## ПРИАМУРЬЕ И ПРИМОРЬЕ

## Т.А. Фокина, Н.С. Коваленко, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

Параметры землетрясений региона определены на основе инструментальных данных, полученных на семи сейсмических станциях Приамурья и Приморья (рис. 1), параметры которых, по сравнению с таковыми в 1999 г. [1], не изменились. В сводной обработке дополнительно использованы данные сейсмических сетей Сахалина, Курило-Охотского региона, Прибайкалья, Якутии, ЦОМЭ ГС РАН (станции «Кульдур» и «Владивосток»), а также бюллетеней [2, 3].



Рис. 1. Карта эпицентров землетрясений Приамурья и Приморья за 2000 г.

<sup>1</sup> — энергетический класс  $K_P$ ; 2 — магнитуда MSH, MPV; 3 — глубина h гипоцентра,  $\kappa m$ ; 4 — диаграмма механизма очага землетрясения (нижняя полусфера, зачернена область сжатия); 5 — сейсмическая станция; 6 — номер и граница условного района; 7 — места производства промышленных взрывов; 8 — государственная граница.

Методика определения основных параметров землетрясений [4–6], механизмов их очагов [7–9], а также схема деления региона на сейсмоактивные районы, по сравнению с таковыми в 1999 г. [1], не изменились.

В 2000 г. определены параметры 549 коровых ( $h \le 40 \ \kappa M$ ) и трех глубокофокусных ( $h > 300 \ \kappa M$ ) землетрясений [10] с эпицентрами, расположенными на территории Приамурья и Приморья (рис. 1, табл. 1); для трех землетрясений имеются макросейсмические данные.

**Таблица 1.** Распределение коровых землетрясений по энергетическому классу  $K_P$ , глубокофокусных — по магнитуде MPV, и суммарная сейсмическая энергия  $\Sigma E$  по районам в  $2000~\Gamma$ .

|          | h≤30 км                      |            |     |    |     |              |                            |              |                            |
|----------|------------------------------|------------|-----|----|-----|--------------|----------------------------|--------------|----------------------------|
| No       | Район                        | $K_{ m P}$ |     |    |     |              |                            | $N_{\Sigma}$ | $\Sigma E \cdot 10^{12}$ , |
|          |                              | ≤7.5       | 8   | 9  | 10  | 11           | 12                         | _            | Дж                         |
| 1        | Становой                     | 65         | 23  | 11 | 3   | 1            | _                          | 103          | 0.0902                     |
| 2        | Янкан-Тукурингра-Джагдинский | 188        | 29  | 10 | 3   | 1            | _                          | 231          | 0.1514                     |
| 3        | Зейско-Селемджинский         | 22         | 5   | 1  | _   | 1            | _                          | 29           | 0.0648                     |
| 4        | Турано-Буреинский            | 63         | 76  | 17 | 7   | _            | 1                          | 164          | 0.4229                     |
| 5        | Сихотэ-Алиньский             | _          | 1   | 2  | _   | _            | 1                          | 4            | 0.3176                     |
| 6        | Приграничный                 | 2          | 8   | 7  | _   | _            | 1                          | 18           | 0.6376                     |
|          | Всего                        | 340        | 142 | 48 | 13  | 3            | 3                          | 549          | 1.6847                     |
| h>300 км |                              |            |     |    |     |              |                            |              |                            |
| №        | Район                        | MPV        |     |    |     | $N_{\Sigma}$ | $\Sigma E \cdot 10^{12}$ , |              |                            |
|          |                              | 4.0        |     |    | 5.0 | ,            | 7.0                        |              | Дж                         |
| 5        | Сихотэ-Алиньский             | 1          |     | 1  |     |              | 1                          |              | 1995.3                     |

В целом в 2000 г. наблюдалась невысокая сейсмическая активность. Несмотря на то, что коровых землетрясений зарегистрировано на 30.7% больше, чем в 1999 г., суммарная сейсмическая энергия в 3.5 раза меньше таковой (табл. 1, 2). Параметры графиков повторяемости коровых землетрясений за 1995—2000 гг. (табл. 3) также имеют в 2000 г. больший наклон, нежели в предыдущие годы, что свидетельствует об увеличении числа слабых землетрясений.

**Таблица 2.** Распределение числа землетрясений с очагом в земной коре по энергетическим классам  $K_P$  и суммарная сейсмическая энергия  $\Sigma E$  за 1992-2000 гг.

| Год              |        |       | $N_{\Sigma}$ | $\Sigma E \cdot 10^{12}$ |      |      |        |         |
|------------------|--------|-------|--------------|--------------------------|------|------|--------|---------|
|                  | 8      | 9     | 10           | 11                       | 12   | 13   |        | Дж      |
| 1992             | 131    | 28    | 15           | 6                        | 1    | _    | 181    | 1.6000  |
| 1993             | 77     | 41    | 11           | 3                        | 2    | 1    | 135    | 12.4400 |
| 1994             | 144    | 31    | 13           | 12                       | 2    | 1    | 203    | 12.3000 |
| 1995             | 136    | 20    | 13           | 4                        | _    | _    | 173    | 0.5600  |
| 1996             | 123    | 45    | 11           | 5                        | _    | _    | 184    | 0.7456  |
| 1997             | 109    | 29    | 22           | 3                        | 3    | _    | 166    | 2.6943  |
| 1998             | 116    | 49    | 10           | 7                        | _    | 2    | 184    | 20.4063 |
| 1999             | 102    | 46    | 11           | 5                        | 5    | _    | 169    | 5.9882  |
| Среднее за 8 лет | 117.25 | 36.12 | 13.25        | 5.62                     | 1.62 | 0.50 | 174.37 | 7.09    |
| 2000             | 142    | 48    | 13           | 3                        | 3    | _    | 209    | 1.6847  |

Глубокофокусная сейсмическая активность региона тоже снизилась, суммарная сейсмическая энергия (табл. 2) в 11.8 раза меньше, чем в 1999 г. [1].

Механизмы очагов определены для четырех землетрясений [11]: двух — мелкофокусных (5, 8 на рис. 1), двух — глубокофокусных (3, 4). Использовались данные первых вступлений в волнах P и Pg, а для уточнения решения — знаки и смещения вступлений волн SV и SH. Из общего числа решений были выбраны согласующиеся наилучшим образом с распределением знаков первых смещений в волнах P, SV, SH, Pg, SgV, SgH.

| Год  | а   | b    |
|------|-----|------|
| 1995 | 5.8 | 0.47 |
| 1996 | 5.9 | 0.51 |
| 1997 | 5.8 | 0.47 |
| 1998 | 5.7 | 0.49 |
| 1999 | 6.0 | 0.48 |
| 2000 | 6.7 | 0.56 |

**Таблица 3.** Параметры графиков повторяемости землетрясений с очагом в земной коре в диапазоне  $K_P = 8 - 11$ 

Примечание. Расчет параметров графиков произведен с шагом  $\Delta K_{\rm P} = 1$ .

В Становом районе (№ 1) произошло резкое снижение сейсмической активности: хотя зарегистрировано 103 коровых землетрясения, что в 1.2 раза больше числа землетрясений в 1999 г. [1], суммарная сейсмическая энергия (табл. 2) составила не более 7% от энергии, выделившейся в очагах землетрясений в 1999 г. Эпицентры землетрясений довольно равномерно распределились по территории района (рис. 1). К концу года заметно активизировалась его восточная часть, где 2 ноября в  $19^h48^m$  произошло самое сильное ( $K_P=10.7$ ) землетрясение (12) на глубине h=7 км. Чуть северо-восточнее на такой же глубине находился гипоцентр землетрясения (14) 24 декабря в  $03^h47^m$  с  $K_P=10.2$ . Его сопровождал афтершок с  $K_P=7.6$ , который был зарегистрирован спустя 4.5 часа после основного толчка. Небольшой рой более слабых землетрясений наблюдался на восточном фланге Станового хребта, северо-восточнее пос. Бомнак.

В Янкан-Тукурингра-Джагдинском районе (№ 2) также отмечено снижение сейсмической активности. Хотя число коровых землетрясений составило N=231, что в 1.2 раза больше такового в 1999 г. [1], суммарная сейсмическая энергия (табл. 2) уменьшилась в 2.7 раза. Самое сильное ( $K_P$ =11.0) землетрясение (13) зарегистрировано 17 ноября в  $17^h29^m$  на глубине h=16  $\kappa M$  в северо-западной части района. Второе по величине ( $K_P$ =10.3) землетрясение (1) отмечено 18 января в  $10^h41^m$  на глубине h=8  $\kappa M$  западнее г. Тында. К югу от Зейского водохранилища локализованы гипоцентры землетрясений с  $K_P$ =7.7–9.8 с h от 8 до 13  $\kappa M$ , одно из которых, отмеченное 5 октября в  $03^h31^m$  ( $K_P$ =9.5), было ощутимым в г. Зея ( $\Delta$ =41  $\kappa M$ ) с интенсивностью до двух баллов. Западнее Зейского водохранилища расположились небольшие группы эпицентров слабых коровых землетрясений с  $K_P$ <10. Возможно, часть этих толчков является промышленными взрывами [12]. Сейсмичность восточной части района значительно уменьшилась, по сравнению с таковой в 1999 г. [1].

Относительно спокойный ранее [1] **Зейско-Селемджинский** район (№ 3) в 2000 г. несколько активизировался: зарегистрировано 29 землетрясений, тогда как в 1999 г. – лишь 11 [1]), суммарная сейсмическая энергия (табл. 2) возросла в 648 раз. Самое сильное ( $K_P$ =10.8) землетрясение (10) произошло 27 августа в  $22^h51^m$  с h=7  $\kappa M$  юго-восточнее пос. Октябрьский .

В **Турано-Буреинском** районе (№ 4) зарегистрировано 164 коровых землетрясения, что в 1.6 раза больше, чем в 1999 г. [1], в то время как суммарная сейсмическая энергия снизилась в 3.8 раза (табл. 2). Трудности при анализе сейсмической обстановки этого района связаны с возможным включением в каталог [10] промышленных взрывов. На территории района выделены три площадки, на которых возможны взрывные работы (рис. 1).

Самое сильное ( $K_P$ =11.5, MLH=3.8) землетрясение (5) зарегистрировано 4 апреля в  $20^h35^m$  на глубине h=8  $\kappa m$ . Его очаг находился под воздействием близгоризонтально ориентированных напряжений растяжения и более крутых напряжений сжатия. Одна из возможных плоскостей разрыва близвертикальна, с крутым падением на северо-запад; вторая имеет субмеридиональное простирание с падением под небольшим углом на восток. Характерный тип подвижки – сдвиг [11]. Более слабые землетрясения равномерно распределились по всему району.

В Сихотэ-Алиньском районе (№5) сложно оценить реальную сейсмическую обстановку из-за отсутствия близких сейсмических станций. Удалось определить эпицентры лишь 7 землетрясений. Относительно сильное ( $K_P$ =11.5, MLH=4.2) мелкофокусное землетрясение (6) отмечено 11 апреля в  $03^h46^m$  на глубине h=21  $\kappa M$  под акваторией Японского моря. В южной прибрежной части района расположились эпицентры глубокофокусных землетрясений. Самое сильное (MPV=6.9) из них (3) является важнейшим сейсмическим событием 2000 г. для всего

региона. Оно произошло 13 февраля в  $02^{\rm h}57^{\rm m}$  в районе Владивостока. Гипоцентр его находился на глубине  $h=529~\kappa m$ . По данным [3], оно ощущалось в Японии с интенсивностью до двух баллов. Второе по магнитуде (MPVA=4.6) глубокофокусное землетрясение (4) зарегистрировано 19 марта в  $13^{\rm h}48^{\rm m}$  под акваторией Японского моря на глубине  $h=353~\kappa m$ .

Интерпретация механизмов очагов землетрясений, приведенных в [11], позволяет установить, что оба события находились под воздействием близгоризонтально ориентированных напряжений растяжения и более крутых напряжений сжатия. Для землетрясения (3) одна из возможных плоскостей разрыва имеет субмеридиональное простирание и крутое падение на северо-восток, вторая возможная плоскость разрыва ориентирована субширотно с падением на юго-восток, подвижка — типа сдвиг с компонентой сброса. Для землетрясения (4) характерный тип подвижки — сброс, с преобладанием растягивающих напряжений.

В **Приграничном** районе (№ 6) проявилось заметное снижение сейсмической активности: зарегистрировано лишь 18 коровых землетрясений, суммарная сейсмическая энергия уменьшилась, по сравнению с таковой в 1999 г. [1], в 4.2 раза. (табл. 2).

Самое сильное ( $K_P$ =11.8. MLH=4.2) землетрясение (8) произошло 14 мая в 15<sup>h</sup>48<sup>m</sup> на глубине h=13  $\kappa m$  на границе с Китаем. Макросейсмический эффект его составил 4 балла в г. Облучье ( $\Delta$ =84  $\kappa m$ ) и 3 балла – в пос. Кульдур ( $\Delta$ =136  $\kappa m$ ). Его очаг находился под воздействием близгоризонтальных напряжений растяжения и более крутых напряжений сжатия. Обе нодальные плоскости субмеридиональны, с крутым падением на северо-запад одной из них, и под небольшим углом на восток – другой. Преобладающая подвижка в очаге – сброс [11].

## Литература

- 1. **Фокина Т.А., Коваленко Н.С., Паршина И.А., Рудик М.И., Сафонов Д.А.** Приамурье и Приморье // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 140–147.
- **2.Сейсмологический бюллетень (ежедекадный) за 2000 год** / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 2000–2001.
- 3. Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- 4. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). М.: Наука, 1989. С. 32–51.
- 5. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Проблемы сейсмической опасности Дальневосточного региона (Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI). Южно-Сахалинск: Институт морской ГиГ ДВО РАН, 1997. С. 179–197.
- **6. Шолохова А.А., Оскорбин Л.С., Рудик М.И.** Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 7. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). М.: Наука, 1979. С. 45—58.
- 8. Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 95–99.
- 9. **Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И.** Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 10. **Коваленко Н.С., Поплавская Л.Н. (отв. сост.), Величко Л.Ф., Сычаева Н.А., Садчикова А.А.** Приамурье и Приморье. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 11. **Рудик М.И. (отв. сост.), Коваленко Н.С.** Приамурье и Приморье. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- 12. Годзиковская А.А. Местные землетрясения и взрывы. М: Наука, 2000. 108 с.