ПРИАМУРЬЕ И ПРИМОРЬЕ

Т.А. Фокина, Н.С. Коваленко, М.И. Рудик, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

Параметры землетрясений региона определены на основе инструментальных данных, полученных на семи сейсмических станциях Приамурья и Приморья (рис. 1), параметры которых, по сравнению с таковыми в 1999 г. [1], не изменились. В сводной обработке дополнительно использованы данные сейсмических сетей Сахалина, Курило-Охотского региона, Прибайкалья, Якутии, ЦОМЭ ГС РАН (станции «Кульдур» и «Владивосток»), а также бюллетеней [2, 3].

Рис. 1. Карта эпицентров землетрясений Приамурья и Приморья за 2000 г.

1 – энергетический класс *K*_P; 2 – магнитуда *MSH*, *MPV*; 3 – глубина *h* гипоцентра, *км*; 4 – диаграмма механизма очага землетрясения (нижняя полусфера, зачернена область сжатия); 5 – сейсмическая станция; 6 – номер и граница условного района; 7 – места производства промышленных взрывов; 8 – государственная граница.

Методика определения основных параметров землетрясений [4–6], механизмов их очагов [7–9], а также схема деления региона на сейсмоактивные районы, по сравнению с таковыми в 1999 г. [1], не изменились.

В 2000 г. определены параметры 549 коровых (*h*≤40 км) и трех глубокофокусных (*h*>300 км) землетрясений [10] с эпицентрами, расположенными на территории Приамурья и Приморья (рис. 1, табл. 1); для трех землетрясений имеются макросейсмические данные.

һ≤30 км									
N⁰	Район	Kp						N_{Σ}	$\Sigma E \cdot 10^{12}$,
		≤7.5	8	9	10	11	12		Дж
1	Становой	65	23	11	3	1	—	103	0.0902
2	Янкан-Тукурингра-Джагдинский	188	29	10	3	1	_	231	0.1514
3	Зейско-Селемджинский	22	5	1	-	1	_	29	0.0648
4	Турано-Буреинский	63	76	17	7	_	1	164	0.4229
5	Сихотэ-Алиньский	-	1	2	-	_	1	4	0.3176
6	Приграничный	2	8	7	-	_	1	18	0.6376
	Всего	340	142	48	13	3	3	549	1.6847

Таблица 1. Распределение коровых землетрясений по энергетическому классу *K*_P, глубокофокусных – по магнитуде *MPV*, и суммарная сейсмическая энергия Σ*E* по районам в 2000 г.

h>300 км

N⁰	Район		N_{Σ}	$\Sigma E \cdot 10^{12}$,		
		4.0	5.0	7.0		Дж
5	Сихотэ-Алиньский	1	1	1	3	1995.3

В целом в 2000 г. наблюдалась невысокая сейсмическая активность. Несмотря на то, что коровых землетрясений зарегистрировано на 30.7% больше, чем в 1999 г., суммарная сейсмическая энергия в 3.5 раза меньше таковой (табл. 1, 2). Параметры графиков повторяемости коровых землетрясений за 1995–2000 гг. (табл. 3) также имеют в 2000 г. больший наклон, нежели в предыдущие годы, что свидетельствует об увеличении числа слабых землетрясений.

Таблица 2. Распределение числа землетрясений с очагом в земной коре по энергетическим классам *К*_Р и суммарная сейсмическая энергия *ΣE* за 1992–2000 гг.

Год			$K_{ m P}$	K _P				$\Sigma E \cdot 10^{12}$
	8	9	10	11	12	13		Дж
1992	131	28	15	6	1	_	181	1.6000
1993	77	41	11	3	2	1	135	12.4400
1994	144	31	13	12	2	1	203	12.3000
1995	136	20	13	4	_	_	173	0.5600
1996	123	45	11	5	_	_	184	0.7456
1997	109	29	22	3	3	_	166	2.6943
1998	116	49	10	7	_	2	184	20.4063
1999	102	46	11	5	5	_	169	5.9882
Среднее за 8 лет	117.25	36.12	13.25	5.62	1.62	0.50	174.37	7.09
2000	142	48	13	3	3	_	209	1.6847

Глубокофокусная сейсмическая активность региона тоже снизилась, суммарная сейсмическая энергия (табл. 2) в 11.8 раза меньше, чем в 1999 г. [1].

Механизмы очагов определены для четырех землетрясений [11]: двух – мелкофокусных (5, 8 на рис. 1), двух – глубокофокусных (3, 4). Использовались данные первых вступлений в волнах P и Pg, а для уточнения решения – знаки и смещения вступлений волн SV и SH. Из общего числа решений были выбраны согласующиеся наилучшим образом с распределением знаков первых смещений в волнах P, SV, SH, Pg, SgV, SgH.

Год	а	Ь
1995	5.8	0.47
1996	5.9	0.51
1997	5.8	0.47
1998	5.7	0.49
1999	6.0	0.48
2000	6.7	0.56

Таблица 3. Параметры графиков повторяемости землетрясений с очагом в земной коре в диапазоне $K_{\rm P} = 8 - 11$

Примечание. Расчет параметров графиков произведен с шагом $\Delta K_P = 1$.

В Становом районе (№ 1) произошло резкое снижение сейсмической активности: хотя зарегистрировано 103 коровых землетрясения, что в 1.2 раза больше числа землетрясений в 1999 г. [1], суммарная сейсмическая энергия (табл. 2) составила не более 7% от энергии, выделившейся в очагах землетрясений в 1999 г. Эпицентры землетрясений довольно равномерно распределились по территории района (рис. 1). К концу года заметно активизировалась его восточная часть, где 2 ноября в 19^h48^m произошло самое сильное (K_P =10.7) землетрясение (12) на глубине $h=7 \ \kappa m$. Чуть северо-восточнее на такой же глубине находился гипоцентр землетрясения (14) 24 декабря в 03^h47^m с K_P =10.2. Его сопровождал афтершок с K_P =7.6, который был зарегистрирован спустя 4.5 часа после основного толчка. Небольшой рой более слабых землетрясений наблюдался на восточном фланге Станового хребта, северо-восточнее пос. Бомнак.

В Янкан-Тукурингра-Джагдинском районе ($\mathbb{N} 2$) также отмечено снижение сейсмической активности. Хотя число коровых землетрясений составило N=231, что в 1.2 раза больше такового в 1999 г. [1], суммарная сейсмическая энергия (табл. 2) уменьшилась в 2.7 раза. Самое сильное ($K_P=11.0$) землетрясение (13) зарегистрировано 17 ноября в 17^h29^m на глубине $h=16 \kappa M$ в северо-западной части района. Второе по величине ($K_P=10.3$) землетрясение (1) отмечено 18 января в 10^h41^m на глубине $h=8 \kappa M$ западнее г. Тында. К югу от Зейского водохранилища локализованы гипоцентры землетрясений с $K_P=7.7-9.8$ с h от 8 до 13 κM , одно из которых, отмеченное 5 октября в 03^h31^m ($K_P=9.5$), было ощутимым в г. Зея ($\Delta=41 \kappa M$) с интенсивностью до двух баллов. Западнее Зейского водохранилища расположились небольшие группы эпицентров слабых коровых землетрясений с $K_P<10$. Возможно, часть этих толчков является промышленными взрывами [12]. Сейсмичность восточной части района значительно уменьшилась, по сравнению с таковой в 1999 г. [1].

Относительно спокойный ранее [1] Зейско-Селемджинский район ($\mathbb{N} 3$) в 2000 г. несколько активизировался: зарегистрировано 29 землетрясений, тогда как в 1999 г. – лишь 11 [1]), суммарная сейсмическая энергия (табл. 2) возросла в 648 раз. Самое сильное (K_P =10.8) землетрясение (10) произошло 27 августа в 22^h51^m с $h=7 \kappa M$ юго-восточнее пос. Октябрьский.

В **Турано-Буреинском** районе (№ 4) зарегистрировано 164 коровых землетрясения, что в 1.6 раза больше, чем в 1999 г. [1], в то время как суммарная сейсмическая энергия снизилась в 3.8 раза (табл. 2). Трудности при анализе сейсмической обстановки этого района связаны с возможным включением в каталог [10] промышленных взрывов. На территории района выделены три площадки, на которых возможны взрывные работы (рис. 1).

Самое сильное (K_P =11.5, MLH=3.8) землетрясение (5) зарегистрировано 4 апреля в 20^h35^m на глубине h=8 км. Его очаг находился под воздействием близгоризонтально ориентированных напряжений растяжения и более крутых напряжений сжатия. Одна из возможных плоскостей разрыва близвертикальна, с крутым падением на северо-запад; вторая имеет субмеридиональное простирание с падением под небольшим углом на восток. Характерный тип подвижки – сдвиг [11]. Более слабые землетрясения равномерно распределились по всему району.

В Сихотэ-Алиньском районе (M25) сложно оценить реальную сейсмическую обстановку из-за отсутствия близких сейсмических станций. Удалось определить эпицентры лишь 7 землетрясений. Относительно сильное (K_P =11.5, MLH=4.2) мелкофокусное землетрясение (6) отмечено 11 апреля в 03^h46^m на глубине h=21 км под акваторией Японского моря. В южной прибрежной части района расположились эпицентры глубокофокусных землетрясений. Самое сильное (MPV=6.9) из них (3) является важнейшим сейсмическим событием 2000 г. для всего региона. Оно произошло 13 февраля в $02^{h}57^{m}$ в районе Владивостока. Гипоцентр его находился на глубине $h=529 \ \kappa m$. По данным [3], оно ощущалось в Японии с интенсивностью до двух баллов. Второе по магнитуде (MPVA=4.6) глубокофокусное землетрясение (4) зарегистрировано 19 марта в $13^{h}48^{m}$ под акваторией Японского моря на глубине $h=353 \ \kappa m$.

Интерпретация механизмов очагов землетрясений, приведенных в [11], позволяет установить, что оба события находились под воздействием близгоризонтально ориентированных напряжений растяжения и более крутых напряжений сжатия. Для землетрясения (3) одна из возможных плоскостей разрыва имеет субмеридиональное простирание и крутое падение на северо-восток, вторая возможная плоскость разрыва ориентирована субширотно с падением на юговосток, подвижка – типа сдвиг с компонентой сброса. Для землетрясения (4) характерный тип подвижки – сброс, с преобладанием растягивающих напряжений.

В **Приграничном** районе (№ 6) проявилось заметное снижение сейсмической активности: зарегистрировано лишь 18 коровых землетрясений, суммарная сейсмическая энергия уменьшилась, по сравнению с таковой в 1999 г. [1], в 4.2 раза. (табл. 2).

Самое сильное (K_P =11.8. MLH=4.2) землетрясение (8) произошло 14 мая в 15^h48^m на глубине h=13 км на границе с Китаем. Макросейсмический эффект его составил 4 балла в г. Облучье (Δ =84 км) и 3 балла – в пос. Кульдур (Δ =136 км). Его очаг находился под воздействием близгоризонтальных напряжений растяжения и более крутых напряжений сжатия. Обе нодальные плоскости субмеридиональны, с крутым падением на северо-запад одной из них, и под небольшим углом на восток – другой. Преобладающая подвижка в очаге – сброс [11].

Литература

- 1. Фокина Т.А., Коваленко Н.С., Паршина И.А., Рудик М.И., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии в 1999 году. – Обнинск: ГС РАН, 2005. – С. 140–147.
- 2. Сейсмологический бюллетень (ежедекадный) за 2000 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 2000–2001.
- 3. Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- 4. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 5. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Проблемы сейсмической опасности Дальневосточного региона (Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI). Южно-Сахалинск: Институт морской ГиГ ДВО РАН, 1997. С. 179–197.
- 6. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 7. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- В. Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ОИФЗ РАН, 2001. – С. 95–99.
- 9.Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 10. Коваленко Н.С., Поплавская Л.Н. (отв. сост.), Величко Л.Ф., Сычаева Н.А., Садчикова А.А. Приамурье и Приморье. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 11. Рудик М.И. (отв. сост.), Коваленко Н.С. Приамурье и Приморье. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- 12. Годзиковская А.А. Местные землетрясения и взрывы. М: Наука, 2000. 108 с.