	665				

Таблица 1. Сейсмические станции ГС РАН (в хронологии их открытия), работавшие в 2001 г., и параметры аналоговых станций

№	Стании	19	Лата	Ка	оорлинаты		Аппаратура					
	Название	Код	открытия	φ°, N	λ°, E	$h_{\rm v}$,	Тип	Компо-	V_{max}	$\Delta T_{\rm max}$		
			-		,	м	прибора	нента	чувствит-ть	C		
9	Кульдур	KLR	15.12.1954	49°14'	131°45'	298	СКМ-3	(N, Z, E)	25200	0.20-1.30		
	5 01						СКД	(N, Z, E)	1020	0.20-20.0		
10	Ловозеро	LVZ	02.12.1992	67°53'52"	34°39'05"	630	IRIS/II	ОА – цифро	вая станция			
11	Махачкала	MAK	08.12.1951	42°57'40"	47°30'20"	42	CM-3	(N, Z, E)	6100	0.40-1.30		
									3000	0.40-1.30		
							СКД	(N, Z, E)	1040	0.20-18.0		
									500	0.20-18.0		
							СКД	(N, Z, E)	50	0.20–18.0		
							0.5.0		25	0.20-18.0		
							C-5-C	(N, Z, E)v	2.72 c	0.01 - 4.5		
							CCD3 M	(N, E)V (N, Z, E)a	0.11 c	0.01-4.5		
12	Мирный	MIR	23.06.1956	_66°33'05"	93°01'00"	34	CKM-3	$(\mathbf{N}, \mathbf{Z}, \mathbf{E})a$	25000	0.13 0.20-1.30		
12	winpilbin	WIIIC	25.00.1750	00 55 05	<i>)))))))))))))</i>	54	CIUM 5	(2)	12500	0.20 1.30		
									5200	0.20-1.20		
							СКД	(N, Z, E)	1040	0.20-19.0		
							, ,		500	0.20-17.0		
							СКД	(Z)	50	0.20-17.0		
13	Москва	MOS	19.04.1936	55°44'18"	37°37'30"	124	CKM-3	(Z)	10000	1.00-1.60		
			24.04.1999				SDAS	– цифровая	н станция			
14	Нагутская	NAGR	1997	44°26'50"	42°45'41"	580	Пункт РТ	C				
15	Новолаза-	NVL	01.04.1962	-70°46'	11°50'	125						
	ревская		01.07.1999				SDAS					
16	Обнинск	OBN	11.01.1964	55°06'50"	36°34'08"	130						
		22.02	14.09.1988				IDA M	овая станция	0 0 7 1 10			
17	Печеры	PECR	1992	56°19'	44°05'	99	CKM-3	(N, Z, E)	2020	0.35–1.40		
10	п	DUU	00.12.100/	5004(1001	200101251	(5	СКД	(N, Z, E)	1010	0.20-18.0		
18	Пулково	PUL	09.12.1906	59°46'22"	30°19'25"	65	ВЭГИК	(Z)	/900	1.30-1.60		
								(N, Z, E)	/60	4.00-8.00		
							СКД	(N, Z, E)	500	0.20 - 17.0 0.20 10.0		
							СКЛ	(N Z F)	50	0.20-19.0		
							СЛ	(N, Z, E)	730	17.0-50.0		
							СД	(N, Z, E)	150	17.0 20.0		
			05.05.1998				Quante	erra 380, ST	S-2 – цифрова	я станция		
19	Пятигорск	PYA	1909	44°02'32"	43°03'56"	544	CKM-3	(N, Z, E)	10800	0.40-1.00		
							СКД	(N, Z, E)	1036	0.20-20.0		
							C-5-C	(N, E)v	2.7 c	0.02-4.5		
								(N, Z, E)v	0.11	0.02-4.5		
			22.05.2002				CCP3-M	(N, Z, E)a	0.0022	0.08		
20	Changedona	SVE	23.05.2003	5(04012011	(002011411	275	SDAS	– цифровая 7	а станция	0.00 2.10		
20	Свердловск	SVE	07.10.1900	56°49'38″	60°38'14"	213			23300	0.90-2.10		
							СКД СКЛ	(N, Z, E) (N, Z, E)	1040	0.20-20.0		
			30 10 2004				SDAS	- 11400000000000000000000000000000000000	чо чо	0.17-19.0		
21	Сочи	SOC	1928	43°34'11"	39°45'45"	180	CKM-3	(N Z E)	10000	0 20-1 40		
21	co m	500	1720	15 5 1 1 1	57 15 15	100	Cidii 5	(1, 2, 2)	5000	0.20-1.40		
							СКД	(N, Z, E)	1010	0.20-20.0		
									505	0.20-20.0		
							C-5-C	(N,E)v	2.7 c	0.02-4.5		
								(N, Z, E)v	0.11 c	0.02-4.5		
							CCP3-M (N, Z, E)a $0.002 c^2$			0.09		
		GOUT	17.06.2001			<u> </u>	SDAS – цифровая станция					
22	Соликамск	SOKR	02.1999	59°34'09'	56°47'31"	-84.5	IRIS –	цифровая с	танция			
23	Сторожевое	VRSR	07.08.1999	51°12'54'	39°11'24"	180	SDAS					

ОПЕРАТИВНАЯ ОБРАБОТКА ЗЕМЛЕТРЯСЕНИЙ МИРА ПО ТЕЛЕСЕЙСМИЧЕСКИМ НАБЛЮДЕНИЯМ ГС РАН Л.С. Чепкунас, Н.В. Болдырева

N⁰	Станци	ія	Дата	Ка	оординаты		Аппаратура					
	Название	Код	открытия	$\phi^{\circ}, N \qquad \lambda^{\circ}, E$		h _y ,	Тип	Компо-	$V_{\rm max}$,	$\Delta T_{\rm max}$,		
						м	прибора	нента	чувствит-ть	С		
24	Талая [3]	TLY	24.10.1982	51°40'52"	103°38'38"	579	СКМ-3	N, E, Z	0.2–1.2			
			00.00.1998				STS-1	IRIS/IDA -	 – цифровая ста 	анция		
							FBA-23					
							GS-13					
25	Цей	ZEI	1984	42°46'12"	43°53'54"	2100	СКМ-3	(N, Z, E)	40000	0.20-1.20		
									20000	0.20-1.20		
							СКД	(N, Z, E)	1000	0.20-20.0		
			23.05.2003				SDAS	DAS – цифровая станция				
26	Шиджатмаз	SHAR	01.09.1995	43°44'34"	42°40'07''	2070	Пункт	Пункт РТС				

Таблица 2. Данные об аппаратуре цифровых станций в 2001 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>), акселерограф –
						$OTCYET/(M/C^2)$
Арти	IDA MK8 + STS-1	BH(N, Z, E)v	0.0028-5	20	24	$1.67 \cdot 10^{9}$
	IDA MK8 + STS-1	LH(N, Z, E)v	0.0028-0.25	1	16	$1.67 \cdot 10^{9}$
	IDA MK8 + STS-1	VH (N, Z, E)v	0.0028-0.025	0.1	16	$1.67 \cdot 10^{9}$
	IDA MK8 + STS-1	VM (N, Z, E)a	0-0.0028	0.1	16	$7.69 \cdot 10^{8}$
	IDA MK8 + FBA-23	EG (N, Z, E)a	0–25	100	16	$1.67 \cdot 10^{3}$
	IDA MK8 + FBA-23	LG (N, Z, E)a	0-0.25	1	16	$2.50 \cdot 10^4$
	IDA MK8 + GS-13	SH (N, Z, E)v	1–25	40	16	$1.30 \cdot 10^{9}$
	IDA MK8 + GS-13	SL (N, Z, E)v	1–25	40	16	$2.00 \cdot 10^7$
Гумбаши	PTC + CM3–KB	(N, Z, E)v	0.5-20	50	16	$1.23 \cdot 10^{9}$
Кисловодск	IDA MK8 + STS-1	BH (N, Z, E)v	0.0028-5	20	24	$7.10 \cdot 10^{10}$
	IDA MK8 + STS-1	LH (N, Z, E)v	0.0028-0.25	1	16	$7.10 \cdot 10^{10}$
	IDA MK8 + STS-1	VH (N, Z, E)v	0.0028-0.025	0.1	16	$7.10 \cdot 10^{10}$
	IDA MK8 + STS-1	VM (N, Z, E)a	0-0.0028	0.1	16	$1.57 \cdot 10^{9}$
	IDA MK8 + CMG-3T	EG (N, Z, E)v	0.01–25	100	16	$3.00 \cdot 10^9$
	IDA MK8 + CMG-3T	LG (N, Z, E)v	0.01–25	100	16	$2.00 \cdot 10^7$
	IDA MK8 + FBA-23	SH (N, Z, E)a	0–25	100	16	$6.20 \cdot 10^4$
	IDA MK8 + FBA-23	SL (N, Z, E)a	0-0.25	1	16	$4.00 \cdot 10^5$
Куба-Таба	PTC+CM3-KB	(N, Z, E)v	0.5-20	50	16	9.80·10 ⁸
Ловозеро	IDA MK8 + STS-1	BH (N, Z, E)v	0.0028-5	20	24	$1.61 \cdot 10^9$
	IDA MK8 + STS-1	LH (N, Z, E)v	0.0028-0.25	1	16	$1.61 \cdot 10^{9}$
	IDA MK8 + STS-1	VH (N, Z, E)v	0.0028-0.025	0.1	16	$1.61 \cdot 10^{9}$
	IDA MK8 + STS-1	VM (N, Z, E)a	0-0.0028	0.1	16	$7.14 \cdot 10^8$
	IDA MK8 + FBA-23	EG (N, Z, E)a	0–25	100	16	$1.61 \cdot 10^{3}$
	IDA MK8 + FBA-23	LG (N, Z, E)a	0-0.25	1	16	$2.63 \cdot 10^4$
	IDA MK8 + GS-13	EH (N, Z, E)v	1–25	100	16	$4.69 \cdot 10^8$
	IDA MK8 + GS-13	EL (N, Z, E)v	1–25	100	16	$7.35 \cdot 10^{6}$
Москва	SDAS + СКД	BH (N, Z, E)v	0.04–3	20	16	$4.61 \cdot 10^8$
	SDAS + СКД	LH (N, Z, E)v	0.04–3	20	16	$1.92 \cdot 10^7$
Нагутская	PTC+CM3-KB	(N, Z, E)v	0.5-20	50	16	$1.23 \cdot 10^9$
Новолазаревская	SDAS + СКД	BH (N, Z, E)v	0.04–3	20	16	$4.40 \cdot 10^8$
	SDAS + СКД	LH (N, Z, E)v	0.04–3	20	16	$1.82 \cdot 10^{7}$
Обнинск	IDA MK8 + STS-1	BH (N, Z, E)v	0.0028-5	20	24	1.61·10 ⁹
	IDA MK8 + STS-1	LH (N, Z, E)v	0.0028-0.25	1	16	$1.61 \cdot 10^9$
	IDA MK8 + STS-1	VH (N, Z, E)v	0.0028-0.025	0.1	16	$1.61 \cdot 10^{9}$
	IDA MK8 + STS-1	VM (N, Z, E)a	0-0.0028	0.1	16	8.33·10 ⁸

Название	Тип	Перечень	Частотный	Частота	Разряд-	Чувствительность,
станции	АЦП и	каналов	диапазон,	опроса	ность	велосиграф –
	сейсмометра		Гц	данных,	АЦП	отсчет/(м/с),
				Гų		акселерограф –
						отсчет/(<i>м/c</i> ²)
	IDA MK8 + CMG-3T	SH (N, Z, E)v	0.01-10	40	16	$1.30 \cdot 10^{9}$
	IDA MK8 + CMG-3T	SL (N, Z, E)v	0.01-10	40	16	$2.00 \cdot 10^7$
	IDA MK8 + FBA-23	EG (N, Z, E)a	0–25	100	16	$1.49 \cdot 10^3$
	IDA MK8 + FBA-23	LG (N, Z, E)a	0-0.25	1	16	$2.50 \cdot 10^4$
Пулково	Quanterra 4120+STS-2	BH (N, Z, E)v	0.008-8	20	24	5.99·10 ⁸
	Quanterra 4120+STS-2	LH (N, Z, E)v	0.008-0.4	1	24	5.99·10 ⁸
	Quanterra 4120+STS-2	VH (N, Z, E)v	0.008-0.04	0.1	24	$2.39 \cdot 10^{9}$
	Quanterra 4120+STS-2	HH (N, Z, E)v	0.008–40	100	24	5.99·10 ⁸
Сочи	SDAS + CM3–OC	BH (N, Z, E)v	0.02-7	20	16	$3.47 \cdot 10^{9}$
	SDAS + CM3–OC	BL (N, Z, E)v	0.02–7	20	16	$2.17 \cdot 10^8$
Соликамск	IRIS MK-6bc CM3-OC	BH (N, Z, E)v	0.02-5	20	16	$3.27 \cdot 10^7$
	IRIS MK-6bc CM3-KB	EH (N,Z,E)v	0.5-70	200	16	$8.62 \cdot 10^7$
Сторожевое	SDAS + CM3–OC	BH(N, E, Z)v	0.02-7	20	16	$6.67 \cdot 10^8$
	SDAS + CM3–OC	BL(N, E, Z)v	0.02-7	20	16	$2.00 \cdot 10^7$
	SDAS + CM3–KB	EH (N, Z, E)v	0.5-30	100	16	$5.71 \cdot 10^{8}$
	SDAS + CM3–KB	EL (N, Z, E)v	0.5-30	100	16	$3.50 \cdot 10^7$
Талая [3]	IDA MK8 + STS-1	BH (N, E, Z) v	0.0028-5	20	24	$1.7 \cdot 10^{9}$
	IDA MK8 + STS-1	LH(N, E, Z)v	0.0028-0.25	1	16	$1.7 \cdot 10^{9}$
	IDA MK8 + STS-1	VH (N, E, Z) v	0.0028-0.025	0.1	16	$1.7 \cdot 10^{9}$
	IDA MK8 + STS-1	VM (N, E, Z) a	0-0.0028	0.1	16	$7.7 \cdot 10^8$
	IDA MK8 + FBA-23	EG (N, E, Z) a	0–25	100	16	$1.7 \cdot 10^{3}$
	IDA MK8 + FBA-23	LG (N, E, Z) a	0-0.25	1	16	$2.5 \cdot 10^4$
	IDA MK8 + GS-13	EH (N, E, Z) v	1–25	100	16	$4.8 \cdot 10^8$
	IDA MK8 + GS-13	EL (N, E, Z) v	1–25	100	16	$7.1 \cdot 10^{6}$
Шиджатмаз	PTC+CM3-KB	(N, Z, E)v	0.5-20	50	16	$1.23 \cdot 10^9$

Оперативная обработка базируется на станционных оперативных сводках, получаемых с перечисленных в табл. 1 сейсмических станций России, а также многих других стран СНГ, Европы и мира по электронной почте и телетайпным каналам связи. Ежегодно выпускается 36 ежедекадных оперативных каталогов и 36 ежедекадных сейсмологических бюллетеней. На рис. 1 показаны станции ГС РАН и мировой сети (более 600), данные которых использовались в сводной обработке в каждом ежедекадном бюллетене, где имеются и координаты этих станций.

Оперативный сейсмологический бюллетень составляется на основе следующих потоков входной информации, поступающей по е-mail и по телетайпным каналам связи (рис. 2):

- ежедневных оперативных сводок 37 станций России;
- ежедневных оперативных сводок 12 станций СНГ;
- ежедневных сводок станций «Обнинск», «Кисловодск», «Ловозеро», «Билибино» с IRIS-IDA, обрабатываемых в ГС РАН;
- сводок по 17 цифровым станциям для отдельных землетрясений, создаваемых в Службе срочных донесений в ГС РАН (г. Обнинск) при обработке волновых форм, поступающих с цифровых сейсмических станций России и зарубежных стран в режиме, близком к реальному времени, и по каналам Интернет;
- оперативных сводок региональных филиалов ГС РАН (Дагестанского, Камчатского, Сахалинского, Магаданского, Северо-Осетинского) и ГС СО РАН (Алтае-Саянского, Байкальского, Якутского) с данными региональных станций, а также из Кавминводской и Воронежской лабораторий ГС РАН;
- ежедневных станционных бюллетеней 13 станций России и СНГ;
- ежедневных оперативных сводок из 10 стран мира: Финляндии, Англии, Дании, Польши, Германии, Румынии, Болгарии, Чехии, Словакии, Венгрии;

Рис. І. Карта всех сейсмических станций, данные которых использованы при составлении оперативных бюллетеня и каталога землетрясений Земли в 2001 г. телесейсмические станции ГС РАН; 2 – станции мировой сети.

- сейсмологических каталогов PDE и бюллетеней EDR Национального центра данных о землетрясениях (NEIC), США;
- сейсмологических каталогов и бюллетеней REB PIDC, США (Reviewed Event Bulletin пересмотренный бюллетень событий прототипа международного сейсмологического центра данных, США);
- сейсмологических каталогов и бюллетеней Европейского Средиземноморского сейсмологического центра CSEM (European-Mediterranean Seismological Center), Франция.

Рис. 2. Потоки входной информации для оперативного бюллетеня

Методика расчета основных параметров землетрясений. Координаты гипоцентра φ , λ , h и время t_0 возникновения землетрясения определяются с использованием годографов [4, 5, 6] на основании данных о временах прихода продольных сейсмических волн *P* (*PKIKP*) на сейсмические станции по программе ЭПИ-74 [6].

Если для слабых землетрясений территории России в Обнинске отсутствуют станционные данные ГС РАН, дополняющие региональные, то в каталоге публикуются параметры землетрясения, определенные в опытно-методических сейсмологических партиях и центрах, с соответствующими ссылками на авторов. Обозначения сейсмических волн в дальней зоне приняты в соответствии с годографами [4, 5, 7, 8], а в ближней зоне по региональным годографам [9–12] для Кавказа, Средней Азии, Байкальской зоны и Дальнего Востока соответственно. Обозначения максимума *LM* поверхностных волн даны в соответствии с годографами [13, 14]. Значения магнитуд землетрясений находятся по максимальной скорости смещения (A/T)_{тах} в поверхностных и объемных волнах и соответствующим калибровочным кривым [15–17]. Детальное описание представления станционных данных в сейсмологическом бюллетене дано во Введении каждого экземпляра.

Для наиболее значимых землетрясений России, СНГ и мира в сейсмологических бюллетенях публикуются также решения механизма очага, рассчитанные по знакам первых вступлений *P*-волн по методике [18], сейсмический момент Mw – по спектрам *P*-волн, записанных широкополосными цифровыми сейсмическими станциями, в соответствии с рекомендациями [19, 20]. Список землетрясений 2001 г., для которых построены спектры и рассчитаны механизмы очагов, дан в табл. 3.

N⁰	Дата,		t_0	,	δt_0 ,	Эпи	центр	h,	n	M_0 ,	Ν	Лагниту	цы	Район
	д м	ч	ми	н с	С	φ°	λ°	км	ст.	Н∙м	MS/n	MPLP/n	MPSP/n	
										(OBN)				
1*	10.01	16	02	42.2	1.23	56.92N	153.68W	27	188	4.7E19	7.0/25	7.0/17	6.7/28	Район острова Кадьяк
2	26.01	03	16	42.3	1.21	23.38N	70.29E	33	91		7.8/16	7.8/13	7.2/28	Индия
3*	13.02	19	28	29.1	1.48	4.79S	102.54E	33	146	1.2E20	7.0/38	6.9/18	6.5/19	Южная Суматра
4	24.02	07	23	48.4	0.93	1.41N	126.29E	33	162	9.2E19	6.9/41	7.3/17	6.8/36	Молуккский пролив
5*	23.03	11	30	10.7	1.03	44.08N	148.01E	34	167	2.5E18	6.0/37	6.6/5	5.9/28	Курильские острова
6*	25.05	00	40	56.0	0.87	44.56N	148.24E	66	151	4.2E19		6.8/12	6.3/24	Курильские острова
7	24.06	13	18	55.1	1.34	44.38N	148.07E	53	86	4.8E18	6.0/36		6.3/19	Курильские острова
8*	02.08	23	41	10.1	0.90	56.20N	163.73E	46	193	6.2E18	6.2/32	6.4/6	6.0/37	Восточное побережье
														Камчатки
9	08.10	18	14	22.6	1.05	52.57N	160.36E	21	149	1.5E19	6.3/53	6.6/8	6.0/41	У восточного побережья
														Камчатки
10	12.10	15	02	17.1	0.95	12.93N	144.97E	33	149	6.9E19	7.2/38	8 7.2/13 6.9/36		Южнее Марианских
														островов
11	19.10	03	28	45.0	1.46	4.02S	123.92E	33	130	4.3E19	7.1/20	7.1/12	6.4/20	Море Банда
12*	14.11	09	26	09.9	0.96	35.89N	90.58E	10	109	1.9E19	7.5/25	6.8/12	6.2/43	Провинция Цинхай

Таблица 3. Список землетрясений 2001 г., для которых в Сейсмологическом бюллетене опубликованы значения сейсмического момента и механизмы очагов

Примечание. Знаком * отмечены землетрясения, для которых в Сейсмологическом бюллетене [1] приведены параметры механизма очага.

В 2001 г. оперативный сейсмологический каталог содержит данные о 3870 землетрясениях России и мира [21], имеющих сквозную классификацию по *MS*. Это либо прямые измерения *MS*, либо пересчетные из *MPSP* по формулам из [22], зависящим от глубины гипоцентров, а именно:

$$MS = 1.59 MPSP - 3.67, h < 70 \kappa m,$$
(1)

$$MS=1.77 MPSP - 5.2, h=70-390 км,$$
 (2)

$$MS = 1.85 MPSP - 4.9, h > 400 \kappa M.$$
(3)

Карта эпицентров землетрясений 2001 г. приведена на рис. 3. Как видно, наибольшая плотность эпицентров отмечается, как и ранее [23, 24], в пределах Тихоокеанского сейсмического пояса. Глубокие землетрясения с $h>300 \ \kappa m$ возникли в Дальневосточных зонах субдукции, очаги с промежуточной глубиной $h=70-300 \ \kappa m$ – в зонах островных дуг, Средиземном море, районах Вранча, Памира и Гиндукуша. На остальной территории мира глубины землетрясений $h<70 \ \kappa m$.

1 – магнитуда; 2 – глубина h гипоцентра, км.

ОБЗОР СЕЙСМИЧНОСТИ

266

В табл. 4 помещены суммарные числа землетрясений 2001 г. с $h < 70 \ \kappa m$ и $h = 70 - 300 \ \kappa m$ для последовательных интервалов магнитуд, а на рис. 4 – график повторяемости землетрясений с $h < 70 \ \kappa m$.

Таблица 4. Распределение числа землетрясений Земли по магнитудам *MS* и суммарная сейсмическая энергия по глубинам их гипоцентров

h,				MS				N_{Σ}	$\Sigma E \cdot 10^{15}$,
КМ	≤2.5	2.6-3.5	3.6-4.5	4.6-5.5	5.6-6.5	6.6–7.5	7.6-8.5		Дж
<70	219	1201	1219	530	96	17	4	3286	319.31
≥71–300	-	2	254	175	37	1	-	469	3.34
>301	-	3	53	54	5	-	-	115	0.31
N_{Σ}	219	1206	1526	759	138	18	4	3870	322.96

Сейсмическая энергия рассчитана по формулам К. Касахара [25]:

$$lgE=5.8+2.5 m_{\rm b},$$
 (4)

$$lgE=11.8 + 1.5 M, (5)$$

где вместо *m*_b и *M* использованы магнитуды *MPSP* и *MS* из [21].

Рис. 4. График повторяемости землетрясений с *h*<70 км за 2001 г.

Уравнение графика повторяемости имеет вид:

$$\lg N = 6.3 \pm 0.1 - (0.71 \pm 0.02) MS.$$
(6)

Наклон графика повторяемости является важным параметром сейсмического режима, свидетельствующим о представительности землетрясений определенного магнитудного уровня. Анализ показывает, что при сводной обработке землетрясений Земли в сейсмологических бюллетенях ГС РАН с использованием станционных сейсмических данных России, стран СНГ и мира представительны землетрясений лишь с $MS \ge 5$ (рис. 4). Полученное значение величины b=-0.71 за 2001 г. ниже средних долговременных значений b=-0.9 [3].

Распределение сильных землетрясений мира с $MS \ge 6.0$ в зависимости от их магнитуды приведено в табл. 5 в сопоставлении с аналогичными данными за предыдущие 10 лет. Как видим, в 2001 г. число землетрясений в интервале M=6-7 составило 126, что меньше среднего ($\overline{N}=148\pm51$) за десять лет, а в диапазоне M=7-8 оно равно 16, что больше среднего ($\overline{N}=14\pm7$). Одно землетрясение с $M\ge8$ произошло впервые за шесть лет (после 1994 г.).

Распределение суммарной сейсмической энергии, выделившейся в 2001 г. при сильных землетрясениях в различных сейсмических поясах, представлено в табл. 6.

Год	Число зе	Число землетрясений в интервале М								
	6.0≤ <i>M</i> <7.0	7.0≤ <i>M</i> <8.0	<i>M</i> ≥8.0							
1991	84	9	_	93						
1992	117	13	_	130						
1993	97	7	-	104						
1994	136	14	1	151						
1995	242	28	-	270						
1996	217	15	_	232						
1997	151	5	-	156						
1998	113	12	-	125						
1999	159	21	-	180						
2000	169	17	_	186						
Среднее за 10 лет	148±51	14±7	_	163±56						
2001	126	16	1	143						

Таблица 5. Распределение числа землетрясений в различных интервалах магнитуд *М* (*MPSP*, *MPLP*, *MS*≥6.0) за 1991–2001 гг.

Примечание. В таблицу включены все землетрясения, у которых хотя бы одна из магнитуд MS, MPLP, MPSP была ≥7.0.

Таблица 6. Распределение числа землетрясений и суммарной сейсмической энергии Σ*E* по сейсмическим поясам

Сейсмический пояс	Число земл	$\Sigma E \cdot 10^{15}$,	
	$6.0 \le M \le 7.0$	<i>M</i> ≥7.0	Дж
Тихоокеанский	114	15	279.73
Трансазиатский	7	2	43.12
Атлантический	1	-	0.09
Индийского океана	4	-	0.41
Восточно-Африканские грабены	-	-	-
Сумма	126	17	323.35

Из табл. 6 следует, что более 87% всей энергии выделилось в Тихоокеанском сейсмическом поясе, где произошло 15 из 17 землетрясений с $M \ge 7.0$ (табл. 6). На другие сейсмические пояса приходится менее 13% суммарной энергии. Общее количество выделившейся энергии в 2001 г. на земном шаре, рассчитанное по магнитудам разных осреднений (табл. 4, 6), одинаково и составляет $\Sigma E=323 \cdot 10^{15}$, Дж.

Сильнейшие землетрясения с $MS \ge 7$ рассмотрены более детально. Их географическое положение показано на рис. 5, список и подробное их описание представлено в [26].

В заключение рассмотрим механизмы очагов этих 17 событий в табл. 7, из которых 15 ($N \ge N \ge 1-4$, 6–10, 11–14, 16–17) локализованы, как уже отмечено выше, в Тихоокеанском сейсмическом поясе и 2 (5, 15) – в Альпийско-Гималайском. Решения механизма очага для всех 17 землетрясений получены по методу тензора момента центроида в Гарвардском центре США [27] и опубликованы в [28], а для трех из них приведены также решения (второй строкой) по знакам *P*-волн из Сейсмологического бюллетеня [21].

Обобщая все данные, отметим, что в очагах землетрясений 1–3, 6, 7, 11, 13, 17 Тихоокеанского пояса отмечается в основном взбросо-надвиговый характер подвижек. Все они произошли под превалирующим действием сжимающих напряжений. Различия наблюдаются в ориентации напряжений и нодальных плоскостей.

Землетрясение 1 (1 января в $06^{h}57^{m}$) в районе о. Минданао имеет типичный для этого района механизм очага. Оно возникло под действием сжимающих напряжений, ориентированных на восток. Одна нодальная плоскость *NP*1 имеет близмеридиональное простирание, другая – северо-восточное, совпадающее с простиранием Тихоокеанской сейсмоактивной зоны. Тип движения по обеим плоскостям – взброс с компонентами сдвига (по *NP*1– левостороннего, по *NP*2 – правостороннего).

1 – магнитуда; 2 – глубина h гипоцентра, км.

Рис. 5. Стереограммы механизмов очагов сильных (*M*≥7) землетрясений за 2001 г. в проекции нижней полусферы

№	Дата,	t_0 ,	h,]	Магни	гуды	Оси главных напряжений						Нодальные плоскости					
	дм	ч мин с	км	Mw	MS/n	MPSP/n		Т		N		Р		NP1		NP2		
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	01.01	06 57 04.7	33	7.4			69	2	21	193	4	102	171	45	60	30	52	117
2	09.01	16 49 30.6	115	7.0			43	158	41	301	19	49	183	44	160	288	76	47
3	10.01	16 02 24.2	27	7.0	7.0	6.7	53	333	2	240	37	148	224	8	74	60	82	92
							51	299	4	34	38	126	242	7	119	33	84	86
4	13.01	17 33 27.8	33	7.7			10	35	3	125	79	231	121	35	-95	307	56	-86
5	26.01	03 16 42.3	33	7.7	7.8	7.2	59	291	27	80	14	177	298	39	136	66	64	60
6	13.02	19 28 29.1	33	7.4	7.0	6.5	60	26	4	122	29	214	315	16	103	121	74	86
							50	50	9	309	38	211	253	11	34	130	84	99
7	24.02	07 23 48.4	33	7.1	6.9	6.8	81	0	8	206	4	115	197	42	78	32	49	100
8	23.06	20 33 12.4	23	8.4			60	80	8	336	29	242	310	18	63	159	74	98
9	26.06	04 18 33.7	33	6.7			63	68	5	329	26	236	314	19	75	150	71	95
10	07.07	09 38 44.9	33	7.6			55	86	9	344	33	248	306	14	52	165	79	99
11	21.08	06 52 07.4	33	7.1			72	54	17	215	6	307	55	42	116	202	53	68
12	09.10	23 53 37.3	36	5.9			13	339	77	165	1	70	115	80	8	24	82	170
13	12.10	15 02 17.1	33	7.0	7.2	6.9	53	314	25	185	25	82	131	30	31	13	75	116
14	19.10	03 28 45.0	33	7.5	7.1	6.4	12	314	76	107	6	223	358	77	176	89	86	13
15	14.11	09 26 09.9	10	7.8	7.5	6.2	13	319	59	207	28	56	94	61	-12	190	80	-150
							4	303	74	45	16	212	348	76	-171	256	81	-14
16	18.12	04 03 01.5	33	6.8	7.3	6.3	7	269	31	3	58	167	329	47	-135	204	59	-53
17	23.12	22 52 57.5	33	6.8			61	99	13	345	26	248	311	23	54	169	72	104

Таблица 7. Механизмы очагов сильных землетрясений мира в 2001 г.

Землетрясение 2 (9 января в 16^h49^m) произошло близ о-вов Новые Гебриды также под превалированием сжимающих напряжений, ориентированных на северо-восток, напряжение растяжения направлено на юго-восток. Обе нодальные плоскости залегают достаточно круто. Тип подвижки по плоскости *NP*1 близмеридионального простирания представлен сдвигом с компонентами взброса, по плоскости *NP*2 западного–северо-западного простирания – взбросом с компонентами левостороннего сдвига.

В случае землетрясений 3, 7 (10 января в $16^{h}02^{m}$ и 24 февраля в $07^{h}23^{m}$) оси сжатия направлены на юго-восток, плоскости имеют северо-восточное–юго-западное простирание. Тип движения в случае 10 января в $16^{h}02^{m}$ – «чистый» взброс по *NP*2 и с компонентами левостороннего сдвига по *NP*1; в случае 24 февраля в $07^{h}23^{m}$ – по обеим плоскостям взброс (по *NP*1 с компонентами левостороннего сдвига, по *NP*2 – правостороннего).

Для землетрясения 6 (13 февраля в 19^h28^m) ось сжатия направлена на юго-запад, ось растяжения – на северо-восток. По пологой плоскости *NP*1 северо-западного простирания отмечается надвиг с компонентой правостороннего сдвига, по крутопадающей *NP*2, ориентированной на юго-восток, имеет место взброс с компонентой левостороннего сдвига.

Для землетрясения 13 (12 октября в 15^h02^m) ось сжатия направлена на восток, нодальная плоскость *NP*2 крутого залегания имеет близмеридиональное простирание, более пологая *NP*1 ориентирована на юго-восток. Тип движения по *NP*2 – взброс с компонентами правостороннего сдвига, по *NP*1 – левосторонний сдвиг с компонентами взброса.

Землетрясения 11 и 17 (21 августа в 06^h52^m и 23 декабря в 22^h52^m), зарегистрированные в районе Новой Зеландии и Соломоновых островов, соответственно, произошли под действием главным образом сжимающих напряжений, ориентированных на северо-запад–запад. Для землетрясения 11 в Новой Зеландии обе нодальные плоскости имеют крутое падение и северо-восточное–юго-западное простирание. Тип движения по обеим плоскостям – взброс с компонентами сдвига (по *NP*1– правостороннего, по *NP*2 – левостороннего). Для землетрясения 17 на Соломоновых островах одна нодальная плоскость *NP*2 залегает круто, другая *NP*1 – полого. Тип движения в очаге по плоскости *NP*1 северо-западного простирания – надвиг с компонентами правостороннего сдвига, по крутой *NP*2 – близмеридионального простирания – взброс с компонентами левостороннего сдвига.

Другой тип механизма очагов в Тихоокеанском поясе отмечается для землетрясений 12, 14, 16 (9 октября в $23^{h}53^{m}$, 19 октября в $03^{h}28^{m}$ и 18 декабря в $04^{h}03^{m}$). Механизм очага землетрясения 12 в районе Курильских островов характеризуется крутым залеганием обеих нодальных плоскостей и преобладанием по ним сдвиговых подвижек: левосторонней – по *NP*1 северозападного простирания и правосторонней – по *NP*2 северо-восточного простирания. Оно возникло под действием как сжимающих напряжений, ориентированных на северо-восток, так и растягивающих, ориентированных на северо-запад. Механизм очага землетрясения 14 в море Банда характеризуется также сдвиговым типом движения с компонентами взброса. Оно произошло под действием близких по величине сжимающих и растягивающих напряжений, ориентированных на юго-запад и северо-запад соответственно. Обе нодальные плоскости имеют крутое падение, плоскость *NP*1 простирается субширотно, плоскость *NP*2 – субмеридионально. Для землетрясения 16 в районе Тайваня тип движения в очаге представлен сбросом с компонентами сдвига (по *NP*1 – правостороннего, по *NP*2 – левостороннего). Оно возникло под действием лраскость *NP*1 – правостороннего, по *NP*2 – северо-восточного. Обе плоскосто сти имеют крутое падение, ориентация *NP*1 – юго-восточная, *NP*2 – северо-восточная.

Землетрясения 8, 9, 10 (23 июня в 20^h33^m, 26 июня в 04^h18^m и 7 июля 09^h38^m) реализовались в районе Перу с магнитудами 8.3, 7.0, 7.6 соответственно. Все они имеют близкие решения механизма очагов. Землетрясения произошли под действием как растягивающих, так и сжимающих напряжений, ориентированных в северо-восточном направлении. Но напряжения сжатия превалируют. Одна нодальная плоскость залегает круто, вторая – полого. Тип движения в очаге по пологой плоскости северо-западного простирания – надвиг с компонентами левостороннего сдвига, по крутой близмеридионального простирания – взброс с компонентами правостороннего сдвига.

Землетрясение 4 (13 января в 17^h33^m) в районе Центральной Америки произошло под действием растягивающих напряжений, ориентированных в северо-восточном направлении. Обе плоскости имеют юго-восточное простирание. Движение в его очаге по обеим плоскостям представлено сбросом с компонентами сдвига (правостороннего по *NP*1, левостороннего по *NP*2).

Разрушительное землетрясение 5 (26 января в $03^{h}16^{m}$) в Индии возникло в условиях преобладания напряжений сжатия, ориентированных на юг. Тип движения в очаге – взброс с компонентами сдвига (по *NP*1 – правостороннего, по *NP*2 – левостороннего). Обе плоскости залегают достаточно круто, плоскость *NP*1 простирается на северо-запад, плоскость *NP*2 – на северо-восток.

Для землетрясения 15 (14 ноября в 09^h26^m) в провинции Цхинкай тип движения в очаге – сдвиг с компонентами сброса. Землетрясение произошло под действием близких по величине сжимающих и растягивающих напряжений, ориентированных на северо-восток и северо-запад соответственно. Обе плоскости имеют крутое падение, плоскость *NP*1 ориентирована близмеридионально, плоскость *NP*2 – близширотно.

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2001 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2001–2002.
- 2. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва-Обнинск: ГС РАН, 2001. 86 с.
- 3. Мельникова В.И., Гилёва Н.А., Масальский О.К. Прибайкалье и Забайкалье. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 4. Рихтер Ч. Элементарная сейсмология. М.: Иностранная литература, 1963. –670 с.
- 5. Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 6. Bolt B.A. Estimation of PKP travel times // Bull. Seism. Soc. Am. 1968. 58. №4. P. 1305–1324.
- 7. Епифанский А.Г. Определение параметров гипоцентров и магнитуд землетрясений в телесейсмической зоне (ЭПИ-74) // Алгоритмы и практика определения параметров гипоцентров землетрясений на ЭВМ. – М.: Наука, 1983. – С. 92–97.

- 8. Кондорская Н.В. Выделение волны *sP* при неглубоких землетрясениях и ее использование для определения глубины очага // Тр. Геофизического института АН СССР. – М.: АН СССР, 1956. – № 36(163). – С. 35–47.
- 9. Левицкая А.Я., Лебедева Т.М. Годограф сейсмических волн Кавказа // Квартальный сейсмологический бюллетень. Тбилиси: Мецниереба, 1953. 21. №1–14.
- 10. Розова Е.А. Составление годографа и определение основных сейсмических элементов для Средней Азии // Труды СИ АН СССР. М.: АН СССР, 1936. С. 72–28.
- Голенецкий С.И., Кругляков М.И., Перевалова Т.И. Годографы сейсмических волн землетрясений Прибайкалья // Сейсмичность и глубинное строение Прибайкалья. – Новосибирск: Наука (СО РАН), 1978. – С. 30–38.
- 12. Wadati K. Travel time P and S waves // Geophys. Mag. $-1933. N_{2} 11.$
- Архангельская В.М. Использование записей поверхностных волн при интерпретации сейсмограмм // Бюллетень Совета по сейсмологии. – М.: АН СССР, 1957. – 6. – С. 81–88.
- 14. Горбунова И.В., Захарова А.И., Чепкунас Л.С. Максимальная фаза поверхностной волны Релея по наблюдениям различной аппаратурой в ЦСО «Обнинск» // Магнитуда и энергетическая классификация землетрясений. II. – М.: ИФЗ АН СССР, 1974. –С. 19–25.
- 15. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1942. 32. № 3. P. 163–191.
- 16. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1956. 46. № 2. P. 105–145.
- 17. Ванек И., Затопек А., Карник В., Кондорская И.В., Ризниченко Ю.В., Саваренский Е.Ф., Соловьёв С.Л., Шебалин Н.В. Стандартизация шкал магнитуд // Изв. АН СССР, сер. геофизич. – 1962. – № 2. – С. 153–158.
- 18. Горбунова И.В., Шаторная Н.В. О калибровочной кривой для определения магнитуды землетрясений по волнам РКІКР // Физика Земли. 1976. № 7. С. 77–81.
- Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я., Бармин М.П. Об определении механизма очагов на ЭВМ ЕС-1030 // Физика сейсмических волн и внутреннее строение Земли. – М.: Наука, 1982. – С. 86–97.
- 20. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 21. Шаторная Н.В. (отв. сост.), Бабкина В.Ф., Аторина М.А., Щербакова А.И. Оперативный каталог землетрясений Земли за 2001 г. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 22. Кондорская Н.В., Горбунова И.В., Киреев И.А., Вандышева Н.В. О составлении унифицированного каталога сильных землетрясений Северной Евразии по инструментальным данным (1901–1990 гг.) // Сейсмичность и сейсмическое районирование Северной Евразии. Вып. 1. – М.: АН СССР, 1993. – С. 70–79.
- 23. Шаторная Н.В. Сильные землетрясения Земли // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 218–227.
- 24. Шаторная Н.В., Болдырева Н.В. Сильные землетрясения Земли // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 208–217.
- 25. Касахара К. Механика землетрясений. М.: Мир, 1985. 264 с.
- 26. Болдырева Н.В. Сильные землетрясения Земли (обзор по РЖ). (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 27. Dzievonski A., Chou T., Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. 86. № B4. P. 2825–2852.
- 28. Global CMT Catalog Search. 2001 (Harvard). http://www.globalcmt.org/CMTsearch.html