Таджикистан

Т.Р. Улубиева¹, Р.С. Михайлова², Л.И. Рислинг¹

¹Институт сейсмостойкого строительства и сейсмологии, г. Душанбе, anton_ulubiev@mail.ru ²Геофизическая служба РАН, г. Обнинск, raisa@gsras.ru

Сеть сейсмических станций Таджикистана в 2000 г. представлена 18 станциями. Из 20 работающих в 1999 г. сейсмических станций [1] не функционировали три – «Джиргаталь», «Обигарм» и «Гарм». Прибавилась одна станция «Комароу», которая проработала всего три месяца (с апреля по июнь). Без пропусков работали десять станций: «Душанбе», «Джерино», «Гиссар», «Аккуйли», «Лангар», «Уратюбе», «Игрон», «Султанабад», «Шаартуз» и «Гезан». Отсутствуют материалы наблюдений с сейсмической станции «Богизагон» за апрель, со станции «Ленинабад» – за август, со станции «Игрон» – с мая по август. Сейсмическая станция «Рогун» не функционировала в январе и с марта по май. Всего полгода проработала сейсмическая станция «Санция « Офтобруй» (январь–май и август). Только три месяца (январь, февраль и август) проработала станция «Арджинак». С сейсмических станций «Кангурт» и «Больджуан» в отдел обработки поступили сейсмограммы только за август месяц.

Обзор сейсмичности территории Таджикистана и приграничных территорий дан, как и ранее [1], в пределах координат 36–40°N, 67–75°E и 40–41°N, 69–71°E. Определение координат очагов землетрясений осуществлялось вручную с помощью палеток изохрон с шагом по глубине 2.5 км по локальному годографу [2] для Душанбино-Вахшского района (37.8–39.3°N, $68.0-70.5^{\circ}$ E) и способом засечек для коровых землетрясений на остальной части территории Таджикистана по осредненным годографам [3] с шагом по глубине 5 км при первых 10 км, а далее – с шагом 10 км. Для локации глубокофокусных землетрясений ($h \ge 70 \ \kappa m$) применялся годограф [4] с шагом по глубине 10 км. Энергетическая классификация землетрясений проводилась по шкале Т.Г. Раутиан с использованием эпицентрального расстояния для землетрясений с очагом в земной коре [5, 6] и гипоцентрального расстояния — для глубокофокусных землетрясений Памиро-Гиндукуша [7]. Схема сейсмоактивных зон I–IV Таджикистана, изображенная на рис. 1, приведена по [8]. Здесь зоны I–III показаны разной штриховкой, граница зоны IV (глубокофокусных Памиро-Гиндукушских землетрясений) обозначена мелким крапом на фоне штриховки зоны III.

В результате сводной обработки составлен каталог землетрясений Таджикистана и прилегающих к нему районов Узбекистана, Кыргызстана, Афганистана и Китая [10], дополненный в редакции рядом (N_{Σ} =49) событий, макросейсмическими и другими данными из каталогов землетрясений Центральной Азии [11], Копетдага [12] и международных бюллетеней [13, 14]. Полученный в итоге каталог [15] содержит 1841 землетрясение с K_{P} =8.0–15.1, из них 699 – с очагом в земной коре и 1142 – с промежуточной глубиной в пределах 70–270 км. Распределение землетрясений по крупным сейсмоактивным зонам дано в табл. 1.

№	Зона	K _P							N_{Σ}	$\Sigma E \cdot 10^{15}$,
		9	10	11	12	13	14	15		Дж
Ι	Юго-Западный Тянь-Шань	33	4	1	_	_	_	_	38	0.0003
II	Южный Тянь-Шань	231	68	22	7	1	1	_	330	0.1188
III	Памиро-Гиндукуш (коровые)	185	97	38	6	2	_	_	328	0.0319
IV	Памиро-Гиндукуш (глубокие)	659	358	112	11	2	2	1	1145	1.2464
	Всего	1108	527	173	24	5	3	1	1841	1.3974

Таблица 1. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по зонам

Рис. 1. Сейсмоактивные зоны Таджикистана и глубинные разломы

I–IV – сейсмоактивные зоны: Юго-Западный Тянь-Шань, Южный Тянь-Шань, Памиро-Гиндукуш (коровые), Памиро-Гиндукуш (глубокие) соответственно; 5 – главнейшие глубинные разломы территории Таджикистана и Северного Афганистана по [9]: 1 – Северо-Ферганский; 2 – Заамин-Хайдараканский; 3 – Южно-Гиссарский; 4 – Илякско-Вахшский; 5 – Дарваз-Заалайский; 5 – Афгано-Северо-Памирский; 6 – Ванч-Акбайтальский; 7 – Каракульско-Сарезский; 8 – Бартанг-Пшартский; 8 – Рушано-Северо-Пшартский; 9,10 – Афгано-Южно-Памирские; 11 – Альбурз-Мормульский; 12 – Андараб-Мирзавалангский.

Сравнение сведений о числах землетрясений разных классов коровых и глубоких в отдельности по годовым интервалам, приведенное в табл. 2a, б, показывает, что в 2000 г. сейсмическая активность Таджикистана по числу землетрясений в целом достаточно близка к среднему за предыдущие семь лет, но по уровню высвобожденной сейсмической энергии на порядок ниже для коровых (табл. 2a) и более чем в два раза – для глубоких (табл. 2б).

Год									N_{Σ}	$\Sigma E \cdot 10^{15}$,	
	8	9	10	11	12	13	14	15	16		Дж
1993	_	426	111	45	13	5	_	_	_	599	0.070
1994	-	286	110	54	17	5	_	_	_	472	0.071
1995	-	320	107	33	15	5	_	_	_	480	0.06
1996	_	178	116	53	9	2	1	_	_	359	0.2795
1997	51	474	163	46	17	2	_	_	_	702*	0.0444
1998	121	872	356	173	44	6	1	1	1	1454*	11.1797
1999	31	349	192	71	24	7	_	_	-	633*	0.0267
Среднее за 7 лет		415	165	67.86	19.85	4.57	0.28	0.14	0.14	671.3	1.676
2000	-	449	169	51	13	3	1	_	_	696	0.151

Таблица 2а. Распределение числа землетрясений Таджикистана с *h*<70 *км* по энергетическим классам *К*_P и суммарная сейсмическая энергия Σ*E* за 1993–2000 гг.

* Числа землетрясений с $K_{\rm P}$ =8 здесь и в табл. 26 в графу N_{Σ} не включены.

Год Кр							N_{Σ}	$\Sigma E \cdot 10^{15}$,			
	8	9	10	11	12	13	14	15	16		Дж
1993	_	1180	250	76	21	9	3	1	1	1541	11.410
1994	_	723	244	74	17	9	2	1	-	1070	1.310
1995	_	819	195	61	15	9	3	1	_	1100	1.380
1996	_	236	238	73	19	3	2	_	_	571	0.219
1997	(67)	967	458	140	12	9	_	2	-	1588*	2.123
1998	(8)	816	383	152	28	3	3	1	-	1386*	2.834
1999	(10)	644	332	110	19	3	1	1	_	1110*	1.164
Среднее за 7 лет		769.3	300	98	18.71	6.43	2	1	0.14	1195.1	2.921
2000	_	659	358	112	11	2	2	1	-	1145	1.246

Таблица 26. Распределение числа глубоких землетрясений Таджикистана с *h*≥70 *км* по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* за 1993–2000 гг.

Наиболее значительное по энергии (K_P =14.7) землетрясение в 2000 г. произошло в Афганской подзоне Гиндукуша 17 июля в 22^h53^m с глубиной очага h=130 км [15]. Оно ощущалось на всей территории республики с интенсивностью от 3 до 4 баллов.

Сейсмичность Таджикистана представлена на трех годовых картах эпицентров: сильных с $K_P \ge 11.6$ в диапазоне $h=0-270 \ \kappa m$ (рис. 2), коровых с $K_P \ge 9$, $h<70 \ \kappa m$ (рис. 3) и глубоких с $K_P \ge 9$, $h \ge 70 \ \kappa m$ (рис. 4). Рассмотрим более детально сейсмичность каждой их четырех зон.

Рис. 2. Эпицентры сильных (*К*_Р≥11.6) землетрясений Таджикистана за 2000 г.

1 – энергетический класс K_P; 2 – глубина *h* гипоцентра, км; 3 – сейсмическая станция. Коды и названия 18-ти сейсмических станций: Dsh – «Душанбе»; Gis– «Гиссар»; Bld – «Больджуан»; Bgg – «Богизагон»; Rgn – «Рогун»; Kng – «Кангурт»; Lna – «Лангар»; Slt – «Султанабад»; Akl – «Аккуйли»; Ard – «Арджинак»; Dze – «Джерино»; Igr – «Игрон»; Gzn – «Гезан»; Urt – «Ура-Тюбе»; Oht – «Офтобруй»; Lnb – «Ленинабад»; Kmr – «Комароу»; Sht – «Шаартуз».

Рис. 3. Карта эпицентров коровых (*h*<70 *км*) землетрясений Таджикистана за 2000 г. 1 – энергетический класс *K*_P; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция.

Рис. 4. Карта эпицентров глубоких (*h*≥70 *км*) землетрясений Таджикистана за 2000 г. 1 – энергетический класс *K*_P; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция.

В Юго-Западном Тянь-Шане (I) сейсмическая активность относительно других трех зон наименьшая. Общее число землетрясений составило N=38, что несколько выше такового (N=30) в 1999 г. [1]. Из наиболее сильных землетрясений в этой зоне зарегистрировано одно событие с $K_P=11.1$ (4 января в $14^{h}45^{m}$) и четыре с $K_P\div10$: 15 марта в $22^{h}00^{m}$ с $K_P=10.5$, 18 апреля в $06^{h}53^{m}$ с $K_P=10.1$, 27 сентября в $22^{h}24^{m}$ с $K_P=9.7$ и 19 ноября в $08^{h}17^{m}$ с $K_P=10.1$ [15]. Все они, однако, расположены вне государственных границ Таджикистана, на территории соседнего Кыргызстана (рис. 3).

В зоне Южного Тянь-Шаня (II) можно выделить полосу из достаточно сильных ($K_P \ge 11.6$) землетрясений в направлении с востока на запад, куда входят толчки, произошедшие: 1 июля в 20^h34^m с $K_P=11.6$ (40.2°N, 72.8E), 15 февраля в 07^h07^m с $K_P=11.6$ (40.0°N, 72.2°E), 3 февраля в 00^h58^m с $K_P=11.6$ (39.8°N, 70.2E) и 25 ноября в 00^h04^m с $K_P=11.7$ (39.2°N, 67.4E) [15]. На крайнем юго-западе этой полосы (рис. 3), простирающейся вдоль Заамин-Хайдараканского (Южно-Ферганского) разлома (рис. 1), уже вне изучаемой территории, 20 апреля в 08^h41^m в 60 км к юго-востоку от г. Карши произошло самое сильное землетрясение зоны с $K_P=13.7$. Для него в [16] имеется решение механизма, согласно которому в его очаге превалировали напряжения сжатия северо-западной ориентации. Обе нодальные плоскости имеют достаточно крутое падение и ориентированы в северо-восточном–юго-западном направлении (рис. 5). Тип движения – взброс с компонентами левостороннего сдвига по плоскости *NP*1 и правостороннего – по *NP*2. Через 4 минуты здесь зарегистрирован афтершок с $K_P=12.0$ и другие более слабые афтершоки. Все они локализованы вблизи землетрясения 31.10.1999 г. с $K_P=13.3$ [1].

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Значительным событием в этой зоне является ощутимое Фархорское землетрясение с K_P =13.1, зарегистрированное в Фархорском районе в 40 км к юго-западу от г. Куляба 30 октября в 22^h39^m. Оно описано в отдельной статье [17] наст. сб. Основной толчок сопровождался серией афтершоков, самый сильный из которых с K_P =11.9 отмечен 31 октября в 13^h59^m. Наибольшее число (N=21) повторных толчков зарегистрировано в первые сутки после землетрясения. Серия его афтершоков продолжалась до конца года. Сначала, в ноябре, наблюдалась миграция афтершоков в южном и юго-западном направлениях, затем в декабре отмечены толчки, локализованные северо-восточнее главного события. Всего отмечено 39 афтершоков с K_P =9–12, по энергии они распределились следующим образом:

Таблица 3. Распределение афтершоков Фархорского землетрясения по классам К_Р

$K_{ m P}$	9	10	11	12	N_{Σ}
N	28	6	4	1	39

На территории Душанбино-Вахшского района детальных наблюдений сейсмичности зарегистрировано 56 землетрясений с K_P =9–11, из них с K_P ÷11 зафиксировано всего два. Одно из них с K_P =10.9 (Султанабадское) произошло 12 марта в 02^h28^m на глубине (h=5 км). Эпицентр его находился в северо-западных склонах хр. Ходжа-Заринг примерно в 20 км юго-восточнее столицы республики г. Душанбе. Интенсивность в эпицентре составила 5–6 баллов. Оно обследовано и описано в отдельной статье [18] наст. сб. Второе землетрясение с K_P =10.6 зарегистрировано 6 мая в 03^h33^m на небольшой глубине h=2.5 км. Сведений об ощутимости этого землетрясения не поступило.

Как всегда, повышенной плотностью эпицентров выделяется на всем своем протяжении Южно-Гиссарский (Гиссаро-Кокшаальский) разлом (рис. 2, 3), хотя наиболее сильные толчки на уровне K_P ÷12 отмечены лишь на крайнем востоке, в Китае (11 апреля в $07^{h}10^{m}$ с K_P =12.5, 1 июня в $02^{h}37^{m}$ с K_P =11.6 [15]).

В Памиро-Гиндукушской зоне (III) коровых землетрясений (рис. 3) самым заметным является облако высокой плотности эпицентров в зоне сближения восточной части Афганской депрессии и западных отрогов Гиндукуша ($36.7-37.8^{\circ}N$, $69.3-70.3^{\circ}E$), где продолжал действовать очаг землетрясений 04.02.1998 г. и 30.05.1998 г. [19]. Здесь 1 января в $05^{h}24^{m}$ возникло землетрясение с $K_{\rm P}$ =13.1 под воздействием превалирующего напряжения сжатия, ориентированного в юго-восточном направлении [16]. Обе нодальные плоскости имеют крутое падение, нодальная плоскость *NP*1 имеет близширотное, *NP*2 – близмеридиональное простирание (рис. 5). Тип движения по обеим плоскостям – сдвиг (правосторонний по *NP*1 и левосторонний – по *NP*2).

Параметры механизма очага определены еще для одного землетрясения зоны III сравнительно небольшой энергии (K_P =11.5), зарегистрированного 30 мая в 19^h42^m, глубина которого по данным действующей сети равна h=60±20 км [15], но по фазе pP в [14] получено h*=104±1 км. Согласно [16], оно возникло под действием сжимающих напряжений, ориентированных на юго-восток. Обе нодальные плоскости имеют крутое падение. Плоскость NP1 простирается близмеридионально, плоскость NP2 простирается с северо-востока на юго-запад (рис. 6). Тип движения по NP1 – правосторонний сдвиг, по NP2 – взброс с компонентами левостороннего сдвига.

На Памире выделяется (рис. 3) близмеридиональная полоса эпицентров с λ =72.2–73.2°E, разделяющая эту территорию на сейсмичный западный Памир и асейсмичный – Восточный [20]. Максимальные здесь землетрясения отмечены с K_P =11 (23 апреля в 11^h40^m с K_P =11.0, 12 августа в 05^h24^m с K_P =10.6, 11 декабря в 04^h15^m с K_P =11.2 [15]) и практически нет эпицентров в области роя 1999 г., проявившегося вблизи координатного узла 37.0°N и 73.0°E [1].

В Памиро-Гиндукушской зоне (IV) глубокофокусных землетрясений локализовано 1145 землетрясений с $K_P \ge 9$ (табл. 4). Их пространственное распределение представлено на рис. 4. Основная часть глубокофокусных землетрясений располагалась за пределами республики, на территории Афганистана. Наиболее глубокое землетрясение с $h=270 \ \kappa m$ зарегистрировано 8 июня в $05^h 09^m$ с $K_P = 9.8$.

Традиционно эта зона подразделяется по плотности эпицентров на три подзоны: Афганскую, Хорогскую и Мургабскую (рис. 4). Сильные ($K_P \ge 11.6$) глубокофокусные землетрясения по подзонам распределились следующим образом (табл. 4).

Подзона	Подзона К _Р							
	12	13	14	15		Дж		
Афганская	9	1	2	1	13	1.219		
Хорогская	2	_	_	-	2	0.002		
Мургабская	—	1	—	-	1	0.010		

Таблица 4. Распределение по энергетическим классам К_Р сильных (К_Р≥11.6) глубоких землетрясений Памиро-Гиндукуша

В Афганской подзоне локализовано упомянутое выше самое сильное (K_P =14.7) землетрясение в 2000 г. Для него имеется решение механизма очага [16], согласно которому здесь превалировало напряжение сжатия, ориентированное на юг. Нодальная плоскость *NP*1 залегает полого, направление простирания – северо-запад–юго-восток (рис. 6). Другая нодальная плоскость *NP*2 имеет достаточно крутое падение и ориентирована близширотно. Тип движения по плоскости *NP*1 – надвиг с компонентами правостороннего сдвига, по *NP*2 – взброс с компонентами левостороннего сдвига.

Зарегистрированы еще два пятибалльных землетрясения с K_P ÷14: 19 января в 07^h09^m с K_P =14.0 и 12 мая в 23^h10^m с K_P =13.7. Первое зафиксировано на глубине 210 км, второе – на глубине 80 км. Подвижка в очаге 19 января реализовалась в условиях сжимающих напряжений, ориентированных в направлении северо-северо-восток. Обе нодальные плоскости имеют близширотную ориентацию (рис. 6), тип движения по обеим плоскостям достаточно крутого падения – взброс. Землетрясение 12 мая возникло под действием близких по величине сжимающих и растягивающих напряжений. Плоскость *NP*1 залегает полого и ориентирована в юго-

восточном–северо-западном направлении, плоскость *NP*2 имеет крутое падение и простирается с северо-востока на юго-запад (рис. 6). Тип движения по пологой плоскости *NP*1 – левосторонний сдвиг, по крутой плоскости *NP*2 – сброс.

Кроме этих землетрясений, в Афганской подзоне отмечен еще один толчок с $K_P=13$ (28 июля в 05^h22^m с $K_P=13.1$ и $h^*=226 \ \kappa m$ [15]) и девять толчков с $K_P=12$. Землетрясение 28 июля возникло под действием превалирующего напряжения сжатия, направленного на запад. Нодальная плоскость NP1 залегает полого и ориентирована в северо-восточном-югозападном направлении. Другая плоскость NP2 имеет более крутое падение, она простирается с северо-северо-запада на юго-юго-восток (рис. 6). Тип движения по пологой плоскости NP1 – надвиг с компонентами правостороннего сдвига, по крутой плоскости NP2 – взброс с компонентами левостороннего сдвига.

В целом количество выделившейся энергии этой подзоны осталось почти на том же уровне, что и в 1999 г. [1].

В Хорогской подзоне зарегистрировано всего 2 толчка с $K_P=12$, что вдвое меньше, чем в 1999 г. Они зарегистрированы 3 марта в $15^{h}51^{m}$ с $K_P=12.4$ на глубине $h=190 \ \kappa m$ и 31 июля в $17^{h}02^{m}$ с $K_P=11.7$, $h=140 \ \kappa m$ [15].

На крайнем юго-западе **Мургабской подзоны** отмечено 1 мая в $18^{h}41^{m}$ событие с $K_{P}=13.4$, $h=141*\pm2*$ (по волнам pP из [14]) и интенсивностью в эпицентре 5–6 баллов. Очаг расположен примерно в 15 км юго-восточнее оз. Сарез. Для него в [16] имеется решение механизма очага, согласно которому оно возникло под действием близких по величине сжимающих и растягивающих напряжений (рис. 6). Тип движения по обеим плоскостям – сдвиг, по плоскости NP1 – правосторонний, по плоскости NP2 – левосторонний (с вертикальной компонентой). Обе плоскости имеют крутое падение, плоскость NP1 ориентирована в близширотном направлении, плоскость NP2 ориентирована близмеридионально.

Литература

- 1. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 106–115.
- 2. **Кулагин В.К.** Строение земной коры Вахшского района Таджикской ССР по сейсмическим данным: Дис. канд. физ.-мат. наук / Иркутский государственный университет. – Иркутск: 1970. – 150 с.
- 3. Кулагина М.В., Шакиржанова Г.Н., Рябовалова О.Т. Результаты опробования годографов для определения координат гипоцентров мелкофокусных землетрясений Таджикистана // Землетрясения Средней Азии и Казахстана в 1984 году. – Душанбе: Дониш, 1988. – С. 99–133.
- 4. Лукк А.А., Нерсесов И.Л. Глубокие Памиро-Гиндукушские землетрясения // Землетрясения в СССР в 1966 году. М.: Наука, 1970. С. 118–136.
- 5. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности (Тр. ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.

- 6. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 7. Каток А.П. Об использовании номограммы Раутиан для энергетической классификации глубоких Памиро-Гиндукушских землетрясений // Магнитуда и энергетическая классификация землетрясений. Т. II. М.: ИФЗ АН СССР, 1974. С. 139–143.
- 8. Саломов Н.Г., Улубиева Т.Р., Рислинг Л.И., Шакиржанова Г.Н., Джураев Р.У. Таджикистан за 1993–1995 годы // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 49–58.
- 9. Ачилов Г.Ш., Бабаев А.М., Мирзоев К.М., Михайлова Р.С. Сейсмогенные зоны Памира // Геология и геофизика Таджикистана. – № 1. – Душанбе: Дониш, 1985. – С. 117–138.
- 10. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Давлятова Р., Хусейнова Г.А., Улубиев А.Н., Максименко Т.И. Таджикистан. Каталог (оригинал) землетрясений Таджикистана за 2000 г. с К_Р≥8.6. – Обнинск: Фонды ГС РАН, 2006. – 50 с.
- 11. Джанузаков К.Д. (по региону), Соколова Н.П. (Кыргызстан), Калмыкова Н.А. (Казахстан), Гиязова Ш.Ш. (Узбекистан), Сопиева К., Жунусова Ж., Айбашева К., Шипулина С.А., Умурзакова Р.А., Проскурина Л.П., Ульянина И.А., Каймачникова Н.И., Гайшук Л.Н., Тулегенова М.К., Абдыкадыров А.А. Центральная Азия. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 12. Сарыева Г.Ч., Рахимов А.Р., Голинский Г.Л. (отв. сост.), Тачов Б., Мамедязова М.Т., Халлаева А.Т., Коржукова Т.А., Таджиева Ш.К., Дурасова И.А., Клычева Э.Р., Эсенова А., Петрова Н.В. Копетдаг. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 13. Сейсмологический бюллетень (ежедекадный) за 2000 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 2000–2001.
- 14. Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- 15. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Давлятова Р., Хусейнова Г.А., Михайлова Р.С., Улубиев А.Н., Максименко Т.И. Таджикистан. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 16. Чепкунас Л.С., Михайлова Р.С. (сост.). Таджикистан. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- 17. Джураев Р.У. Фархорское землетрясение 30 октября 2000 года с *Ms*=4.6, *I*₀=6 (Таджикистан). (См. раздел II (Макросейсмические обследования) в наст. сб.).
- 18. Джураев Р.У. Султанабадское землетрясение 12 марта 2000 года с *K*_P=10.9, *I*₀=5-6 (Таджикистан). (См. раздел II (Макросейсмические обследования) в наст. сб.).
- 19. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 91–104.
- 20. **Михайлова Р.С.** Современная сейсмичность Памира и схемы сейсмогенных зон на его территории // Физика Земли. 1982. № 7. С. 10–17.