Дагестан

С.Р. Амиров О.А. Асманов, М.Г. Даниялов, Р.А. Левкович, М.М. Мирзалиев, А.Ш. Осокина

Дагестанский филиал ГС РАН, г. Махачкала, uuball12@ball12.dagestan.su

В 2001 г. в сети сейсмических станций Республики Дагестан произошли следующие изменения: временно прекращена регистрация землетрясений на двух станциях: «Кумторкала» – с 8 июля, «Дылым» – с 20 ноября. Кроме того, увеличение $V_{\rm max}$ и полоса $\Delta T_{\rm max}$ несколько изменились практически на всех станциях, по сравнению с таковыми в 2000 г. [1]. Новые значения параметров приведены в табл. 1.

Таблица 1. Сейсмические станции Дагестана (в хронологии их открытия), работавшие в 2001 г., и их параметры

№	Стан	нция		Да	та	Кос	ординат	ы	Аппаратура					
	Название	К	од	открытия	закрытия	φ°, Ν	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,		
		межд.	рег.					\mathcal{M}	прибора	нента		с		
1	Буйнакск	BUY	BUY	13.09.1973	16.12.1997	42.814	47.136	400	CM-3	N	5142	0.6-1.0		
				13.09.2000		42.825	47.108	480		Е	68	0.8-1.4		
										Ζ	5994	0.6–1.4		
2	Ахты	AHT	AHT	04.06.1974		41.48	47.73	1200	CKM-3	Ν	22686	0.3–0.6		
										Е	53	0.4–0.8		
										Z	22948	0.3-0.6		
3	Дылым	DLM	DLM	02.09.1974	20.11.2001	43.07	46.62	426	CM-3	Ν	4675	0.8–1.2		
										Е	109	0.7–1.2		
										Z	4315	0.6-1.0		
4	Дубки	DBC	DBC	01.03.1975		43.02	46.83	900	CKM-3	Ν	23740	0.4–0.8		
										E	163	0.3–0.7		
									~ ~ ~	Z	23180	0.3-0.7		
5	Дербент	DRN	DRN	25.06.1975		42.03	48.33	-28	CM-3	N	12781	0.2–0.5		
										E	157	0.2-0.6		
	3.7	IDIC	IDIC	01.02.1004		10 70	46.70	(50	OVA A	Z	14172	0.2-0.5		
6	Унцукуль	UNC	UNC	01.02.1984		42.78	46.78	650	CKM-3	N	15144	0.6 - 1.0		
										E	58	0.6 - 1.0		
7	1/			01 04 1095		40.10	47.10	1050	CIVN 2	Z N	16365	0.6 - 1.0		
/	Кумух	KUM	KUM	01.04.1985		42.13	47.10	1950	CKM-3		16080	0.4-0.7		
										E	219	0.3 - 0.6		
0	Vaara	VCM	VSM	01 10 1097		41.60	40.10	015	CM 2	Z N	1//38	0.3 - 0.7		
0	касумкент	ROM	V2IAI	01.10.1987		41.00	46.12	013	CIVI-3		11280	0.0 - 1.0		
										2 7	12063	0.7 - 1.0		
0	К арацай	KRN	KRN	04 04 1988		12 73	46.90	1180	CKM-3	L N	24248	0.0-0.9		
)	Каранаи	KININ	KININ	04.04.1988		42.75	40.90	1100	CKWI-J	F	65	0.3-0.0		
										Z	25568	0.2 0.0		
10	Араканы	ARK	ARK	08 02 1989		42 60	46 99	770	CM-3	N	10960	0.1-0.4		
10	ripununni	/ Hut	11111	00.02.1909		12.00	10.77	110	0111 5	E	253	0.8-1.2		
										Z	9870	0.1-0.4		
11	Хунзах	XNZ	XNZ	17.01.1992		42.54	46.70	1640	CKM-3	N	16030	0.4-0.8		
										E	200	0.2-0.6		
										Ζ	15118	0.1-0.4		
12	Ботлих	BTL	BTL	19.11.1994		42.66	46.22	870	CM-3	N	21343	0.7-1.0		
										Е	143	0.7-1.0		
										Ζ	19520	0.7-1.0		

№	Стан	нция		Да	та	Кос	ординат	ы	Аппаратура					
	Название	К	од	открытия	закрытия	φ°, N	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,		
		межд. рег.						м	прибора	нента		с		
13	Кумторкала	KMT	KMT	10.07.1997	01.07.2001	43.15	47.24	90	CM-3	N	5702	0.7-1.0		
										Е	84	0.7-1.2		
										Z	4802	0.5-0.8		
14	Уркарах	URK	URK	15.02.1998		42.17	47.63	13	CM-3	N	17094	0.2-0.5		
										Е	116	0.7-1.0		
										Z	15660	0.4-0.8		
15	Гуниб	GNB	GNB	12.07.1999		42.38	46.96	800	CM-3	N	13345	0.1-0.5		
										Е	355	0.8-1.2		
										Z	13960	0.1-0.5		
16	Манас	MNS	MNS	28.12.1999		42.70	47.72	-20		Ν	8013	0.4-0.8		
										Е	158	0.8-1.2		
										Z	8205	0.3-0.7		
17	Учкент	UKT	UKT	09.09.2000		43.11	47.08	120	CM-3	N	6630	0.6-1.0		
										Е	125	0.8-1.0		
										Z	5504	0.5-0.9		

Карта энергетической представительности землетрясений K_{\min} по данным этой сети традиционно рассчитана по методике З.И. Арановича [2] и изображена на рис. 1.

Рис. 1. Карта энергетической представительности землетрясений Дагестана по данным наблюдений в 2001 г.

1 – изолиния К_{тіп}; 2 – сейсмическая станция; 3, 4 – граница Дагестана.

Достаточно плотное размещение сейсмических станций в районе действующих и строящихся ГЭС Сулакского каскада и их водохранилищ обеспечили снижение представительного класса землетрясений до $K_{min}=6$ в центральной части Дагестана, где регистрируются и более слабые землетрясения с $K_P \le 5$. Из рис. 1 следует, что для Дагестана представительны землетрясения с $K_{min}=7$, а для всей рассматриваемой территории в пределах координат $\varphi=41.0-44.0^{\circ}$ N. и λ =45.5-48.7°E (включая районы Чеченской Республики, Грузии и Азербайджана, а также акватории Северного Каспия), уверенно регистрируются землетрясения, начиная с K_{\min} =8, хотя по графику повторяемости, приведенному ниже, для всей территории значение K_{\min} =9, т.е. на порядок выше.

Сводная обработка и интерпретация станционных данных с определением основных параметров очагов землетрясений (времени возникновения, координат эпицентров, энергетических классов и магнитуд), а также обследование макросейсмического эффекта ощутимых толчков выполнены сотрудниками Дагестанского филиала ГС РАН исключительно по данным сейсмических станций Дагестана. Определение координат гипоцентров землетрясений производилось на ЭВМ, используя местный годограф [3]. Методика определения величины энергетического класса в Дагестане такая же, как и прежде [4]. Определение магнитуд *МРVA* по объемным волнам в ближней (Δ <400 км) зоне (по записям короткопериодной аппаратуры) выполнено по [5].

Всего на исследуемой территории площадью около 90 000 κm^2 в 2001 г. зарегистрировано 366 землетрясений [6]. Их распределение по энергетическим классам приведено в табл. 2. По этим данным построен график повторяемости землетрясений Дагестана за 2001 г. (рис. 2). Как видим, левый «загиб» графика наблюдается при $K_P \le 8$, следовательно, представительными для всей территории являются землетрясения с $K_{\min} \ge 9$. Угловой коэффициент графика в диапазоне $K_P = 10-13$ равен $\gamma_{10-13} = -0.504 \pm 0.067$.

$K_{ m P}$	5	6	7	8	9	10	11	12	13	N_{Σ}	$\Sigma E \cdot 10^{12}, Дж$
Ν	18	70	77	105	65	23	6	1	1	366	5.72

Таблица 2. Распределение числа землетрясений N по энергетическим классам К_Р

Рис. 2. График повторяемости землетрясений Дагестана за 2001 г.

Глубины гипоцентров землетрясений изменяются в широком диапазоне $h=1-100 \ \kappa m$ (табл. 3). Минимальную глубину $h=1 \ \kappa m$ имеет землетрясение, зарегистрированное 4 декабря в $19^{h}10^{m}$ с $K_{p}=5.7$; максимальную $h=100 \ \kappa m$ – два землетрясения, произошедшие 8 июня в $02^{h}54^{m}$ с $K_{p}=8.0$ и 25 июня в $08^{h}55^{m}$ с $K_{p}=8.2$ [6], 34% гипоцентров имеют глубины $0-10 \ \kappa m$.

Таблица 3. Распределение гипоцентров землетрясений Дагестана за 2001 г. по глубине h

h ₁ —h ₂ , км	1–10	11–20	21–30	31–40	41–50	51–60	61–100
N	125	93	16	11	12	5	18

Карта эпицентров всех землетрясений из [6] представлена на рис. 3, где очень хорошо видна повышенная их плотность в очаговой зоне Кизилюртского землетрясений 31.01.1999 г. [7].

Рис. 3. Карта эпицентров землетрясений Дагестана и прилегающих районов за 2001 г. 1 – энергетический класс *К*_P; 2 – сейсмическая станция; 3 – граница Дагестана.

На рис. 4 показана карта сейсмической активности в единицах A₁₀ по методике [8]. На этой карте наблюдаются три отделенные друг от друга зоны с повышенной активностью. Одна расположена на северо-западе, вторая – в области Кавказского хребта, третья – в юго-восточной части Дагестана.

Рис. 4. Карта сейсмической активности Дагестана в 2001 г.

1 – изолиния А10; 2 – сейсмическая станция; 3 – граница республик Северного Кавказа; 4 – государственная граница.

Рассмотрим более детально пространственное распределение более сильных землетрясений с $K_P \ge 8.6$, изображенное на рис. 5, где хорошо видны две полосы эпицентров северозападного простирания. Их протяженность составляет 185 и 255 км соответственно.

Рис. 5. Карта эпицентров землетрясений с *К*_Р≥8.6 в пределах Республики Дагестан за 2001 г.

1 – энергетический класс $K_{\rm P}$; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – населенный пункт и г. Махачкала соответственно; 5 – граница республик Северного Кавказа; 6 – государственная граница.

Начало первой полосы землетрясений находится в юго-западном окончании Богосского хребта. Оно сформировано следующими событиями: два толчка 10-го класса (2 сентября в $05^{h}31^{m}$ с $K_{P}=9.7$, 25 сентября в $17^{h}36^{m}$ с $K_{P}=9.6$) и три – 9-го (18 апреля в $15^{h}39^{m}$ с $K_{P}=9.1$, 5 сентября в $22^{h}41^{m}$ с $K_{P}=9.5$, 19 сентября в $23^{h}53^{m}$ с $K_{P}=9.4$). Далее на северо-запад отметим землетрясения 18 февраля в $15^{h}30^{m}$ с $K_{P}=11.4$ и 28 сентября в $08^{h}30^{m}$ с $K_{P}=9.8$.

Землетрясение 18 февраля является самым глубоким в этой полосе с $h=64 \ \kappa m$ по [9] и $h^*=70 \ \kappa m$ (по глубинной фазе pP) – по [10]. Оно ощущалось с интенсивностью 4 балла в Леваши (54 κm), 3 балла – в Махачкале (75 κm) и Избербаше (94 κm) [9]. Для этого землетрясения имеется решение механизма очага агентства ZUR, приведенное в табл. 4. Землетрясение возникло под действием растягивающих напряжений, ориентированных на северо-запад. Обе нодальные плоскости простираются в северо-восточном направлении (рис. 6). Плоскость NP1 залегает более круто, чем NP2. Тип движения по обеим плоскостям – сброс со сдвиговыми компонентами.

Таблица 4. Параметры механизма очага землетрясения 18 февраля в 15^h30^m (метод ТМ по ZUR из [10])

Агентство	Дата,	t_0 ,	h,	Mw	(Эси гла	вных напряжений				Нодальные плоскости					
	дм	ч мин с	км			Т		N P		Ρ	NP1			NP2		
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
ZUR	18.02	15 30 37	66	4.6	13	322	4	53	77	161	235	58	275	46	33	262

Рис. 6. Стереограмма механизма очага землетрясения 18 февраля в 15^h30^m

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Описываемая первая полоса эпицентров обрывается в очаговой зоне Кизилюртского землетрясений 31.01.1999 г. [8], где она представлена землетрясениями 12-го (15 ноября в $09^{h}42^{m}$ с $K_{\rm P}$ =11.9), 11-го (7 августа в $03^{h}38^{m}$ с $K_{\rm P}$ =11.0), 10-го (22 апреля в $16^{h}30^{m}$ с $K_{\rm P}$ =9.7) и 9-го классов (4 июля в $01^{h}28^{m}$ с $K_{\rm P}$ =9.2, 26 ноября в $07^{h}02^{m}$ с $K_{\rm P}$ =8.6). Землетрясение 15 ноября вызвало сотрясения в 5 баллов в Буйнакске (20 км), 4–5 баллов – в Махачкале (34 км), 4 балла – в Каспийске (46 км), 2–3 балла – в Кизилюрте (27 км), Хасавюрте (48 км), Избербаше (82 км). При землетрясении 22 апреля отмечены трехбалльные колебания в Дубках (4.5 км) и Дылыме (18 км) [9].

Вторая полоса эпицентров начинается в северо-западных отрогах хр. Кабяктепе группой из семи толчков 9-го класса, северо-западнее которой локализована группа с большей энергией: по одному землетрясению 11-го (27 июня в $21^{h}58^{m}$ с $K_{p}=10.6$) и 10-го (6 января в $23^{h}21^{m}$ с $K_{p}=10.0$) классов и пять толчков с $K_{p}\div9$. Но наибольшей плотностью землетрясений характеризуется участок в прибрежье Дагестана, в акватории Каспийского моря. Самое сильное землетрясение на этом участке реализовалось 5 июня в $15^{h}33^{m}$ с $K_{p}=12.6$ и ощущалось в Дагестане (Махачкала (123 км) – 4 балла [9]) и Азербайджане (Губа (120 км) – 4 балла [11]). Оно предварялось ощутимым форшоком (Дербент (40 км) – 2–3 балла, Махачкала (121 км) – 2 балла [9]) непосредственно перед главным толчком 5 июня в $14^{h}42^{m}$ с $K_{p}=11.1$ и более ранним форшоком, произошедшим 7 января (табл. 5), а также имело афтершоки.

N⁰	Дата,	$t_0,$	Эпи	центр	h,	MPVA	K_{P}								
	о м	ч мин с	φ°, N	λ°, Ε	м										
	Форшоки														
1	07.01	06 49 04.3	42.28	49.24	1		11.3								
					51*										
2	05.06	14 42 51.8	42.31	48.63	5	5.1	11.1								
	Основной толчок														
	05.06	15 33 25.4	42.30	48.64	6	6.0	12.6								
					48*										
		А	фтерш	оки											
1	05.06	16 34 13.3	42.27	48.28	52		8.3								

Таблица 5. Основные параметры форшоков и афтершоков землетрясения 5 июня в 15^h33^m с K_p=12.6 [6]

№	Дата,	<i>t</i> ₀ ,	Эпиі	центр	h,	MPVA	$K_{\rm P}$
	д м	ч мин с	φ°, N	λ°, Ε	м		
2	05.06	17 47 41.9	42.34	48.49	4	3.6	9.0
3	05.06	17 52 41.9	42.35	48.55	6	4.2	9.8
4	06.06	03 25 16.3	42.48	48.47	9		9.4
5	06.06	04 37 42.9	42.37	48.57	15		8.6
6	06.06	09 39 08.2	42.41	48.81	16		8.8
7	07.06	03 21 53.4	42.33	48.51	5	4.2	9.6
8	07.06	10 16 48.9	42.10	49.16	21		8.4
9	08.06	08 13 28.7	42.37	49.10	19		7.8
10	08.06	10 50 21.4	42.29	48.62	3	4.6	10.2
11	11.06	17 43 23.4	42.44	48.97	17		7.9

Для форшока 7 января и главного толчка 5 июня в [10] имеются решения механизма очагов, приведенные в табл. 6.

Таблица 6. Параметры механизмов очагов землетрясений 7 января (метод ТМЦ по HRVD) и 5 июня (метод ТМ по ZUR) из [10]

Агентство	Дата,	<i>t</i> ₀ ,	h,	Mw	0	Оси гла	вных напряжений				Нодальные плоскости						
	дм	ч мин с	км		Т		N		Р		NP1			NP2			
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
HRVD	07.01	06 49 08.8	48	5.2	34	322	20	66	49	181	359	22	201	249	82	290	
ZUR	07.01	06 49 00	30	4.9	6	313	12	44	77	196	234	52	285	30	40	251	
ZUR	05.06	15 33 29	27	5.1	11	349	76	133	8	258	124	88	13	33	77	178	

Механизм очага землетрясения 7 января рассчитан в двух центрах: по методу тензора момента в ZUR и по методу тензора момента центроида в Гарвардском центре США (HRVD). Решения, выполненные в разных центрах, имеют как общие черты, так и различия. В обоих решениях землетрясение произошло под действием преобладания напряжения растяжения, ориентированного в северо-западном направлении, относительно напряжения сжатия, ориентированного на юг. В решении HRVD пологая нодальная плоскость – NP1 ($DP=22^{\circ}$) – простирается меридионально, другая плоскость – NP2 – имеет крутое падение ($DP=82^{\circ}$) и северо-восточное простирание. Тип движения по NP1 – правосторонний сдвиг с компонентами сброса, по NP2 – сброс с компонентами левостороннего сдвига. В решении ZUR обе плоскости залегают достаточно круто (52 и 40°) и простираются в направлении северо-восток (NP1) и юго-восток (NP2). Тип движения по обеим плоскостям – сброс с компонентами сдвига (левостороннего – по NP2).

Рис. 7. Стереограммы механизмов очагов землетрясений 7 января в 06^h49^m и 5 июня в 15^h33^m в проекции нижней полусферы

 нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Главный толчок 5 июня возник под действием в равной степени как растягивающих напряжений, ориентированных на север, так и сжимающих, ориентированных на запад. Обе нодальные плоскости имеют крутое падение, простирание плоскости NP1 – юго-восточное, простирание NP2 – северо-северо-восточное. Тип движения по обеим плоскостям – сдвиг (левосторонний по – NP1, правосторонний по – NP2).

К крайним на северо-востоке землетрясениям во второй полосе эпицентров относятся три толчка, произошедшие 12 апреля в $13^{h}07^{m}$ с $K_{P}=8.6$, 9 июля в $05^{h}36^{m}$ с $K_{P}=10.5$, 29 октября в $22^{h}15^{m}$ с $K_{P}=11.0$.

Литература

- 1. Асманов О.А., Даниялов М.Г., Левкович Р.А., Осокина А.Ш., Мирзалиев М.М, Амиров С.Р. Дагестан // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 79–84.
- 2. Аранович З.И., Артыков Т.У., Мухаммедов Б.К. Расчет эффективности региональных сейсмических станций Средней Азии // Методика и расчеты оценки эффективности региональных систем сейсмических наблюдений. – Тбилиси: Мецниереба, 1980. – С. 78–96.
- 3. **Мирзалиев М.М., Асманов О.А., Гамидова А.М.** Отчет о результатах сейсмических наблюдений на территории ДАССР, проведенных Опытно-методической партией в 1990 году. Махачкала, 1991. С. 27–42.
- 4. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 *км* // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 5. Соловьёва О.Н., Агаларова Э.Б., Алимамедова В.П., Гасанов А.Г., Геодакян Э.Г., Гюль Э.К., Дарахвелидзе Л.К., Петросян М.Д., Фабрициус З.Э., Хромецкая Е.А. Калибровочные функции для определения магнитуды Кавказских землетрясений по короткопериодной волне *P* на малых эпицентральных расстояниях // Интерпретация сейсмических наблюдений. – М.: МГК АН СССР, 1983. – С. 65–72.

- 6. Амиров С.Р. (отв. сост.), Мусалаева З.А., Гамидова А.М., Сагателова Е.Ю., Абдуллаева А.Р. Дагестан. Каталог (оригинал) землетрясений Дагестана за 2001 г. – Обнинск: Фонды ГС РАН, 24.10.2006. – 7 с.
- 7. Асманов О.А., Амиров С.Р., Даниялов М.Г., Левкович Р.А., Мирзалиев М.М., Осокина А.Ш., Габсатарова И.П., Михайлова Р.С. Кизилюртское землетрясение 31 января 1999 г. с *MS*=5.5, *I*₀=7 (Дагестан) // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 254–263.
- 8. Горбунова И.В., Ризниченко Ю.В. Опыт картирования сейсмической активности по методике суммирования // Физика Земли. – 1965. – № 7. – С. 22–29.
- 9. Габсатарова И.П., Амиров С.Р. (отв. сост.), Селиванова Е.А., Девяткина Л.В., Иванова Л.Е., Мусалаева З.А., Гамидова А.М., Сагателова Е.Ю., Абдуллаева А.Р. Северный Кавказ. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 10. Bulletin of the International Seismological Centre for 2001. Berkshire: ISC, 2002-2003.
- 11. Абдуллаева Р.Р. Миргуламова С.М., (отв. сост.), Казиева С.Г., Мамедова М.К., Абдуллаева Э.Г., Саидова Г.Э., Исмайлова С.С, Кулиева С.К., Исламова Ш.К. Азербайджан . (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).