УДК 550.348.436

Воронежский кристаллический массив

Л.И. Надёжка, И.Н. Сафронич, С.П. Пивоваров, Б.А. Сорокин, Э.И. Золототрубова

В 1999 г. продолжали работать аналоговая сейсмическая станция «Воронеж» и цифровая станция «Дивногорье». Еще одна цифровая сейсмическая станция – «Сторожевое» – была введена в эксплуатацию 8 августа 1999 г. в с. Сторожевое-1 Острогожского района Воронежской области. Сторожевое-1 расположено на правом высоком берегу р. Дон в 60 км к югу от г. Воронеж. Ближайший крупный промышленный центр – г. Нововоронеж – находится от станции на расстоянии 18 км по прямой, а в 8 км – автомобильная трасса Воронеж-Острогожск. Сейсмическая станция размещена в подвале на глубине 1.7 м, в 15 м от жилого дома. В табл. 1, 2 приведены основные характеристики станций.

Таблица 1. Сейсмические станции, работавшие в 1999 г. на территории Воронежского кристаллического массива

№	Станция		Дата	Координаты		$h_{\rm v}$,		Аппаратура		
	Название	Код	открытия	φ°, Ν	λ°, Ε	м	Тип	Компо-	V _{max}	$\Delta T_{\rm max}$,
							прибора	нента		С
1	Воронеж	VOR	20.12.1996	50.730	39.200	180	СМ3-КВ	N	5000	0.33-2.0
								Е	5000	0.33-2.0
								Z	5000	0.33-2.0
2	Дивногорье	VORD	20.02.1998	50.966	39.293	94	CM3-OC	SDAS цифр/ст		ор/ст
3	Сторожевое	VRSR	08.08.1999	50.215	39.190	183	CM3-OC	SDAS цифр/ст		ор/ст

Название	Тип	Перечень	Частотный	Частота	Эффек-	Чувствительность,
станции	датчика	имеющихся	диапазон,	опроса	тивная	велосиграф – отсчет/(м/с),
		каналов и их	Гц	данных,	разрядность	
		характеристики		Гц	АЦП	
Дивногорье	CM3-OC	BH(N, E, Z),	0.02-10	20	16	$1.00 \cdot 10^9$
		велосиметр				
						$1.06 \cdot 10^9$
						$1.00 \cdot 10^{9}$
Сторожевое	CM3-OC	BH(N, E, Z),	0.02-10	20	16	$4.01 \cdot 10^8$
		велосиметр				
						$5.20 \cdot 10^8$
						$6.11 \cdot 10^8$

Таблица 2. Данные об аппаратуре цифровых станций

В географическом плане с. Сторожевое расположено в зоне сочленения Окско-Донской впадины и Среднерусской возвышенности. Рельеф здесь представляет всхолмленную долину с развитой сетью оврагов. В структурно-геологическом отношении сейсмическая станция расположена в Лосевской шовной зоне (район № 3) (рис. 1). В геологическом строении этого района принимают участие два различных структурных этажа: осадочный чехол, средняя мощность которого в с. Сторожевое составляет 170 *м*, и кристаллический фундамент. Осадочный чехол сложен, в основном, известняками, глинами, аргиллитами девонской, меловой и палеогеновой систем. Четвертичная система представлена моренными образованиями, покровными суглинками. Кристаллический фундамент сложен вулканогенно-осадочными образованиями лосевской серии. Мощность коры, по данным ГСЗ, составляет 45 *км*. В ее разрезе наиболее

представлен гранитогнейсовый слой, мощность которого в среднем 25 км. Отличительной особенностью этого участка исследуемой территории является относительно высокая скорость продольных волн ($\nu_P=7.5 \ \kappa m/c$) в нижнем слое коры. Верхи мантии характеризуются также повышенными значениями продольных ($\nu_P=8.39 \ \kappa m/c$) и поперечных ($\nu_S=4.0 \ \kappa m/c$) волн [1–3].

Рис. 1. Карта эпицентров землетрясений на территории Воронежского кристаллического массива за 1999 г.

1–3 тектонические нарушения первого, второго и третьего ранга соответственно; 4 - № 1 - № 3 – основные структуры Воронежского кристаллического массива, Курский мегаблок, Лосевская шовная зона, Хоперский мегаблок соответственно; 5 - карьеры: П – Павловский, Л – Лебединский, С – Стойлинский; <math>6 - сейсмическая станция; $7 - эпицентры исторических землетрясений [1]; <math>8 - эпицентры землетрясений по данным Научно-исследовательского, проектно-конструкторского и изыскательского института «Атомэнергопроект»; <math>9 - эпицентры из каталога локальных событий [4] с <math>K_P$, равным 5(a), 6(б), 7(в) и 8(г).

Характер микросейсмического шума в районе расположения сейсмической станции «Сторожевое» показан на рис. 2. Хорошо виден максимум спектра микросейсм в диапазоне частот $0.1-0.3 \Gamma u$ и минимум – в диапазоне $0.6-1.8 \Gamma u$. Относительно резкий всплеск значений амплитуд наблюдается на частоте $2 \Gamma u$, а с частоты $3 \Gamma u$ уровень амплитуд несколько уменьшается и среднее его значение стабилизируется на частотах >4 Γu . Уровень сейсмического шума в летнее и зимнее время различен на низких частотах (летом он существенно ниже), а на более высоких – практически одинаков. Вблизи значения частоты 1 Γu отмечается некоторое локальное увеличение уровня шума, которое возможно обусловлено близким расположением Нововоронежской АЭС.

В целом уровень микросейсмического шума в районе расположения новой станции невысок, что позволяет регистрировать землетрясения как на телесейсмических расстояниях (с $M \ge 4.0$), так и на близких (с $K_P \ge 5.0$). Вместе с тем следует отметить некоторую избирательность в возможности регистрации удаленных землетрясений из разных регионов. Так, из Туркмении, Ирана и Сахалина вероятность регистрации даже относительно слабых событий, происходящих в них, составляет более 80%. Наименее чувствительна сейсмическая станция «Сторожевое» к землетрясениям, происходящим в районах Западного Кавказа, Гиндукуша и Байкальского региона [5], что связано, по-видимому, с разными свойствами среды на путях распространения сейсмических волн.

Рис. 2. Среднесуточный спектральный состав микросейсм в месте установки станции «Сторожевое»

Характер сейсмического шума и его относительно низкий уровень в районе цифровых станций «Сторожевое» и «Дивногорье» позволил регистрировать в 1999 г. слабые локальные события с $K_P \ge 5.0$. Как было показано в [6], на территории Воронежского кристаллического массива регистрируются локальные события трех типов: взрывы (в крупных карьерах – Михайловском, Стойленском, Лебединском, Павловском), сейсмические события типа «импульс» и, возможно, местные землетрясения. Обработка всех событий проводилась с помощью программы WSG с использованием годографа IASPEI [7] комплексно. Энергетический класс землетрясений K_P определялся по замерам максимальных амплитуд продольных и поперечных волн с использованием номограммы Т.Г. Раутиан [8].

Особое внимание при обработке полученных на станциях записей уделялось разделению локальных событий на указанные выше три типа. Как показывает опыт работ [6, 9], в спектрах взрывов отчетливо выделяются поверхностные волны на частотах $0.4-1.4 \ \Gamma u$. На рис. 3, а представлен характер шума до и во время взрыва, а также отношение спектров суммарного поля (взрыва и шума) к спектру шума. На графике отношений отчетливо виден максимум на указанных выше частотах. Спектральные амплитуды суммарного поля более чем в десять раз выше фоновых (шума). При этом на более высоких частотах (до $3.5 \ \Gamma u$) превышение почти в два раза. На частотах выше $3.5 \ \Gamma u$ отношение спектральных амплитуд увеличивается до пяти раз. Совершенно иное соотношение спектральных амплитуд в случае, когда сейсмическое поле представляет собой землетрясение и сейсмический шум (рис. 3, б). В этом случае максимум отношения спектральных амплитуд наблюдается на частотах $2-6 \ \Gamma u$. Эти особенности спектральных амплитуд наблюдается на частотах сейсмических событий использовались, наряду с другими особенностями, изложенными в [6], для определения природы местных землетрясений [4], в который вошло 31 событие в диапазоне $K_p=5.0-8.2$.

На рис. 4, а даны числа землетрясений по месяцам. Отмечается повышенное их число (N=7) в феврале и декабре, в июне отмечено пять событий. В остальные месяцы их или не было, или было не более трех. В основном зарегистрированные события имеют энергетические классы $K_P=6$, 7, 8 (рис. 4, 6). Почти половина гипоцентров (15 из 31) локализованы в приповерхностном слое ($h \div 1 \kappa m$), а в общем глубины очагов не превышают 8 κm (рис. 4, в).

Сейсмичность на территории Воронежского кристаллического массива, начиная с 1998 г. [4], анализируется по трем районам: **Курский мегаблок** (**№** 1), **Лосевская шовная зона** (**№** 2) и **Хоперский мегаблок** (**№** 3). Распределение числа событий по энергетическим классам K_P и суммарной сейсмической энергии ΣE в пределах указанных районов представлено в табл. 3.

Рис. 3. Пример спектрального состава карьерного взрыва (а) и локального события (б)

Рис. 4. Распределение локальных событий по месяцам (а), энергетическим классам *К*_Р (б) и глубине *h* (в)

Таблица 3. Распределение числа событий по энергетическим классам *K*_P и суммарной сейсмической энергии Σ*E* по районам за 1999 г.

N⁰	Район		K	Ç.P	N_{Σ}	$\Sigma E \cdot 10^8$,	
		5	6	7	8	_	Дж
1	Курский мегаблок	_	_	4	3	7	3.400
2	Лосевская шовная зона	2	8	6	3	19	3.682
3	Хоперский мегаблок	—	—	1	4	5	4.100
	Всего	2	8	11	10	31	11.182

Сравнивая это распределение с таковым за 1998 г. (табл. 4 в [6]), можно отметить значительное их сходство: наибольшее число событий наблюдается в Лосевской шовной зоне (19 и 20 соответственно), наименьшее – в Хоперском мегаблоке (5 и 4 соответственно). Как видим, даже в абсолютном выражении соответствующие числа землетрясений практически равны, отличаясь лишь на единицу. Промежуточный по числу событий Курский мегаблок характеризуются чуть большей разницей (7 и 10 соответственно), но, в принципе, эти числа также близки между собой. Наблюдаемая ситуация за два года довольно нестандартна по степени стабильности уровня сейсмичности в каждом из трех районов по числу землетрясений. Несколько большие различия в величине суммарной сейсмической энергии: если в 1998 г. наблюдалось заметное различие в 2.6–4.1 раза [6], то в 1999 г. мы имеем практически ее однородное распределение по трем районам (табл. 3). В то же время суммарная величина выделившейся энергии во всем массиве практически совпадает с таковой в 1998 г.

Максимальный уровень энергии землетрясений, зарегистрированных в 1999 г., соответствует K_P =8.2. Такую энергию имеют два землетрясения: 27 мая в 08^h11^m и 12 августа в 04^h36^m, произошедшие в районах № 1 и № 2 соответственно. Минимальное значение энергетического класса составило K_P =5.0 и характеризует землетрясение, локализованное в районе № 2 18 мая в 13^h25^m.

Таким образом, данные наблюдений сети сейсмических станций (табл. 2) за 1999 г. подтвердили, что на во всех трех районах территории Воронежского кристаллического массива происходят местные землетрясения с $K_P = 6-8$. Неглубокое положение очага при такой энергии может способствовать тем не менее возникновению ощутимых сотрясений на земной поверхности, что представляет опасность для Нововоронежской АЭС.

Литература

- 1. **Чернышов Н.М., Ненахов В.М., Лебедев И.П., Стрик Ю.Н.** Модель геодинамического развития Воронежского массива в раннем докембрии // Геотектоника. 1997. № 3. С. 21–31.
- 2. **Трегуб А.И.** Неотектоника территории Воронежского кристаллического массива. Воронеж: Воронежский государственный университет, 2002. 219 с.
- 3. Надёжка Л.И., Дубянский А.И., Кашубин С.Н., Афанасьев Н.С., Груздев В.Н., Тарков А.П., Дубянский В.И. Основные типы земной коры по геофизическим данным // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей (Тр. международной конференции). – Воронеж: Воронежский государственный университет, 1998. – С. 300–307.
- 4. Надёжка Л.И., Сафронич И.Н. (отв. сост.), Пивоваров С.П., Савенков А.В., Сорокин Б.А., Семёнов А.Е., Колесникова С.И. Воронежский кристаллический массив. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 5. Дубянский А.И. Оценка относительной чувствительности сейсмической станции «Сторожевое» // Вестник Воронежского государственного университета. Серия «Геология». 2004. № 2. С. 68–74.
- 6. Надёжка Л.И., Сафронич И.Н., Пивоваров С.П., Ефременко М.А., Семенов А.Е., Сорокин Б.А. Воронежский кристаллический массив // Землетрясения Северной Евразии в 1998 году. Обнинск: ФОП, 2004. С. 178–184.
- 7. Anderson J., Farrell W.E., Garsia K., Given H., Swanger H. 1990. Center for seismic studies. Version 3 Database: Schema reference manual // Technical Report. 1990. C. 90–101.
- 8. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика (Тр. ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 9. Старовойт О.Е., Надёжка Л.И., Дубянский А.И., Сафронич И.Н., Пивоваров С.П., Савенков А.В. Некоторые черты строения Воронежского кристаллического массива и первые результаты сейсмических наблюдений на его территории // Землетрясения Северной Евразии в 1997 году. – Обнинск: ФОП, 2003. – С. 156–163.