ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ

А.И. Захарова, Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г Обнинск, luba@gsras.ru

Для 12 землетрясений Земли из разных сейсмических поясов с очагами в земной коре (табл. 1) представлены основные и динамические параметры очагов. Среди них больше половины произошли в Тихоокеанском сейсмическом поясе (1, 2, 5, 6, 8–10), три – в Трансазиатском (7, 11, 12) и два – в сейсмическом поясе Индийского океана (3, 4). Отметим, что наиболее значимыми на территории России были землетрясения на Сахалине (5) и на Алтае (7), а в странах СНГ – вблизи Азербайджана, в акватории Каспийского моря (11) и в Туркменистане (12).

Основные параметры очагов землетрясений (время возникновения t_0 , координаты гипоцентра φ , λ , h, магнитуды) даны в табл. 1 в трех вариантах: I – из Оперативного бюллетеня ЦОМЭ ГС РАН [1]; II, III – из бюллетеня Международного сейсмологического центра [2, ISC, HRVD]. Гипоцентры в I и II получены по временам первых вступлений *P*-волн на основе одного и того же годографа Джеффриса-Буллена [3], но по разным системам наблюдений, а в III – по методу тензора сейсмического момента центроида (СМТ) с использованием волновых форм от продольных до поверхностных волн [2, HRVD].

В варианте I представлены магнитуды по продольным волнам – *MPSP*, *MPLP* и по поверхностным – *MS*. Кроме того, здесь приведены моментные магнитуды *Mw*, рассчитанные на основе величины сейсмического момента M_0 по цифровым сейсмограммам двух сейсмических станций ГС РАН – «Обнинск» и «Талая» (см. в табл. 3). Расчет *Mw* выполнен по формуле Канамори [4]:

$$Mw = \frac{2}{3} \log M_0 - 10.7$$

для сейсмического момента в единицах «дн.см».

В варианте II даны магнитуды m_b по продольным волнам и Ms – по поверхностным. Моментные магнитуды Mw в варианте III получены по методу СМТ и взяты из [2, HRVD].

Следует отметить, что для всех землетрясений значения $m_b < MPSP$, что объясняется методикой их расчета. Максимальное различие магнитуд MPSP и m_b равно 0.6 единицы магнитуды для землетрясения (9). Для m_b выбирается интервал записи *P*-волн в пределах 5 *c* от вступления, в то время как для MPSP он может быть увеличен до 40–60 *c* [5]. Для землетрясения (10) $m_b > MPSP$ на 0.5 единицы магнитуды.

Сравнение магнитуд MS(MOS) и Ms(ISC) показывает, что в основном различия не превышают 0.2 единиц магнитуд, кроме землетрясения (1), где она достигает 0.5, что, повидимому, связано с разной выборкой данных для расчета.

Разница магнитуд Mw варьируют от 0.1 до 0.7, причем Mw в варианте I, как правило, меньше Mw в варианте III. Лишь для одного землетрясения 27 октября Mw (I) превышает Mw (III) на 0.3 единицы магнитуд, что также, вероятно, связано с методикой их определения: Mw (I) определены по *P*-волнам по записи одной станции («Обнинск» или «Талая»), в то время как при расчете Mw (III) используется вся сейсмограмма по нескольким станциям.

N⁰	Дата,	Вариант	$t_0,$	Эп	ицентр			Магн	итуды	Район	
	д м		ч мин с	φ°, N	λ°, Ε	h,	Mw	MPSP,	MPLP	MS,	
				•		км		$m_{\rm b}$		Ms	
1	28.01	Ι	14 21 03.7	42.96	146.81	33	6.4	6.9	7.1	7.1	У побережья острова
		II	14 21 05.8	43.05	146.83	46		6.6		6.6	локкаидо, лпония
		III	14 21 12.3	43.08	146.81	50	6.8				

Таблица 1. Сведения о сильных (*M*≥7) землетрясениях за 2000 г.

No	Лата	Вариант	to	Эп	ицентр			Магн	итулы	Район	
512	диги, д м	Dupnum	и, И МИН С	ω° Ν	λ° F	h	Mw	MPSP	MPLP	MS	i unon
	0		<i>i mun c</i>	ψ , ψ	м, с	км	1,1,1,1	$m_{\rm h}$		Ms,	
2	04 05	I	04 21 16 7	-0.99	123 45	33	72	67	74	73	Попуостров Минахасса
2	0 1.05	1	012110.7	0.77	125.15	55	1.2	0.7	/.1	1.5	(Пелебес)
		П	04 21 18 7	-117	123 54	54		6.5		74	(Leneoce)
		Ш	04 21 33.4	-1.29	123.59	19	7.6	0.0		<i></i>	
3	04.06	I	16 28 26.4	-4.61	102.17	33	7.8	7.0	7.5	7.7	Южная Суматра
_		Π	16 28 28.8	-4.69	102.14	53		6.7		7.9	
		III	16 28 46.5	-4.73	101.94	44	7.9				
4	18.06	Ι	14 44 12.5	-13.82	97.37	10	7.4	7.1	7.5	7.8	Юг Индийского океана
		II	14 44 13.2	-13.80	97.42	10		6.8		7.7	
		III	14 44 27.6	-13.47	97.17	15	7.9				
5	04.08	Ι	21 13 04.4	48.76	142.27	21	6.6	6.4	6.9	7.1	Сахалин
		II	21 13 03.3	48.75	142.24	13		6.2		7.1	
		III	21 13 12.1	48.77	142.03	15	6.8				
6	06.10	Ι	04 30 23.8	35.67	133.06	33	6.4	6.0	6.5	7.0	Южный Хонсю
		II	04 30 17.5	35.38	133.16	1		5.8		6.7	
		III	04 30 25.3	35.33	133.20	15	6.7				
7	27.10	Ι	00 08 50.2	54.82	95.07	10	5.8	5.8	6.1	5.6	Алтай
		II	00 08 50.7	54.75	94.97	10		5.5		5.5	
		III	00 08 55.7	54.91	95.28	33	5.5				
8	16.11	Ι	04 54 58.4	-3.82	151.92	33	7.4	5.8	7.3	7.7	Район Новой Ирландии
		II	04 54 56.2	-3.98	152.18	28		5.8		8.0	
_		III	04 55 36.5	-4.56	152.79	24	8.0				
9	16.11	Ι	07 42 18.0	-5.27	153.15	33	7.6	6.5		7.6	Район Новой Ирландии
		II	07 42 17	-5.22	153.07	34		5.9		7.7	
		III	07 42 44.5	-5.03	153.17	31	7.8				
10	17.11	Ι	21 01 56.4	-5.44	151.87	33	7.5	5.6	6.8	7.5	Район Новой Британии
		II	21 01 56.2	-5.52	151.80	31		6.1		7.7	
		III	21 02 20.1	-5.26	152.34	17	7.8				
11	25.11	I	18 09 08.3	40.01	50.02	33	6.7	6.1		6.4	Каспийское море
			18 09 11.5	40.22	49.93	51		5.7	6.4		
	0 6 4 5		18 09 19.9	40.24	49.95	15	6.8	< -			
12	06.12		17 11 07.5	39.68	54.71	33	6.3	6.7	7.4	7.3	Туркменистан
			17 11 06.6	39.49	54.81	33		6.7		7.4	
		111	17 11 14.7	39.60	54.87	33	7.0				

Механизмы очагов приведены в табл. 2 и показаны на рис. 1 в стереографической проекции (нижняя полусфера) для всех двенадцати землетрясений. Все решения взяты из [2, HRVD]. Они получены для модели двойной пары сил по методу СМТ [6].

Таблица 2. Параметры механизмов очагов 2000 г. ((метод CMT [2, HRVD])
--	-----------------------

№	Дата,	$t_0,$	h,	Магнитуды			Oc	и гла	вных	к напр	яжен	Нодальные плоскости						
	дм	ч мин с	км	Mw	MS/n	MPSP/n		Г	N		Р		NP1			NP2		
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	28.01	14 21 03.7	33	6.8	7.1/30	6.9/30	42	6	37	234	26	123	163	38	15	61	81	127
2	04.05	04 21 16.7	33	7.6	7.3/24	6.7/21	23	185	63	332	13	89	225	64	172	319	83	26
3	04.06	16 28 26.4	33	7.9	7.7/27	7.0/19	42	60	47	225	7	323	92	55	152	199	67	38
4	18.06	14 44 12.5	10	7.9	7.8/19	7.1/25	15	25	63	263	22	121	161	63	355	254	85	207
5	04.08	21 13 04.4	21	6.8	7.1/26	6.4/22	69	134	17	353	13	259	328	36	60	183	60	110
6	06.10	04 30 23.8	33	6.7	7.0/37	6.0/33	6	196	83	56	45	286	331	83	1	241	89	173
7	27.10	00 08 50.2	10	5.5	5.6/33	5.8/34	87	10	22	243	3	153	241	42	87	65	48	93
8	16.11	04 54 58.4	33	8.0	7.7/7	5.8/10	33	181	43	54	29	292	328	43	3	236	88	133
9	16.11	07 42 18.0	33	7.8	7.6/16	6.5/22	60	339	1	70	30	160	253	15	93	70	75	89
10	17.11	21 01 56.4	33	7.8	7.5/14	5.6/19	65	7	10	254	22	160	230	24	64	78	68	101
11	25.11	18 09 08.3	33	6.8	6.4/13	6.1/23	44	56	2	148	46	240	93	2	215	328	89	272
12	06.12	17 11 07.5	33	7.0	7.3/29	6.7/23	60	323	23	98	19	197	319	33	136	89	68	65

Рис. 1. Стереограммы механизмов очагов землетрясений 2000 г. в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернены области волн сжатия.

Землетрясение 28 января в $14^{h}21^{m}$ (1) у побережья о. Хоккайдо возникло под действием превалирующего напряжения сжатия, ориентированного в юго-восточном направлении. Нодальная плоскость *NP*1 имеет юго-восточное простирание и залегает полого, *NP*2 – простирается в северо-восточном направлении и имеет крутое падение. Тип движения по обеим плоскостям – взброс с элементами сдвига (по *NP*1 – левостороннего, по *NP*2 – правостороннего).

Механизм очага землетрясения 4 августа в $21^{h}13^{m}$ (5) на Сахалине типичен для Сахалинской зоны [7]. Оно произошло на южной окраине сейсмоактивной зоны, которая простирается близмеридионально между сейсмическими станциями Углегорск и Тымовское и характеризуется подвижками взбросового типа. В очаге (5) нодальная плоскость *NP*1 простирается с северо-запада на юго-восток. Взбросовая подвижка сочетается с левосторонним сдвигом. Плоскость *NP*2 имеет близмеридиональное направление и более крутое падение, подвижка по ней – почти чистый взброс. С этим простиранием совпадает близмеридиональная вытянутость сейсмоактивной зоны. Отметим, что эпицентр землетрясения (5) расположен в другой сейсмогенной зоне, нежели разрушительное Нефтегорское землетрясение 27.05.1995 г. с *MS*=7.7 [8].

Взбросовый тип движения наблюдается также для землетрясений (7, 9, 10), относящихся к району Новой Британии, Новой Ирландии. Землетрясения произошли в условиях сжимающих напряжений, ориентированных в юго-юго-восточном направлении. Обе нодальные плоскости имеют северо-восточное простирание.

Для землетрясений (2, 3, 4, 6, 8) характерны подвижки типа сдвиг. Землетрясения произошли в условиях близких по величине сжимающих и растягивающих напряжений. Одна из нодальных плоскостей имеет северо-западное простирание, другая – северо-восточное. Углы наклона плоскостей варьируют от 43° до 89°.

Землетрясение 25 ноября в 18^h09^m (11) произошло под действием как сжимающих, так и растягивающих напряжений. Тип движения по обеим плоскостям – сброс. По пологой плоскости *NP*1 близширотного простирания присутствуют компоненты правостороннего сдвига, по крутопадающей плоскости *NP*2 – чистый сброс.

В очаге землетрясения 6 декабря в 17^h11^m (12) отмечается явное преобладание напряжения сжатия. Плоскость *NP*1 залегает полого и имеет северо-западное простирание, подвижка – взброс с присутствием компоненты правостороннего сдвига. По плоскости *NP*2 близширотного простирания, залегающей достаточно круто, отмечается взброс.

Динамические параметры очагов в табл. 3 рассчитаны по спектрам продольных волн, зарегистрированных цифровой аппаратурой IRIS на станции «Обнинск» (OBN) для восьми землетрясений (2–4, 6–9, 12) и на станции «Талая» (TLY) – для остальных четырех (1, 5, 10, 11). Привлечение волновых форм этих станций для определения динамических параметров продиктовано их расположением на эпицентральных расстояниях менее 100° (согласно методике их расчета по [9, 10]). Станционные спектры, приведенные к очагу, показаны на рис. 2. Для первой

группы очагов определены уровень Ω_0 длиннопериодной ветви спектра, частота f_{π} точки перелома спектра, частота угловой точки f_0 по станции «Обнинск». На их основе рассчитаны динамические параметры (сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения), а также характеристики разрыва в очагах (длина L и подвижка \bar{u}). Для остальных четырех землетрясений из динамических параметров рассчитан только сейсмический момент M_0 по величине Ω_0 . Остальные динамические параметры, а также характеристики разрыва не определены из-за отсутствия для станции «Талая» поправок за частотную характеристику земной коры.

Рис. 2. Очаговые спектры *P*-волн, записанных на станциях «Обнинск» и «Талая» Номера спектров соответствуют номерам землетрясений в табл. 1.

N₂	Дата,	<i>t</i> ₀ ,	Станция	Mw	Δ°	$\Omega_0 \cdot 10^{-4}$,	$f_{\rm n} \cdot 10^{-2}$,	$f_0 \cdot 10^{-2}$,	$M_0 \cdot 10^{19}$,	$L \cdot 10^3$,	$\Delta \sigma \cdot 10^5$,	ησ·10 ⁵ ,	ū,
	дм	ч мин с				м∙с	Гц	Гц	Н∙м	\mathcal{M}	H/M^2	H/M^2	\mathcal{M}
1	28.01	14 21 03.7	OBN	6.4	65.81	0.126	3.2	15.1	0.52	32	5.5	162.3	0.22
2	04.05	04 21 16.7	OBN	7.2	89.02	1.20	5.5	20.0	8.0	24	201.8	21.2	5.88
3	04.06	16 28 26.4	OBN	7.8	80.14	14.4	4.2	12.3	69.0	40	377.3	9.7	18.31
4	18.06	14 44 12.5	OBN	7.4	85.53	2.51	10.0	14.1	14.0	35	114.3	67.7	4.85
5	04.08	21 13 04.4	OBN	6.6	59.28	0.251	12.0	18.2	0.91	27	16.2	93.0	0.53
6	06.10	04 30 23.8	OBN	6.4	65.02	0.107	4.9	24.5	0.44	20	19.2	136.4	0.47
7	27.10	00 08 50.2	OBN	5.8	32.73	0.019	24.5	57.5	0.06	8	42.4	7.6	0.41
8	16.11	04 54 58.4	TLY	7.4	68.80	6.46	7.6	—	14.0	_	-	_	_
9	16.11	07 42 18.0	TLY	7.6	70.66	14.4	4.7	_	32.0	_	_	_	_
10	17.11	21 01 56.4	TLY	7.5	70.17	9.12	3.3	—	20.0	_	-	_	_
11	25.11	18 09 08.3	TLY	6.7	38.30	0.372	6.2	_	1.11	_	-	_	_
12	06.12	17 11 07.5	OBN	6.3	19.66	3.80	26.3	28.8	0.27	17	192.3	88.,2	3.97

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений по записям цифровой аппаратуры IRIS

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2000 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 2000–2001.
- 2. Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 4. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях ЕССН СССР. М.: Наука, 1982. 272 с.
- 5. Kanamori H. The energy release in great earthquakes // J. Geophys. Res. 1977. 82. P. 2981-2977.
- 6. Dzievonski A., Chou T. and Woodhouse J. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity // J. Geophys. Res. 1981. 86. № B4. P. 2825–2852.
- 7. Захарова А.И., Чепкунас Л.С. Очаговые параметры сильных землетрясений Земли // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 159–162.
- 8. Оскорбин Л.С., Поплавский А.А., Стрельцов М.И., Шолохова А.А., Давыдова Н.А., Койкова Л.Ф., Садчикова А.А., Хритова Л.И. 2001. Нефтегорское землетрясение 27(28) мая 1995 года (*Mw*=7.1) // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 170–182.
- 9. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 10. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. – 1989. – № 2. – С. 66–79.