КАВКАЗ:

УДК 550.348.098.64 (479.24)

Азербайджан

А.Г. Гасанов, Р.Р. Абдуллаева

Республиканский Центр сейсмической службы НАН Азербайджана, г. Баку, science@azeurotel.com

Система наблюдений на территории Азербайджана в 2001 г. состояла из 14 сейсмических станций (табл. 1), и в ней, по сравнению с ситуацией в 2000 г. [1], произошли небольшие изменения. Станция «Лянкяран» («Ленкорань»), которая, как и в 2000 г., в обработке землетрясений не использовалась, т.к. ее оборудование составлял лишь один комплект ССРЗ-М, записывающий лишь сильные движения, была закрыта 30 декабря 2000 г., а указанный комплект перенесен на станцию «Баллабур» 15 января 2001 г.

Таблица 1. Сейсмические	станции Азербайджана	(в хронологии их	к открытия),	работавшие
в 2001 г., и их г	араметры			

N₂	Стан	ция		Дата	Ко	ордина	аты		A	лпаратура	
	Название	К	од	открытия	φ°, N	λ°, Ε	$h_{\rm y}$,	Тип	Компо-	$V_{\rm max}/$	$\Delta T_{\rm max}$,
		межд.	рег.				м	прибора	нента	чувствительность	С
1	Шамахы	SHX	ŞMX	1902	40.64	48.64	840	СКМ-3	N, E, Z	10000	0.20-1.2
	(Шемаха)							CK	N, Z	1000	0.40-9.5
								СК(КПЧ)	Е	100	0.30-10.0
								AC3-2	Ν	$0.0061 c^2$	0.099
									Е	$0.0063 c^2$	0.097
									Ζ	$0.0060 c^2$	0.096
2	Баку	BAK	BAK	1903	40.37	49.82	83	СК	N, E	800	0.30-10.5
									Ζ	800	0.60-9.5
	Гянджа	GNC	GNC	06.1950	40.63	46.31	532	CKM-3	N, E, Z	50000	0.20-1.2
	(Кировабад)							CK	N, E	1500	0.30-10.5
									Ζ	800	0.30-8.5
								СК(КПЧ)	N, E, Z,	150	0.10-2.5
								CCP3-M	Ν	$0.00208 c^2$	0.07
									E	$0.00201 c^2$	0.10
									Ζ	$0.00206 c^2$	0.07
4	Нахчыван	NAK	NXÇ	28.01.1951	39.20	45.41	887	CKM-3	N, E, Z	10000	0.15-1.2
	(Нахичевань)							CK	N, E	1500	0.35-10.5
									Ζ	800	
								CCP3-M	N, Z	$0.0024 c^2$	0.07
									Е	$0.0023 c^2$	0.08
5	Пиргулу	PRL	PRL	1966	40.78	48.59	1448	CM-3	N, Z	15000	0.20-1.2
	(Пиркулу)			03.12.1994					E	1500	0.20-1.2
	(Пиркули)							AC3-2	Ν	$0.0062 c^2$	0.090
	(приостановл.								E	$0.0057 c^2$	0.098
	21.01.1994 г.)								Ζ	$0.0061 c^2$	0.095
6	О. Чилов	CHL CIL		27.04.1968	40.32	50.59	-24	CM-3	N, E, Z	3000	0.20-0.80
	(о. Жилой)		-								
7	Мингечевир	MNR	MNR	1968	40.77	47.06	30	CM-3	N, E, Z	1500	0.20-1.1
	(Мингечаур)							CCP3-M	Ν	$0.00208 c^2$	0.09
									E	$0.00215 c^2$	0.08
									Ζ	$0.00206 c^2$	0.10

№	Стан	ция		Дата	Ко	ордина	аты		A	лпаратура	
	Название	К	од	открытия	φ°, N	λ°, E	$h_{\rm y}$,	Тип	Компо-	$V_{\rm max}$ /	$\Delta T_{\rm max}$,
		межд.	рег.				м	прибора	нента	чувствительность	С
8	Шеки	SHE	ŞEK	01.1973	41.20	47.19	600	CKM-3	N, Z	10000	0.20-1.2
									Е	1000	0.20-1.1
								ССРЗ-М	Ν	$0.00225 c^2$	0.06
									E	$0.00219 c^2$	0.06
									Ζ	$0.00231 c^2$	0.05
9	Баллабур	BLB	BLB	06.1984	38.71	48.78	70	СКМ-3	N, Z	20000	0.20-1.20
									Е	2000	0.20-1.2
								СКД	N, Z	500	0.30-9.0
									Е	50	0.30-1.5
								CCP3-M	Ν	$0.002198 c^2$	0.06
									Е	$0.002156 c^2$	0.06
									Ζ	$0.002250 c^2$	0.06
10	Губа	QUB	QUB	01.11.1978	41.38	48.36	1000				
	(Куба)			20.04.1998	41.33	48.50		CKM-3	N, Z	15000	0.20-0.8
	(приостановл.								E	1500	0.20-0.7
	11.06.1997 г.)							CCP3-M	N	$0.002114 c^2$	0.08
									E	$0.002082 c^2$	0.09
									Ζ	$0.002056 c^2$	0.10
11	Исмаиллы	ISM	ISM	03.08.1982	40.81	48.21	926	CM-3	N, Z	20000	0.25-1.25
									E	2000	0.25-1.25
								AC3-2	Ν	$0.0055 c^2$	0.00985
									E	$0.0054 c^2$	0.00763
12	Нардаран	NRD	NRD	06.1988	40.58	49.98	22	СКМ-З	Ν	10000	0.20-0.60
									E	1000	0.20-0.60
									Ζ	5000	0.20-0.70
13	Загатала	ZKT	ZKT	1979	41.65	46.67	530	CM-3	N, Z	20000	0.20-1.2
	(Закатала)			21.06.1997					E	2000	0.20-1.2
	(закрыта							ССРЗ-М	Ν	$0.0021 c^2$	0.10
	17.05.1995 г.)								E	$0.0024 c^2$	0.10
									Ζ	$0.0028 c^2$	0.08
14	Лок-Батан	LKB		1980	40.30	49.71	40				
	(приостановл.			25.04.1997				CM-3	N, Z	1500	0.20-1.1
	в янв. 1990 Г.)					1	1				

На рис. 1 показана дислокация станций и даны изолинии K_{\min} энергетической представительности землетрясений. Согласно этой карте, республиканская сеть сейсмических станций обеспечила уверенную регистрацию землетрясений на уровне $K_{\min}=7.0$ на двух участках: на северо-западе Азербайджана между станциями «Загатала» и «Шеки» и в его центральной части, вблизи группы из трех станций: «Исмаиллы», «Пиргулу» и «Шамахы». Землетрясения с $K_{\min}=8$ представительны на большей части территории республики, за исключением Нахчыванской АР и участков вдоль границы Азербайджана с Арменией и Ираном, где не пропущены толчки лишь с $K_{\rm P} \ge 8.5$.

Определение параметров очагов землетрясений проводилось параллельно: на ЭВМ по программе «Гипоцентр» [2] и ручным способом (методом засечек). Для Шамахы-Исмаиллинской зоны использовался локальный годограф О.Б. Бабазаде [3], для остальной территории – осредненный годограф Т.М. Лебедевой и А.Я. Левицкой [4]. Величина землетрясений определялась энергетическим классом *К*_P по шкале Т.Г. Раутиан [5] и магнитудой *МРVA* по региональной калибровочной кривой [6].

Общее число землетрясений, зарегистрированных в пределах координат ϕ =38.0–42.0° N и λ =44.7–52.0° E, превысило 1600, но локализовано лишь 674 из них с K_P =3.8–12.7 [7], из которых 50 имеют $K_P \ge 9.6$. В каталог [8], помещенный в настоящий сборник, не включены землетрясения в приграничных районах с Арменией, Грузией и Северным Кавказом на расстоянии от государственной границы Азербайджана более 30 км (*ped.*). Землетрясения, локализованные на территории Ирана, включены в каталог без ограничений. В итоге осталось 615 землетрясений, их распределение по энергетическим классам и суммарная сейсмическая энергия даны в табл. 2.

Рис. 1. Карта энергетической представительности K_{\min} землетрясений Азербайджана за 2001 г. 1 – изолиния K_{\min} ; 2 – сейсмическая станция; 3 – граница района Кавказа; 4 – государственная граница.

Таблица 2. Распределение числа землетрясений разных классов *K*_P и суммарная сейсмическая энергия Σ*E* на исследуемой территории за 2001 г.

Год				K	Р		N_{Σ}	$\Sigma E \cdot 10^{12}$,		
	≥5	6	7	8	9	10	11	12		Дж
2001	107	111	102	148	104	28	13	2	615	3.72

Уровень сейсмической энергии в 2001 г. значительно ниже такового в 2000 г. (вместо 118.85 $10^{12} \ \mbox{$\square$/2$} \ \mbox{$$

Для афтершока 7 января имеются два решения механизма очага [10] по данным HRVD и ZUR (табл. 3).

Таблица 3. Параметры механизма очага землетрясения 7 января в 06^h49^m с *K*_P=11.6 [8]

Агентство	Дата,	$t_0,$	h,	Mw	0	Оси гла	вны	х напр	яже	ний		Нода	альные	плоскости		
	дм	ч мин с	км			Т		Ν		Р		NP1			NP2	
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
HRVD	07.01	06 49 08.8	48	5.2	34	322	20	66	49	181	359	22	201	249	82	290
ZUR	07.01	06 49 00	30	4.9	6	313	12	44	77	196	234	52	285	30	40	251

Согласно этим данным афтершок возник под действием преобладающих напряжений растяжения, ориентированных в северо-западном направлении (рис. 3). В решении HRVD пологая нодальная плоскость *NP*1 (*DP*=22°) простирается на северо. Другая плоскость – *NP*2 – имеет достаточно крутое падение (*DP*=82°) и простирание на северо-северо-восток. Тип движения по *NP*1 – правосторонний сдвиг с компонентами сброса, по *NP*2 – сброс с компонентами левостороннего сдвига. В решении ZUR обе плоскости залегают достаточно круто и простираются в направлении северо-восток–юго-запад. Тип движения по обеим плоскостям – сброс с компонентами сдвига, левостороннего – по *NP*1 и правостороннего – по *NP*2.

1 – энергетический класс *К*_P; 2 – сейсмическая станция; 3 – населенный пункт; 4, 5 – государственная граница Азербайджана и других стран соответственно.

Рис. 3. Стереограммы механизма очага землетрясения 7 января с *К*_Р=11.6 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Список афтершоков за 2001 г. приведен в табл. 4 вместе с началом их серии в 2000 г. и на его основе рассмотрены общие закономерности данной серии афтершоков.

Таблица 4. Основные параметры афтершоков Каспийских землетрясений 25.11.2000 г. в течение 2000–2001 гг.

№	Дата, д м	t ₀ , ч мин с	Эпицентр φ° , N λ° , E	h, км	MPVA	K _P	<i>I</i> , балл	N⁰	Дата, д м	t ₀ , ч мин с	Эпицентр σ° , N λ° , E	h, км	MPVA	K _P	<i>I</i> , балл
		0	сновные тот	чки			<u> </u>	44	27.11	04 43 11.8	39.93 50.10	44	4.0	9.2	
	25 11	18 00 00 5	40 14 50 05	25_30	62	135		45	27.11	09 41 08.7	40.02 49.98	36	4.0	9.3	
	25.11	18 10 40.0	40.00 50.00	35-40	6.4	14.2		46	27.11	09 51 42.1	40.00 50.00		4.0	9.0	
	1	Аф	тершоки в 2	000 г.			L	47	27.11	13 51 15.1	40 00 49 80			0.0 89	
1	25 11	18 47 45 2	40 12 50 07	41	48	10.2	3	49	27.11	16 04 50.1	39.90 49.90		4.5	9.7	2–3
2	25.11	18 49 12.1	39.90 49.90		5.0	11.0	4.5	50	27.11	21 16 54.2	39.98 50.02	41	4.4	9.7	2–3
3	25.11	19 04 54.6	40.08 49.79	31		9.6		51	28.11	00 14 37	40.18 50.11		4.6	9.7	2–3
4	25.11	19 28 01.2	40.08 49.98	43	4.3	9.5		52	28.11	05 07 41.1	40.10 50.00			8.9	
5	25.11	19 46 26.7	39.90 49.90			8.7		53 54	28.11	06 13 48.0	39.80 49.80			8.5	
6	25.11	19 48 49.0	40.00 50.00	27	2.0	8.8		55	20.11	13 47 28 9	39.90 30.00 40 10 50 10			9.0	
8	25.11	20 05 34.4	40.13 50.05	31	3.9	9.1		56	28.11	15 13 32.5	40.00 50.00			8.3	
9	25.11	20 11 39.0	40 14 50 08	36	45	10.0	3	57	28.11	16 04 45.9	40.00 50.00			8.4	
10	25.11	20 23 30.0	39.90 49.90	50	1.5	8.9	5	58	28.11	18 44 02.0	40.10 50.10		4.2	9.3	
11	25.11	20 46 13.0	40.08 49.86	34		9.3		59	28.11	20 37 24.4	40.07 50.05	43	4.9	10.7	4
12	25.11	21 01 07.9	40.12 50.12	37	4.1	9.3		60	28.11	20 46 45.5	39.90 49.90		3.7	8.7	
13	25.11	21 18 51.7	40.30 49.85	41	4.1	9.1		61	29.11	02 07 09.2	40.10 50.10		3.9	9.2	
14	25.11	21 58 32.6	40.00 49.70	20	4.3	9.4	2	62 63	29.11	07 22 40.5	39.90 30.00	45		9.1 8 /	
15	25.11	22 15 07.4	40.15 50.06	39	4.5	10.2	3	64	29.11	10 45 02 3	40.00 50.00	43	46	104	3-4
10	26.11	00 01 51.2	40.00 49.80	39	42	0.0 9.8	2_3	65	29.11	12 34 43.9	40.00 49.90	15	1.0	8.4	51
18	26.11	00 59 20.0	39.90 49.80	57	7.2	7.8	2 5	66	29.11	17 40 45	40.00 49.90			7.5	
19	26.11	01 30 54.5	39.95 49.79	27		9.6		67	29.11	23 17 56	39.90 49.90			8.0	
20	26.11	01 41 33.5	39.90 49.90			9.8		68	30.11	00 45 54	40.00 50.00			7.6	
21	26.11	01 49 58.0	40.00 50.00			7.8		69	30.11	02 45 29.8	39.90 49.90	26	5.0	8.5	-
22	26.11	01 56 22.6	39.90 49.80			9.0		70	30.11	05 09 52.6	40.11 50.14	36	5.2	11.5	5
23	26.11	02 19 17.5	40.00 50.10	25	4.0	9.5	2	71	30.11	03 13 30	40.10 50.10			7.8 8.8	
24	26.11	02 32 33.3	39.88 49.78	25	4.8	10.3	3	73	30.11	09 17 51.3	40.00 50.10			8.2	
26	26.11	04 00 24 0	40 01 49 40	18	46	10.2	3	74	30.11	10 30 02	40.00 50.10			7.8	
27	26.11	04 07 34.9	40.00 50.10	10	1.0	8.6	5	75	30.11	11 56 56.4	40.00 50.10			8.0	
28	26.11	05 58 24.2	40.00 49.90			11.0	4–5	76	30.11	17 15 15.3	39.90 49.90			7.8	
29	26.11	06 36 35.5	40.02 49.97	30	4.8	10.6	4	77	30.11	17 49 15.0	39.90 49.90			8.9	
30	26.11	06 50 34.7	39.90 49.90			8.5	_	78	30.11	21 10 00.7	39.90 49.90			8.2	
31	26.11	08 47 57.7	40.04 50.20	33	5.6	11.6	5	80	01 12	21 33 38.0 04 28 24 3	39.90 30.00			0.1 Q /	
32	20.11	12 48 17.5	40.00 50.10			8.4		81	01.12 01.12	14 08 27 3	40 07 49 99	38	43	10.1	3
34	26.11	13 28 36 5	40.00 50.10			9.0 7.8		82	01.12	20 57 58.6	39.88 49.80	20	4.4	9.6	2
35	26.11	13 36 26.5	40.10 50.10			7.7		83	02.12	08 30 50.3	40.12 50.29	46		9.4	
36	26.11	14 12 40.8	39.99 50.11	36	4.1	9.3		84	02.12	09 36 07.2	40.19 50.03	39	4.5	9.6	
37	26.11	14 16 54.5	39.90 49.60	25	4.6	10.5	4	85	02.12	11 08 46.5	40.00 50.40			8.4	
38	26.11	14 42 58.5	40.00 50.10			8.3		86	02.12	13 18 04.5	40.00 50.20	25	1 1	8.3	2 2
39	26.11	15 25 47	40.01 49.77	32	4.3	10.3	3	0/ 88	02.12 02.12	17 17 /1 0	29.94 20.03 10 07 10 08	33 34	4.4	9.8 80	2-3
40 71	20.11	1/055/.1	40.00 50.00	30	12	9.1 10 0	3	89	02.12	18 11 07 3	40.33 49 96	39	43	9.8	2-3
41	26.11	21 37 11 4	40 01 49 86	39 42	4.5	10.0	4	90	02.12	22 26 54.5	40.00 50.00	.,		8.5	
43	27.11	03 02 41.2	39.90 49.90	12	4.0	9.1		91	02.12	23 38 49.5	40.10 50.10			8.2	

												_			
N⁰	Дата,	$t_0,$	Эпицентр	<i>h</i> ,	MPVA	$K_{\rm P}$	I,	N⁰	Дата,	$t_0,$	Эпицентр	<i>h</i> ,	MPVA	$K_{\rm P}$	Į,
	д м	ч мин с	φ°, N λ°, Ε	КМ			балл		дм	ч мин с	φ°, N λ°, Ε	КМ			балл
92	03.12	03 59 46.0	39.90 49.90			8.2		155	24.12	05 38 16.4	40.01 50.00	42		8.4	
93	03.12	22 36 06.6	40.10 50.10			8.0		156	24.12	16 30 18.7	40.08 49.98	45	4.0	9.8	
94	04.12	03 42 17.5	39.98 49.94	46	4.1	9.4		157	24.12	23 13 35.9	40.19 50.22	45		8.2	
95	04.12	15 25 29.0	40.22 50.02	45	4.5	9.8	2–3	158	25.12	03 00 16.0	40.10 50.16	45	4.7	10.5	2–3
96	04.12	16 10 49.0	40.20 50.00			8.3		159	26.12	01 13 16.0	39.80 50.05			7.5	
97	04.12	18 50 08.5	40.05 50.05			8.0		160	26.12	01 47 09.5	40.00 49.90			8.3	
98	04.12	20 02 28.0	39.90 49.90			8.0		161	26.12	09 04 19.0	39.90 50.10			7.8	
99	05.12	10 20 33.8	40.10 50.10			8.0		162	26.12	10 45 45.0	40.05 50.20			8.1	
100	05.12	0/2044.5	40.20 50.00	4.5		8.0		163	27.12	18 50 48.0	40.05 50.25			8.4	
101	05.12	10 54 15.9	40.00 50.09	45	4.4	9.5		164	28.12	06 55 38.0	39.90 49.80			8.3	
102	05.12	10 27 10.1	39.90 50.00			8.2		165	28.12	08 10 12.0	40.20 50.20			8.0	
103	05.12	19 3 / 48.0	39.95 50.05			8.3				Аф	тершоки в 2	001 г.			
104	06.12	02 34 38.5	40.00 49.90			8.2 0.2		166	03.01	07 39 18.3	40 50.1			6.8	
105	06.12	03 07 30.0	40.00 50.00	25	4.1	8.3 0.4		167	06.01	01 43 41.5	39.9 49.9			7.9	
100	06.12	04 13 46.2	40.08 50.15	33	4.1	9.4		168	06.01	03 28 07.5	39.9 49.9			7.8	
107	06.12	05 52 19.2	40.10 50.20	43	4.1	9.5		169	07.01	06 49 01	40.02 50.05	34	5.5	11.6	4–5
100	06.12	12 04 20 2	40.00 30.10	11	4.4	0.4	2 2	170	07.01	06 54 02.7	40.02 50.05			7.5	
110	06.12	12 04 20.3	40.05 50.15	44	37	9.7	2-3	171	07.01	10 42 46.6	40.05 50.05			7.8	
111	07.12	12 50 57 5	39 90 50 10		5.7	7.5		172	07.01	10 44 36.6	40.05 50.05			7.7	
112	08.12	03 19 55 0	40 10 50 10			8.0		173	07.01	11 24 47.5	40.05 50.05			7.4	
113	08.12	15 40 00 6	39 95 49 80	39	43	9.5		174	07.01	18 26 01.4	40.12 50.13	45	4.2	9.4	
114	08.12	18 46 24 0	40 10 49 80	57	43	9.6		175	07.01	20 41 45.3	40.08 50.05	45	4.2	9.4	
115	09.12	10 38 02.5	39.95 49.90			8.8		176	08.01	01 01 59.5	40.07 50.36	46	3.2	8.4	
116	09.12	10 37 03.0	39.95 49.90			8.5		177	08.01	13 24 39.4	39.9 50.23	42	4	9.3	
117	09.12	17 46 53.3	40.00 49.90			8.4		178	08.01	23 47 32.5	39.9 50.23			7.9	
118	09.12	18 45 24.0	40.00 50.10			8.6		179	11.01	18 46 40	40 50	20	10	6.5	
119	09.12	20 3 54.9	39.90 50.02	37	3.7	8.8		180	12.01	01 1/ 38.3	40.06 49.6	28	4.2	9.3	
120	09.12	22 59 29.5	39.90 50.00			8.3		181	12.01	11 23 33	40.21 50.09	41	3.6	8.8	
121	11.12	05 55 58.0	39.90 50.00			8.0		182	15.01	14 52 54.5	40.06 50.32	44	3.5	8.0 9.6	
122	11.12	13 18 13.3	39.99 49.56	25		8.1		103	10.01	21 23 37.0	40.12 49.87	22	3.3	8.0 0.4	
123	11.12	19 44 18.5	39.80 49.80			7.6		104	21.01 21.01	17 10 22 3	40.2 49.30	22	3.9	9.4	
124	11.12	20 20 47.0	39.90 50.15	45	3.5	8.5		185	21.01 22.01	17 10 22.3	39.9 49.73		5.0	9.5	
125	11.12	22 14 49.0	39.90 50.20			7.6		180	22.01	03 24 56 1	39 95 49 7			86	
126	12.12	02 21 46.4	40.05 49.96	45	4.4	9.6		188	29.01	10 24 27	39 85 49 75			8.6	
127	12.12	06 53 01.0	40.00 50.00	10		8.0		189	02.02	19 13 08 1	39.9 50			83	
128	12.12	0/51 10.8	40.05 49.99	40	4.2	9.1		190	05.02	05 00 48.6	40.14 50.03	38	3.9	8.8	
129	13.12	11 43 57.0	40.05 49.90			1.8		191	06.02	00 53 34.4	39.95 49.75			8.2	
130	13.12	14 1 / 55.0	40.00 49.95	15	4.2	/.0		192	07.02	07 57 06.1	39.85 49.9			7.6	
131	13.12	18 00 30.4	39.88 30.10	43	4.2	9.0		193	07.02	08 27 03.6	39.85 49.7			7.7	
132	14.12	10 04 52.2	39.90 49.98	44		7.0		194	09.02	17 23 33.5	40.13 49.88	45	3.7	8.7	
133	14.12	17 06 48 2	39.90 49.90 40 10 40 00	16		0.0 8 5		195	10.02	11 02 15.3	39.95 49.81	22	3.6	8.5	
134	14.12	22 59 02 3	39 85 49 64	22		0.J 87		196	11.02	19 22 12.2	39.99 50.07	44	3.8	8.9	
136	15 12	09 14 22 1	40 00 50 00	22		7.6		197	23.02	01 15 49.0	39.91 49.61	24	3.9	9	
137	15.12	16 35 19 7	40 00 50 00			7.1		198	25.02	16 45 59.3	39.89 49.62	35	3.9	8.8	
138	15 12	22 09 13 0	40.00 50.00			7.0		199	05.03	10 17 30.1	40.13 50.02	37	4.4	9.7	
139	16.12	05 46 24.0	40.10 49.90			8.0		200	06.03	19 48 55.5	40 49.77			8.2	
140	16.12	09 46 10.0	40.17 50.21	42	3.7	8.7		201	07.03	00 37 15.6	40 49.77			8.1	
141	16.12	14 55 14.6	39.90 49.80			8.5		202	10.03	22 44 29.0	40.12 50.41	45	3.8	8.8	
142	16.12	20 21 09.5	40.00 50.10			8.5		203	12.03	15 11 28.5	39.9 49.75			7.5	
143	17.12	00 08 07.8	39.90 49.83			8.6		204	13.03	20 12 57.3	39.8 49.9		3.1	8.2	
144	18.12	04 45 43.4	40.01 49.58	28	3.5	8.4		205	15.03	22 33 37.9	40.18 50.2			9.2	
145	18.12	18 19 59.7	40.13 49.95	38	3.6	8.6		206	20.03	03 03 03.8	39.9 49.8	21		1.5	
146	18.12	18 43 13.8	40.03 50.28	45	3.6	8.5		207	21.03	23 32 40.8	39.94 30.28	31		ð.1	
147	19.12	00 22 30.0	40.00 50.00			8.3		208	22.03	02 09 32.1	37.7 30	10	2 1	7.0 8 1	
148	19.12	05 37 12.0	40.00 50.00			8.0		209	23.03	02 20 48.0	40.21 30.13	42	3.1	0.1 8 2	
149	19.12	08 21 40.0	40.00 50.00	_		7.9		210	23.03	02 12 27 9	39.5 49.9			0.5 8 7	
150	22.12	17 51 42.5	40.18 50.21	34		8.4		211	26.02	20 56 16 1	39.8 49.75			0.2 7 8	
151	23.12	08 24 47.0	40.11 49.92	44	4.6	10.8	4	212	28.03	02 15 06 8	397 497			,.0 8	
152	23.12	12 27 32.5	40.00 49.90			7.7		214	28.03	21 34 19 5	39.85 49 85			8.4	
153	25.12	15 05 19.0	40.00 49.90	26		1.1		215	04.04	21 08 31.0	20.0 40.05			7.8	
154	25.12	15 51 41.4	39.75 50.02	36		8.7	<u> </u>				39.9 49.95				<u> </u>

											T					
№	Дата,	<i>t</i> ₀ ,	Эпиг	центр	h,	MPVA	$K_{\rm P}$	Ι,	N⁰	Дата,	<i>t</i> ₀ ,	Эпицент	р <i>h</i> ,	MPVA	$K_{\rm P}$	Ι,
	дм	ч мин с	φ°, N	λ°, E	КМ			балл		дм	ч мин с	φ°, N λ°,	Е км			балл
216	14.04	23 43 55.5	40	50.1			8.5		233	20.06	20 41 51.0	39.71 49.8	38 31	3.8	9.3	
217	16.04	20 57 06.5	40	50			8		234	27.06	07 38 14.2	39.92 50.1	1 43	3.7	8.7	
218	17.04	00 17 09.5	40	50			8.2		235	01.07	11 25 38.5	40 50			8.5	
219	17.04	12 10 05.0	40	50			7.4		236	18.07	23 46 24.5	40.1 50.1	1 37		8.4	
220	21.04	05 57 48.8	39.99	50.13	40	4.5	9.8		237	29.07	20 38 18.9	39.85 49.7	78 23	4.2	10.3	
221	28.04	22 52 55.2	39.98	50	41	4.4	9.4		238	03.08	17 09 02.0	39.85 49.8	35		8.6	
222	29.04	04 34 56.6	40.08	49.9	34	4.1	9.2		239	04.08	23 52 25.6	40.18 49.8	3	3.4	8.3	
223	29.04	20 51 43.0	39.9	49.9		3.2	8.4		240	18.08	08 31 38.3	39.85 49.9)		7.8	
224	02.05	23 46 54.6	39.72	50.1		3.5	8.5		241	29.08	05 02 33.0	39.95 49.4	45		8.6	
225	06.05	19 27 51.5	39.95	50.05			7.8		242	22.09	04 39 53.0	39.95 49.7	7	4.1	9	
226	07.05	07 13 02.5	39.95	50.05			7.6		243	05.10	09 10 51.2	40.14 49.9	98 37	3.8	8.9	
227	18.05	06 57 00.8	39.95	49.9			8.3		244	18.10	11 02 37.6	39.8 49.8	3		8.7	
228	18.05	18 02 28.0	40	50			7.4		245	29.10	19 07 31.8	40.12 50.2	21 28		8.8	
229	20.05	20 29 27.8	40.27	49.93	45	4.8	10.6	3–4	246	24.11	03 36 42.1	40.04 49.7	77 34		8.3	
230	21.05	00 49 13.1	40	49.84	24	4.4	9.3		247	08.12	19 17 54.4	39.9 49.9	95		8.8	
231	08.06	16 46 32.3	39.8	50.05			8.2		248	14.12	17 39 02.0	39.75 50.0)5		7.5	
232	14.06	06 03 28.0	39.9	49.75			7.5		249	15.12	02 26 35.1	40.01 50.1	18 36	4.4	9.7	

Из приведенных в табл. 5 месячных чисел афтершоков видно, что серия практически близка к завершению, хотя полное затухание еще не наступило и, по-видимому, слабое ее продолжение следует ожидать и в 2002 г. На рис. 4 показано изменение во времени числа афтершоков. Затухание серии достаточно резкое – в первый месяц реализовалось 63% от общего их числа (табл. 5). Особенностью этой серии афтершоков являются значительные глубины их очагов, от 20 до 45 км (рис. 5). Наклон графика повторяемости афтершоков (рис. 6) составил γ =-0.61, т.е. значительно выше среднего, что, в общем-то, нередко для афтершоковых серий. На рис. 7 приведен вертикальный разрез их гипоцентров в 2001 г., ориентированный в направлении запад-восток, где прослеживается нарастание глубин в восточном направлении, что отмечалось и в 2000 г.

Таблица 5. Суммарные числа афтершоков Каспийских землетрясений 25.11.2000 г. в месячных интервалах

Временной интервал	$N_{\mathrm{a}\phi\mathrm{t}}$
25.11. – 24.12.2000 г.	157
25.12. – 24.01.2000 г.	29
25.01. – 24.02.2001 г.	11
25.02. – 24.03.2001 г.	14
25.03. – 24.04.2001 г.	9
25.04. – 24.05.2001 г.	9
25.05. – 24.06.2001 г.	3

Временной интервал	$N_{\mathrm{a}\phi\mathrm{t}}$
25.06. – 24.07.2001 г.	3
25.07. – 24.08.2001 г.	4
25.08. – 24.09.2001 г.	2
25.09. – 24.10.2001 г.	2
25.10. – 24.11.2001 г.	2
25.11. – 24.12.2001 г.	3
N_{Σ}	248

Рис. 4. Затухание во времени серии афтершоков Каспийских землетрясений 25.11.2000 г., за период 25.11.2000 г. – 31.12.2001 г.

Рис. 5. Глубины гипоцентров афтершоков Каспийских землетрясений 25.11.2000 г.

Рис. 6. График повторяемости афтершоков Каспийских землетрясений 25.11.2000 г.

Рис. 7. Вертикальный разрез гипоцентров афтершоков Каспийских землетрясений 25.11.2000 г., произошедших в 2001 г.

Представляет интерес проанализировать более сильные землетрясения 2001 г. с $K_P \ge 10.6$ на отдельной карте, в пределах государственных границ республики, содержащей некоторые элемента рельефа (рис. 8). Землетрясение с $K_P = 11.7$, зарегистрированное 17 июня в $11^h 22^m$ в Нахичеванской автономной области, было максимальным на суше. Его очаг расположен в южных отрогах Зангезурского хребта. Оно сопровождалось несколькими афтершоками (табл. 6) и ощущалось в ближайших населенных пунктах с интенсивностью до 5 баллов, в г. Нахчыване – до 3–4 баллов.

Рис. 8. Карта эпицентров землетрясений с К_Р≥9.6 в пределах границ Азербайджана за 2001 г.

^{1 –} энергетический класс *K*_P; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – Баку; 5 – государственная граница.

N⁰	Дата, д м	t ₀ , ч мин с	Эпиі ф°, N	центр λ°, Е	h, м	MPVA	$K_{ m P}$
			Основ	ной толчок			
	17.06	11 22 12.2	39.11	45.78	6	5.2	11.7
			Аф	тершоки			
1	17.06	18 26 36.7	39.18	45.90		3.8	9.3
2	17.06	18 39 25.0	39.19	45.75	14		9.0
3	19.09	09 07 13.6	39.33	45.85	4	3.8	9.0

Таблица 6. Основные параметры афтершоков землетрясения 17 июня в 11^h22^m с K_P=11.7

На остальной территории республики реализовались землетрясения не выше 11-го энергетического класса. Это два землетрясения на северо-западе (рис. 8) в зоне повышенной плотности эпицентров в приграничье трех республик: Азербайджана, Грузии и Дагестана (рис. 2), произошедшие 11 марта в $10^{h}57^{m}$ с $K_{P}=11.1$, 30 октября в $04^{h}31^{m}$ с $K_{P}=10.8$ и вызвавшие колебания с интенсивностью 3–4 балла в Балакене (10 км) и 3 балла – в Гяндже (70 км).

Еще два толчка зарегистрированы 13 июля в $12^{h}22^{m}$ с $K_{p}=10.7$ и 26 ноября в $05^{h}24^{m}$ с $K_{p}=11.3$ в Шамахы-Исмаиллинской сейсмоактивной зоне. Второе землетрясение ощущалось с интенсивностью 3–4 балла в Пиргулу (15 км) и 3 балла – в Шемахе (30 км). В этой зоне наблюдается максимальная плотность эпицентров (зарегистрировано 124 землетрясения с $K_{p}\geq4.5$ (рис. 2)).

На территории Малого Кавказа, в отрогах хр. Муровдаг, на фоне слабой сейсмичности 23 января в $09^{h}27^{m}$ и $09^{h}29^{m}$ локализована группа из двух толчков с $K_{P}=11.5$ и 10.5 соответственно. Более сильный из них, очаг которого расположен в зоне влияния Предмалокавказского продольного разлома [11], ощущался с I=4 балла в Ханларе (30 км) и 3 балла – в Гяндже (40 км).

На Ширванской равнине, вблизи р. Куры, возникли 29 апреля в $16^{h}34^{m}$ и 23 сентября в $01^{h}14^{m}$ два толчка равной энергии с $K_{P}=10.7$. Гипоцентр первого из них локализован на границе кора-мантия с $h=45 \ \kappa m$ по республиканским данным [8] и 55 κm по глубинной фазе pP в [10]. Второе также заглублено – 18 κm по [8] и 39 κm по фазе pP в [10]. Первое из них вызвало колебания в 3–4 балла в Сабирабаде (15 κm).

Повышена активность Куринской депрессии. Здесь произошло около 40 землетрясений с $K_{\rm P} \ge 8$. Максимальным было землетрясение 29 октября в $10^{\rm h}04^{\rm m}$ с $K_{\rm P}=11.3$, достаточно глубокое ($h=16 \ \kappa m \ [8], 42\pm 2 \ \kappa m \ [10]$) и ощутимое (Ленкорань ($40 \ \kappa m$) – 4 балла). Оно предварялось 3 октября в $10^{\rm h}49^{\rm m}$ толчком с $K_{\rm P}=9.8$.

Механизм очага землетрясения 29 октября [12] рассчитан по методу тензора момента в ZUR. В очаге превалирует напряжение сжатия, ориентированное на восток (табл. 7). Плоскость *NP*1 залегает круто, плоскость *NP*2 – пологая. Обе нодальные плоскости простираются в субмеридиональном направлении (рис. 9). Тип движения: взброс – по *NP*1 и надвиг – по *NP*2.

Агентство	Дата,	$t_0,$	h,	Mw	(Эси гла	вны	х напр	яжен	ний		Нода	альные	плос	кости	1
	дм	ч мин с	км			T		N		P	NP1			NP2		
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
ZUR	29.10	10 04 49	45	4.6	76	258	1	353	14	83	352	59	89	174	31	92

Таблица 7. Параметры механизма очага землетрясения 29 октября в 10^h04^m с K_P=11.3

Рис. 9. Стереограммы механизмов очагов землетрясений 29 октября в $10^{h}04^{m}$ с $K_{p}=11.3$ и 12 июня в $01^{h}46^{m}$ с $K_{p}=11.4$ в проекции нижней полусферы

1- нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

После некоторого перерыва заметно активизировалась сопредельная с Азербайджаном территория Ирана (рис. 2, 6). Здесь в приграничной полосе реализовались два землетрясения 11-го класса: 10 апреля в $12^{h}59^{m}$ с $K_{P}=10.8$, $h=5 \ \kappa m$ и 12 июня в $01^{h}46^{m}$ с $K_{P}=11.4$, $h=25 \ \kappa m$. Южнее выделяется целая полоса из семи землетрясений 10-го класса (рис. 8), произошедших 15 января в $15^{h}14^{m}$ с $K_{P}=9.8$, 7 апреля в $17^{h}16^{m}$ с $K_{P}=9.7$, 13 октября в $15^{h}19^{m}$ с $K_{P}=9.6$, 15 октября в $03^{h}24^{m}$ с $K_{P}=10.0$, 21 октября в $23^{h}42^{m}$ с $K_{P}=10.2$, 22 октября в $04^{h}39^{m}$ с $K_{P}=10.4$ и 19 ноября в $19^{h}57^{m}$ с $K_{P}=10.0$.

Для землетрясения 12 июня имеется решение механизма очага, рассчитанного по методу тензора момента в ZUR [12].

Агентство	Дата,	$t_0,$	h,	Mw	(Эси гла	вных напряжений				Нодальные плоскости						
	дм	ч мин с	км		Т			N		Р		NP1			NP2		
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
ZUR	12.06	01 46 49	15	4.5	76	84	14	263	0	353	249	47	70	97	47	110	

Таблица 8. Параметры механизма очага землетрясения 12 июня в $01^{h}46^{m}$ с $K_{P}=11.4$

В очаге данного землетрясения превалирует напряжение сжатия, ориентированное на север (табл. 8). Обе нодальные плоскости имеют достаточно крутое падение, их простирание – близширотное для *NP*2 и северо–северо-восточное для *NP*1 (рис. 9). Тип движения по обеим плоскостям – взброс с компонентами сдвига (левостороннего – по *NP*1 и правостороннего – по *NP*2).

Литература

- 1. Гасанов А.Г., Абдуллаева Р.Р. Азербайджан // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. – С. 64–69.
- 2. Шенгелая Г.Ш., Аманаташвили Я.Т., Лабадзе Л.Б. и др. О подборе оптимального трехмерного строения Кавказского региона // Сейсмологический бюллетень Кавказа за 1980 г. Тбилиси: Мецниереба, 1986. С. 106–108.
- 3. Бабазаде О.Б. Локальный годограф для Шемаха-Исмаиллинской зоны // Сейсмологические исследования СС «Черепаха» в Шемахинской эпицентральной области в 1979–1982 гг. Баку: Фонды Азербайджанского геологического управления и ИГ АН Республики Азербайджан, 1982. 50 с.
- 4. Левицкая А.Я., Лебедева Т.М. Годографы сейсмических волн на Кавказе // Квартальный сейсмологический бюллетень. – Тбилиси: Мецниереба, 1953. – 2. – № 1/4. – С. 51–60.
- 5. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 6. Соловьёва О.Н., Агаларова Э.Б., Алимамедова В.П., Гасанов А.Г., Геодакян Э.Г., Гюль Э.К., Дарахвелидзе Л.К., Петросян М.Д., Фабрициус З.Э., Хромецкая Е.А. Калибровочные функции для определения магнитуды Кавказских землетрясений по короткопериодной волне *P* на малых эпицентральных расстояниях // Интерпретация сейсмических наблюдений. М.: МГК АН СССР, 1983. С. 65–72.
- 7. Абдуллаева Р.Р., Миргуламова С.М. (отв. сост.), Казиева С.Г., Мамедова М.К., Абдуллаева Э.Г., Саидова Г.Э., Исмайлова С.С., Кулиева С.К., Исламова Ш.К. Каталог (оригинал) землетрясений Азербайджана за 2001 г. Обнинск: Фонды ГС РАН, 10.05.2006. 14 с.
- 8. Абдуллаева Р.Р. Миргуламова С.М. (отв. сост.), Казиева С.Г., Мамедова М.К., Абдуллаева Э.Г., Саидова Г.Э., Исмайлова С.С., Кулиева С.К., Исламова Ш.К. Азербайджан. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 9. Гасанов А.Г., Етирмишли Г.Д., Абдуллаева Р.Р. Каспийские землетрясения 25 ноября 2000 г. в 18^h09^m09^s и в 18^h10^m30^s с *Мw*=6.8 и 6.5, *I*₀=8 (Азербайджан) // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 295–305.
- 10. Bulletin of the International Seismological Centre for 2001. Berkshire: ISC, 2002-2003.
- 11. Шихалибейли Э.Ш. Некоторые проблемные вопросы строения и тектоники Азербайджана. Баку: Элм, 1996. 215 с.
- 12. Чепкунас Л.С. (сост.). Азербайджан. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).