КИЗИЛЮРТСКОЕ ЗЕМЛЕТРЯСЕНИЕ 31 января 1999 года

с MS=5.5, I₀=7 (Дагестан)

О.А. Асманов¹, С.Р. Амиров¹, М.Г. Даниялов¹, Р.А. Левкович¹, М.М. Мирзалиев¹, А.Ш. Осокина², И.П. Габсатарова², Р.С. Михайлова²

¹Дагестанская опытно-методическая сейсмологическая партия ГС РАН, г. Махачкала ²Геофизическая служба Российской академии наук, г. Обнинск

Кизилюртское землетрясение, записанное более чем 180 сейсмическими станциями мира, произошло 31 января в 05^h07^m в центральном Дагестане. Копии записей этого землетрясения на ряде сейсмических станций приведены на рис. 1.

Рис. 1. Монтаж записей Кизилюртского землетрясения 31 января 1999 г.

Для определения положения основного толчка были использованы наиболее четкие записи десяти стационарных и двух полигонных сейсмических станций Дагестана [1], окружающих эпицентральную зону. При этом ближайшая сейсмическая станция «Дубки» находилась на расстоянии $10-12 \ \kappa m$ на юго-запад от инструментального эпицентра основного толчка, наиболее удаленная – «Ахты» – на расстоянии 180 κm . Определение координат очага землетрясения проводили способом засечек с помощью местного годографа. Время в очаге t_0 найдено по графику Вадати. Полученные в окончательном варианте параметры для основного толчка Кизилюртского землетрясения ($t_0=05^{h}07^{m}10.22^{s}$, $\varphi=43.118^{\circ}$ N, $\lambda=46.967^{\circ}$ E, $h=33 \kappa m$ при погрешности $\delta=\pm 2.5 \kappa m$) приведены в табл. 1 вместе с решениями других агентств. Среднее значение энергетического класса землетрясения, по данным сети станций Дагестана, составило $K_{\rm P}=14.3$ [2].

Агентство	<i>t</i> ₀ ,	δt_0 ,	Эпицентр			h,	δh ,	Магнитуды	Источ-	
	ч мин с	С	φ°, Ν	δφ°	λ°, Ε	δλ°	км	км		ник
Дагестан	05 07 10.22		43.118	0.02	46.967	0.025	33		$K_{\rm P} = 14.3$	[2]
Уточненение по ре-	05 07 12.1	0.6	43.094	0.02	46.835	0.04	11.7	3		
гиональным даным										
MOS	05 07 11.4	1.3	43.192	0.05	46.957	0.05	17		MS=5.5/29, MPLP=6.0/4,	[3]
									<i>MPSP</i> =5.5/29, <i>Mw</i> =5.9,	
									$M_0 = 8.3 \cdot 10^{17} H \cdot M$	
ISC	05 07 14.1	0.12	43.254	0.02	46.90	0.02	36*	5*	$Ms=5.5/88, m_b=5.3/178,$	[4]
									<i>h</i> * по <i>pP</i>	
NEIC	05 07 13.6	0.18	43.157		46.841		33		$Ms=5.4/54, m_b=5.3/118,$	[4]
									Mw = 5.8.	
									$M_0 = 5.0 \cdot 10^{17} H \cdot M$	
HRVD	05 07 17.9	0.2	43.56		47.14		30		<i>Mw</i> =5.7	[4]
EIDC	05 07 11.7	1.84	43.11	0.10	46.85	0.10	9	10	<i>Ms</i> =5.3/15, <i>Mb</i> =5.1/24	[4]
BJI	05 07 11.0	0.43	43.15		46.33		47		<i>Ms</i> =5.9, <i>Mb</i> =5.4	[4]

Таблица 1. Основные параметры Кизилюртского землетрясения по республиканским данным Дагестана в сопоставлении с определениями других агентств

Кизилюртское землетрясение ощущалось на территории всего Кавказа. Макросейсмическое обследование проведено группой сотрудников Дагестанского филиала ГС РАН. Эпицентр Кизилюртского землетрясения располагался в западной густозаселенной части Предгорного Дагестана, в месте выхода р. Сулак из предгорий на равнину. Интенсивность сотрясений оценивалась в соответствии со шкалой MSK-64 [5] в основном по зданиям типа А и В (саманные, кирпичные, панельные), построенным после разрушительных Дагестанского (14.05.1970 г. [6]) и Буйнакского (09.01.1975 г. [7]) землетрясений.

В плейстосейстовой зоне были обследованы 18 населенных пунктов, позволивших оконтурить шестибалльную изосейсту. Внутри этой зоны ряд сближенных населенных пунктов (селения Кульзеб, Стальский, Новый Чиркей и др.), которые расположились вдоль оросительного канала и практически слились в одно поселение, испытали более сильные сотрясения, оцениваемые в 7 баллов. Ниже дано более детальное описание в нескольких населенных пунктах.

В <u>е. Кизилюрте</u> в кирпичных домах повсеместно наблюдались не сквозные трещины в несущих стенах между проемами окон и дверей, между окнами соседних этажей, в некоторых случаях они были сквозные в перегородках (рис. 2). В панельных домах с сейсмостойким усилением на 7–8 баллов повсеместно отмечены трещины в межблоковых сочленениях без видимых повреждений конструкции. В условиях повышенной нагрузки (спортзалы в школах и др.) имели место случаи расхождения панелей перекрытия со смещением до 5 *см*, создавших угрозу разрушения здания. В капитальном двухэтажном кирпичном здании механических мастерских Сулакской ПМК с тремя сейсмостойкими поясами уже после его постройки были переделаны ворота для возможности въезда крупногабаритной техники. При этом был нарушен межэтажный сейсмостойкий пояс. В результате после землетрясения 31 января это здание имело 3-ю степень повреждения – разрушение сплошности здания и отход фронтальной его стены в направлении очага. В других селениях плейстосейстовой зоны в саманных домах наблюдались сквозные трещины в стенах, сопровождавшиеся в единичных случаях выпадением небольших участков стен.

В шестибалльной зоне новой формой повреждения многочисленных зданий из самана, построенных в последние годы, стало обрушение их облицовок из кирпича, которые не имели связки с несущими стенами (рис. 3). Если последние не имели сквозных трещин, то обвал облицовки рассматривался как повреждение 1-й степени. Результаты обследования во всех пунктах даны в табл. 2.

Рис. 2. Сквозные трещины в перегородках

Рис. 3. Обрушение облицовки из кирпича

Таблица 2.	Макросейсмические,	данные о Кизилюрто	ском землетрясении
	31 января в 05 ^h 07 ^m с	MS=5.5	

N₂	Пункт	Δ, <i>км</i>	N⁰	Пункт	Δ, <i>км</i>
	<u>7 баллов</u>			<u>6—7 баллов</u>	
1	Кизилюрт	2	6	Учкент	7
2	Шушановка	3	7	Темиргое	11
3	Новый Чиркей	3	8	Нижний Чирюрт	12
4	Стальский	4	9	Новая Урада	14
5	Кульзеб	5	10	Бавтугай	15

No	Пункт	Δ	No	Пункт	٨
115	Пункі	Д, КМ	145	Пункі	Д, КМ
11	Акатайла	17	55	Карабудахкент	68
12	Хубар	25	56	Хунзах	74
13	Хасавюрт	27	57	Гергебиль	74
14	Эндери	30		5 634400	-
15	Дылым	33	50		
16	Новолакское	42	58	Сулак	41
	6 баллов		59	Тамазатюбе	47
17	П.:б	12	60	Бабаюрт	52
1/	Дубки	12	61	Адилянгиюрт	55
19	Печаевка	15	62	Манаскент	73
20	Алмало	19	63	Урма	74
21	Муцалаул	30	64	Карата	84
22	Хасавюрт	3/	65	Ботлих	86
23	Новолакское	43	66	Леваши	86
24	Чапаевка	49	67	Гуниб	87
	<u>5-6 баллов</u>			<u>4-5 баллов</u>	
25	Аджидада	14	68	Бабаюрт	46
26	Костек	23	69	Каспийск	72 [3]
27	Гимры	24	70	Кизляр	76
28	Новочиркей	24	71	Избербаш	96
29	Акнада	25	72	Сергокала	96
30	Шамхалянгиюрт	26	73	Грозный	104
31	Шамхалтермен	29	74	Кумух	108
32	Богатыревка	30		4 балла	
33	Ботаюрт	31	75	Variation	100
34	Шамхал	32	75	уркарах	122
35	Ленинкент	36	70		134
36	Халимбекаул	37	//	Владикавказ	182
37	Буйнакск	40		<u>3—4 балла</u>	
38	В. Каранай	40	78	Тарумовка	104
39	Алмак	41	79	Тереклимектеб	137
40	Адильотар	42	80	Кочубей	138
41	Геметюбе	45	81	Дербент	164
42	Артлух	46	82	Закаталы	168
43	Сулак	46	83	Хив	172
44	Махачкала	47	84	Нальчик	272
45	Талги	49	85	Гофицкое	372 [3]
46	Аксай	51		3 балла	
47	Унцукуль	55	06		180
48	Дженгутай	56	80 97		200
49	Аданак	59	0/	Ахты Магарализант	200
50	Каспийск	60	00	Понтарамкент Нафтарариска	200
51	Аракани	62	89 00	пефтекумск Тбилиси	233
52	Какашура	65	90	Патиророк	238
53	Мехельта	66	02	Гизнигорск	220
54	Инхо	67	92	кисловодск	338

По данным табл. 2 построена карта изосейст с выделением отдельного фрагмента внутренней области с интенсивностью сотрясений *I*≥5 баллов (рис. 4а,б).

Система изолиний оказалась в основном усеченной из-за акватории Каспийского моря, замкнуты лишь две изосейсты с I=6 и 7 баллов. Все изосейсты сильно вытянуты в широтном направлении, что свидетельствует о преобладающем влиянии на формирование макросейсмического поля региональных глубинных разломов субкавказского простирания, проходящих и ограничивающих очаговую зону этого землетрясения.

Кизилюртское землетрясение сопровождалось мощной серией афтершоков (свыше 6000), большая часть которых записана лишь ближайшей станцией «Дубки». Карта эпицентров более сильных афтершоков с $K_P \ge 8.6$ представлена на рис. 5. Линейные размеры облака афтершоков,

имеющего четырехугольную форму, составляют 23х28 км. Эпицентр главного толчка находится в ее северо-западном углу. Соответственно, площадь этого облака – около 650 км². Максимальный афтершок Кизилюртского землетрясения реализовался лишь 21 февраля в $18^{h}14^{m}$ с K_{P} =13.2 в 18 км южнее его. Величина энергетической ступени между ними, соответственно равна:

$$\Delta K_a = 14.3 - 13.2 = 1.1$$

Рис. 4. Карта изосейст внутренней (а) и всей зоны ощутимости (б) Кизилюртского землетрясения с *MS*=5.5

1 – интенсивность сотрясений в баллах по шкале MSK-64; 2 – изосейста; 3 – государственная граница.

Рис. 5. Эпицентры Кизилюртского землетрясения и его повторных толчков Цифры в кружках соответствуют *К*_P; АБ и СД – линии вертикальных разрезов на рис. 6.

Очаги почти всех афтершоков, как следует из двух вертикальных перекрестных разрезов на рис. 6, размещены в нижних слоях земной коры от 18 до 36 км. Гипоцентры основного толчка и его максимального афтершока на глубинах 33 и 32 км ограничивают снизу облако афтершоков, большая часть из которых имеют меньшие глубины.

Рис. 6. Вертикальные разрезы через очаговую область Кизилюртского землетрясения по линиям АВ (а) и СД (б) на рис. 5

Еще одну карту изосейст (рис. 7) удалось построить для сильного афтершока, произошедшего 21 февраля в $18^{h}14^{m}$ с *MS*=2.1 [3]. Исходные данные для ее построения сведены в табл. 3.

Рис. 7. Карта изосейст афтершока 21 февраля в 18^h14^m с *K*_P=13.2

1 - интенсивность сотрясений в баллах по шкале MSK-64; 2 - изосейста; 3 - государственная граница.

N⁰	Пункт	Δ, <i>км</i>	Nº	Пункт	Δ, <i>км</i>
	<u>6 баллов</u>		16 17	Тамазатюбе Бабаюрт	48 52
1 2	У чкент Кизилюрт	8 13	18 19	Каспийск Унцукуль	60 52
2	<u>5 баллов</u> Шаукал	20	20	Какашура	64 72
3 4	Богатыревка	28 30	21	Хунзах Кизляр	82
5	<u>4–5 баллов</u> Пубин	21	23 24	Ботлих Грозный	85 108
6	Шамхалянгиюрт	23		<u>3 балла</u>	
8	1 уни Дылым	30 33	25 26	Гуниб Сергокала	88 94
9 10	Хасавюрт Ленинаул	36 38	27	Избербаш	95
11	Новолак	43	20	<u>2—3 балла</u>	111
12	Сулак Махачкала	44 45	28 29	Кумух Уркарах	111 120
14	Аксай 4 балла	53	30 31	Назрань Владикавказ	182 190
15	Буйнакск	40		Dinginghus	170

Таблица 3. Макросейсмические сведения об афтершоке 21 февраля в 18^h14^m с *MS*=5.1

Сравнение карт изосейст основного толчка и сильного его афтершока показывает их подобие.

Построение механизма очага Кизилюртского землетрясения выполнено по традиционно применяемой В ΓС PAH методике использования знаков первых вступлений *Р*-волн [8]. Дополнительно были собраны данные по сейсмическим станциям международных сетей. Полученное решение, уточненное относительно опубликованного в [3] с использованием 128 знаков (98 - «+» и 30 - «-») для станций, равномерно окружающих эпицентр основного толчка с ∆=2.3°-78.0°, приведено в табл. 4. Там же помещены параметры механизма очага Кизилюртского землетрясения по методу тензора момента центроида, выполненного в Гарвардском центре США и NEIC [4]. Согласно [9], землетрясение произошло под действием сил сжатия, ориентированных в северо-восточном направлении (рис. 8). Обе нодальные плоскости имеют северо-западное простирание, плоскость NP1 залегает полого, другая NP2 – более круто, тип движения по обеим плоскостям – взброс. При сравнении [9] с решениями механизма очага полученными методом тензора момента центроида, отмечается хорошее их согласование.

Рис. 8. Механизм очага Кизилюртского землетрясения 31 января 1999 г.

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия

Очаг Кизилюртского землетрясения относится к сейсмофокальной области «Дагестанский клин», которая известна как область высокого сейсмического потенциала [10]. В глобальном плане тектоническая позиция этой области обусловлена взаимодействием Аравийской плиты, перемещающейся на север, Турецкой и Иранской субплит, выдавливаемых на запад и восток соответственно, и Малого Кавказа, проталкиваемого на север, образующего дугообразную структуру, на периферии которой расположен Дагестанский клин [11] (рис. 9). Здесь в 1970 г. произошло разрушительное Дагестанское землетрясение.

Агентство	Дата,	<i>t</i> ₀ ,	Магнитуды		K _P	Oc	и гла	лавных напряжений				Нодальные плоскости						
	д м	ч мин с	MS	^MPSP	Mw	Mw		Т		Ν		Р		NP	1		NP2	2
			#Ms	$\#m_{\rm b}$			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
MOS	31.01	05 07 11.4	^5.5/29	^5.5/29	5.9		64	197	5	297	26	29	130	20	104	295	71	85
HRVD		05 07 17.9			5.7		71	262	13	132	14	38	111	33	66	319	60	105
NEIC		05 07 13.6	#5.4/54	#5.3/118			54	218	6	316	36	50	166	11	121	315	81	84
Уточнение						14.3	64	216	5	117	26	24	103	20	76	298	71	95

Таб.	лица 4.	Разные	решения	механизма	очага	Кизилк	ортского	землет	рясения
------	---------	--------	---------	-----------	-------	--------	----------	--------	---------

Рис. 9. Иллюстрация глобальной тектоники плит в районе Кавказа по [11]

Большими черными стрелками показаны направления сжатия и глобального движения плит. Звездой и квадратом отмечены очаг Дагестанского землетрясения 1970 г. и зона «Дагестанского клина».

На рис. 10 представлены активные разломы района Дагестанского землетрясения 1970 г. по данным Е.А. Рогожина [12]. На эту же карту нанесены механизмы трех субочагов (I–III) из [11] на фоне эпицентров надежно определенных афтершоков Дагестанского землетрясения. Здесь же черным кругом отмечен эпицентр Кизилюртского землетрясения и полыми кругами – его афтершоки с $K_P \ge 10$. Как видно из рис. 9, очаг Кизилюртского землетрясения расположен в зоне сочленения двух довольно протяженных с северо-запада на юговосток разломов. По [12 (с. 78–87)], протяженные линейные зоны разрывов разбивают все пространство «Дагестанского клина» на разноразмерные блоки неправильной ромбовидной формы, причем в северной части «Дагестанского клина» с ними связываются значительные по размерам взбросы, установленные по геологической съемке. Полученные данные по механизму очага Кизилюртского землетрясения хорошо согласуются с этим. Положение сильнейших афтершоков Кизилюртского землетрясения говорит о возможной активизации одного из блоков «Дагестанского клина», дополнившего зону очага разрушительного Дагестанского землетрясения и картершоков кизилюртского клина», дополнившего зону очага разрушительного Дагестанского землетрясения.

Рис. 10. Механизмы трех субочагов Дагестанского землетрясения 1970 г. (I–III) из [11] на фоне наиболее надежно определенных его афтершоков (серые круги) и разломов по [12]

Черный круг – основной толчок Кизилюртского землетрясения 1999 г.; полые круги – его афтершоки с К_Р≥10; IV – диаграмма механизма очага Кизилюртского землетрясения по данным И.П. Габсатаровой [13].

Литература

- 1. Асманов О.А., Амиров С.Р., Даниялов М.Г., Левкович Р.А., Мирзалиев М.М., Осокина А.Ш. Дагестан. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Амиров С.Р. (отв. сост.), Мусалаев З.А., Гамидова А.М., Сагателова Е.Ю., Абдуллаева А.Р. Каталог (оригинал) землетрясений Дагестана за 1999 г. Обнинск: Фонды ГС РАН, 2005. 28 с.
- 3. Сейсмологический бюллетень (ежедекадный) за 1999 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1999–2000.
- 4. Bulletin of the International Seismological Centre for 1999. Berkshire: ISC, 2001.
- 5. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 6. Шебалин Н.В., Крестников В.Н., Рустанович Д.Н., Штейнберг В.В., Ананьин И.В., Асманов О.А., Быстрицкая Ю.В., Вандышева Н.В., Кулиев Ф.Т., Левкович Р.А., Плетнев К.Г., Широкова Е.И. Дагестанское землетрясение 14 мая 1970 г. // Землетрясения в СССР в 1970 г. М.: Наука, 1973. С. 28–49.
- 7. Папалашвили В.Г., Баграмян А.Х., Левкович Р.А., Агамирзоев Р.А. Землетрясения Кавказа // Землетрясения в СССР в 1975 году. М.: Наука, 1978. С. 14–21.
- 8. Старовойт О.Е., Чепкунас Л.С., Аптекман Ж.Я. и др. Об определении механизма очагов на ЭВМ EC-1030 // Физика сейсмических волн и внутреннее строение Земли. М.: Наука, 1983. С. 86–91.

- 9. Захарова А.И., Чепкунас Л.С. Очаговые параметры сильных землетрясений Земли. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- Левкович Р.А., Асманов О.А. Сейсмофокальная область «Дагестанский клин» // Сейсмичность и сейсмотектоника Восточного Предкавказья (Сб. статей. Вып. 33). – Махачкала: ДФ АН СССР, 1985. – С. 5–17.
- 11. Арефьев С.С., Стасюк Е.И., Ривера Л. Модель очага Дагестанского землетрясения 1970 г. // Физика Земли. 2004. № 2. С. 15–27.
- 12. Шолпо В.Н., Рогожин Е.А., Гончаров М.А. Складчатость Большого Кавказа. М.: Наука, 1993. 192 с.
- 13. Габсатарова И.П. Северный Кавказ (включая Дагестан). (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).