СИЛЬНЫЕ ЗЕМЛЕТРЯСЕНИЯ ЗЕМЛИ

Н.В. Шаторная

Каталог сильных землетрясений мира с *MPSP*, *MPLP*, *MS*≥6.0 за 1999 г. [1] составлен по материалам ежедекадных оперативных сейсмологических каталогов и сейсмологических бюллетеней, выпускаемых в ЦОМЭ ГС РАН [2]. Географическое распределение гипоцентров сильных землетрясений показано на рис. 1. В основном оно соответствует известной мировой статистике наблюдаемых на земном шаре землетрясений.

Распределение сильных землетрясений мира в зависимости от их магнитуды приведено в табл. 1, где данные 1999 г. сравниваются с соответствующими значениями за десять предыдущих лет. Из табл. 1 видно, что в 1999 г. число землетрясений в интервале M=6-7 составило 159, что близко к среднему (135±36) за десять лет; но в диапазоне M=7-8 оно равно 21, что заметно больше среднего (12±5); землетрясений более сильных с $M \ge 8$ не было уже пять лет, после 1994 г.

Таблица 1. Распределение числа землетрясений в различных интервалах магнитуд *M* (*MPSP*, *MPLP*, *MS*≥6.0) за 1989–1999 гг.

Год	Число зем	Всего		
	6.0≤ <i>M</i> <7.0	7.0≤ <i>M</i> <8.0	<i>M</i> ≥8.0	
1989	92	6	1	98
1990	102	10	1	113
1991	84	9	_	93
1992	117	13	_	130
1993	97	7	_	104
1994	136	14	1	151
1995	242	28	_	270
1996	217	15	_	232
1997	151	5	_	156
1998	113	12	—	
Среднее за 10 лет	135±36	12±5	-	147±43
1999	159	21	_	180

Распределение суммарной сейсмической энергии, выделившейся в 1999 г. при сильных землетрясениях в различных сейсмических поясах, представлено в табл. 2.

Таблица 2. Распределение числа землетрясений и суммарной сейсмической энергии Σ*E* по сейсмическим поясам

Сейсмический пояс	Число зем.	$\Sigma E \cdot 10^{15}$,	
	6.0≤ <i>M</i> <7.0	<i>M</i> ≥7.0	Дж
Тихоокеанский	155	19	283.66
Трансазиатский	17	2	11.80
Атлантический	2	-	0.02
Индийского океана	6	-	1.32
Восточно-Африканские грабены	1	-	0.01

Более 99.27% всей энергии выделилось в Тихоокеанском сейсмическом поясе, где произошло 18 сильнейших ($M \ge 7.0$) землетрясений года, список которых дан в табл. 3 (включены все землетрясения, у которых хотя бы одна из трех магнитуд – MS, MPLP, MPSP – была на уровне 7.0 и выше). На другие сейсмические пояса приходится менее 0.73% суммарной энергии. Сейсмическая энергия рассчитана по формулам из [3]:

$$lgE=5.8+2.4 m_{\rm b},$$

 $lgE=11.8+1.5 M.$

Здесь вместо *m*_b и *M* были использованы магнитуды *MPSP* и *MS* из [2].

1 – магнитуда; 2 – глубина h гипоцентра, км.

N⁰	Дата,		<i>t</i> ₀ ,		δt_0 ,	Эпи	центр	h,	n	M_0	Магнитуды			[Район
	дм	ч	мин	С	С	φ°, N	λ°, Ν	КМ	с/ст	(OBN),	Mw	MS/n	MPLP/n	MPSP/n	
										Н∙м					
															Тихоокеанский пояс
1	06.02	21	48 01	.9	1.37	12.81S	166.69E	110	99				7.3/6	6.6/17	Острова Санта-Крус
2	04.03	08	52 02	.0	1.09	5.48N	121.93E	33	110			6.4/40	7.2/19	6.7/37	Море Сулавеси
3	08.03	12	25 46	.0	1.18	52.07N	159.37E	33	115	3.5E19	7.0	7.1/27	6.8/11	6.1/38	У восточного побе-
															режья Камчатки
4	05.04	11	08 03	.4	1.08	5.53S	149.58E	141	141				7.0/9	6.3/11	Район острова Новая
															Британия
5	08.05	19	44 36	.3	0.86	45.44N	151.62E	65	171				7.1/5	6.6/38	Курильские острова
6	10.05	20	33 03	.0	0.96	5.11S	150.94E	142	157				7.0/4	6.5/17	Район острова Новая
															Британия
7	14.08	00	16 47	.9	1.03	5.71S	104.63E	61	85				7.0/10	6.9/28	Юг острова Суматра
8	17.08	00	01 37	.4	1.25	40.85N	30.01E	10	186			7.5/20	7.2/7	6.4/18	Турция
9	22.08	09	35 39	.7	1.09	40.60S	75.21W	33	109			6.2/21	7.0/4	6.5/27	У побережья Южного
															Чили
10	22.08	12	40 46	.2	0.98	15.98S	167.99E	33	115			6.2/27	7.0/11	6.3/26	Острова Новые Гебриды
11	20.09	17	47 19	.3	1.31	23.96N	121.00E	33	164	1.8E20	7.5	7.7/17	7.6/12	6.7/11	Остров Тайвань
12	30.09	16	31 12	.6	0.99	16.06N	96.82W	33	144			7.5/20		6.7/20	Оахака, Мексика
13	16.10	09	46 46	.4	1.24	34.64N	116.32W	10	101	3.0E19	7.0	7.5/25	6.6/9	6.5/23	Южная Калифорния
14	12.11	16	57 21	.2	1.30	41.15N	31.19E	10	156			7.2/29	7.3/5	6.5/41	Турция
															Индийский океан
15	15.11	05	42 47	.4	1.20	1.19S	88.93E	33	140	1.2E19	6.7	6.8/34	7.0/17	6.5/33	Юг Индийского океана
16	17.11	03	27 41	.1	1.18	5.89S	148.88E	33	119			6.8/20	7.0/8	6.1/22	Район острова Новая
															Британия
17	19.11	13	56 47	.0	1.08	6.26S	148.63E	33	106			6.7/19	7.0/6	6.1/17	Район острова Новая
															Британия
18	26.11	13	21 16	.2	1.47	16.42S	168.34E	33	131			7.2/26	7.2/7	6.3/12	Острова Новые Гебриды
19	06.12	23	12 30	.4	0.97	57.46N	154.58W	33	147			6.7/34	7.5/16	7.1/30	Район острова Кадьяк
20	07.12	00	19 48	.9	1.05	57.40N	154.57W	33	149			6.1/26	7.0/12	6.9/42	Район острова Кадьяк
21	11.12	18	03 37	.8	0.84	16.02N	119.70E	33	144			7.0/34	7.2/10	6.8/35	Остров Лусон

Таблица 3. Список наиболее сильных землетрясений Земли в 1999 г. по [1]

Значения магнитуд *MS*, *MPLP*, *MPSP* землетрясений в [2] рассчитаны по максимальной скорости смещения $(A/T)_{\text{max}}$ в поверхностных и объемных волнах по соответствующим калибровочным кривым [4, 5].

Ниже приводится краткий обзор исследований, проведенных по сильным землетрясениям 1999 г. Значения их магнитуд (*MS*, *MPLP*, *MPSP*) и *t*₀ даны по [1, 2].

В [6] рассмотрены возможные причины разрушений при землетрясении 25 января в 18^h19^m в департаменте Киндио с *MS*=5.9 (*MPSP*=6.2) в Колумбии. Приводится карта распределения афтершоков.

В [7–9] анализируется геолого-тектоническая обстановка, в которой сформировался очаг сильного (MS=6.1) Южно-Байкальского землетрясения, произошедшего 25 февраля в 18^h58^m. Определены механизмы очагов, координаты эпицентров форшоковой и афтершоковой последовательностей, напряженно-деформированное состояние среды, анализируется динамический процесс в очаге главного толчка. Подчеркивается, что эпицентр Южно-Байкальского землетрясения расположен в районе, который в 1994 г. был выделен как одно из мест возможного возникновения сильного землетрясения в пределах Южного Прибайкалья на период ожидания 15 лет. Сделана попытка установить связь землетрясений с разрывами земной коры, выявлены преимущественные направления активных разломов. Этому землетрясению посвящена отдельная ст. [10] в наст. сб.

Результаты регистрации подпочвенного радона на Петропавловск-Камчатском геодинамическом полигоне представлены в [11]. На основании анализа сезонных вариаций в динамике объемной активности радона перед сильным (MS=7.1) землетрясением 8 марта в $03^{h}12^{m}$ выделены превышения объемной активности радона до 30% и длительностью 0.23 и 0.44 года. Эти превышения объемной активности радона, по-видимому, можно рассматривать как предвестниковые аномалии, что подтверждается еще рядом факторов. Развитие очагового процесса Камчатского землетрясения 8 марта происходило в близвертикальной фокальной плоскости, что позволяет отнести его к внутриплитовому типу. Разрыв длиной $28.6\pm2.6 \ \kappa m$ возник в течение $13.4\pm0.2 \ c$ вдоль разлома, движение по нему – почти чистый взброс. Очаг этого землетрясения состоял из двух субочагов: первый – с максимальным сдвигом $2.2 \ m$ на расстоянии $9 \ \kappa m$ от начала разрыва, второй – с максимальным сдвигом $0.6 \ m$ на расстоянии $22 \ \kappa m$ от начальной точки вспарывания [12].

Разрушительное землетрясение с MS=5.2, произошедшее в Чамоли (Индия) 29 марта в $06^{h}17^{m}$, было зарегистрировано Делийской акселерографической сетью. В [13] представлены очаговые параметры, рассчитанные по данным о сильных колебаниях на разных станциях: сейсмический момент – $M_0=(6.94-12.4)\cdot10^{18}$ *H*·*m*, радиус очага по формуле Дж. Брюна – 1.98–2.96 км, падение напряжений – 2091–3984 *бар*, моментная магнитуда – Mw=6.53-6.69. Пиковые ускорения составили 352.83 *см/с²* в Гопешваре, вблизи эпицентра, 11 *см/с²* – в Дели, на расстоянии 300 км. Главный толчок возник в процессе надвига на участке пересечения разлома Алакананда с плоскостью разрыва на глубине 15 км, а афтершоки – в процессе сдвиговой «регулировки» на разломе Алакананда [14].

Остров Новая Британия расположен в южной части Тихого океана. Он характеризуется сложной тектоникой, обусловленной влиянием пяти крупных тектонических плит. Здесь произошло три сильных землетрясения: 5 апреля в $11^{h}08^{m}$ с MPLP=7.0, 10 мая в $20^{h}33^{m}$ с MPLP=7.0 и 16 мая в $00^{h}51^{m}$ с MPLP=6.7. Изучены механизмы очагов, наиболее вероятные глубины и временные функции в очагах. Землетрясение 5 апреля вызвано взбросом на глубине 150.8 км, землетрясение 10 мая – сбросом на глубине 139.0 км, а землетрясение 16 мая – взбросом на глубине 45.5 км. Различие механизмов очагов землетрясений 5 апреля и 10 мая, произошедших на промежуточной глубине, указывает на то, что оба землетрясения произошли в двойной сейсмической зоне субдуктирующей плиты Соломонова моря [15].

Эпицентр землетрясения с MS=6.7, произошедшего 15 июня в 20^h42^m в Мексике, лежал в 20 км к северо-западу от Теуакана и в 55 км к северо-западу от г. Уахуапан-де-Леон. В [16] приводятся параметры очага землетрясения и несколько записей главного толчка. Полагают, что главный толчок состоял не менее чем из двух субтолчков. Землетрясение вызвало разрушения в деревнях эпицентральной зоны и в больших городах штата Пуэбла: Теуакан, Челуда, Атлиско, Пуэбла. Разрушения есть и в штатах Тласкала, Герреро, Оахака, Веракрус и Морелос. В [17] приводятся акселерограммы, полученные на ближних станциях. Максимальные ускорения 27.9 см/с² зарегистрированы в г. Пуэбла. Описан характер разрушений исторических и жилых зданий, путепроводов и проч. Приводятся параметры оползня, сошедшего на склоне дороги Теуакан – Уахуапан-де-Леон. Анализируется влияние геологических условий. Погибли 17, ранены 197 человек.

С 7 по 13 сентября 1999 г. швейцарская комиссия по инженерной сейсмологии и строительной динамике обследовала зоны наиболее сильных разрушений при землетрясении с MS=7.5, произошедшего 17 августа в $00^{h}01^{m}$ в Западной Турции с эпицентром в 90 км к юговостоку от Стамбула. Сейсмический момент был равен 1.4-10²⁰ Н:м. Горизонтальные сдвиги на поверхности грунта варьировали, по разным источникам [18, 19], от 2.7 до 4.2 м, вертикальные – до 2 м. Землетрясение получило название Измитского. Сильно разрушены города к востоку от Стамбула [18]. Погибли около 15 135, ранены около 23 984 человек, повреждены или разрушены полностью до 115 тыс. зданий, ущерб составил около 40 млрд. долларов [19]. Приводятся иллюстрации с примерами разрушений зданий, трубопроводов, портовых сооружений и линий жизнеобеспечения. Было разрушено много зданий. Пожар на нефтеперегонном заводе в Измите продолжался более двух суток. В [20] приведены карта зон разрушений, записи землетрясения, примеры разрушений жилых и промышленных зданий. Анализ результатов обследования показал, что главными причинами сильнейших разрушений были: 1) недостаточный учет местных грунтовых условий при строительстве; 2) эффект, вызванный излишней жестко-3) несоблюдение стью первого этажа: современных норм строительства: 4) неудовлетворительное качество строительных материалов. Необходимая для своевременного принятия инженерных решений быстрая оценка распределения разрушений в пространстве в результате сильного землетрясения требует знания «следа» сильных колебаний грунта во время землетрясения – зоны, где сильные колебания превышают определенную величину, например 25%. Размеры этой зоны и ее положение, которые определяются с помощью сейсмических записей и по результатам обследований, зависят от длины и ориентации разрыва. Во время Измитского землетрясения «след» сильных колебаний грунта представлял собой прямоугольник размером 100×50 км² [21]. Выявлено существование протяженной линейной разломной зоны шириной ÷100 м, прослеживающейся на ~70 км от Гельджюка до Акъязы, по которой, как предполагается, происходило образование крупного сдвигового разрыва [22]. В [23] приводятся иллюстрации разрушений нефтезавода, вызванные землетрясением. По результатам моделирования изменения напряженного состояния в северо-западной части Анатолии вследствие сильных землетрясений и анализа карт активных разломов еще до катастрофы 1999 г. было установлено, что в районе Измита может произойти сильное землетрясение. Моделирование [24], проведенное с учетом этого землетрясения, а также всех землетрясений с M > 6, произошелших после 1700 г., и ланных GPS, показало, что следующее, не менее сильное, землетрясение может произойти в акватории Мраморного моря к югу от Стамбула. Сейсмическое отображение процесса разрыва Измитского землетрясения приведено в [25–27]. В [28] представлены результаты обследования макросейсмических проявлений Измитского землетрясения. Даны характеристики произошедших разрушений, анализируются причины разрушений. Построены карты изосейст. Максимальная интенсивность была 10 баллов по шкале MSK-64 [29], 10–11 баллов – по шкале ММ [30]. Рассмотрена корреляция между интенсивностью и амплитудой колебаний. Метод инверсии тензоров региональных моментов использован для анализа механизмов очагов 30 наиболее сильных афтершоков Измитского землетрясения [31]. Результаты согласуются с определениями механизмов по первым вступлениям продольных волн. Основной чертой всей последовательности землетрясений 1999 г. является преобладание сдвигов в очагах. Наибольшая афтершоковая активность отмечалась к западу и востоку от краев основного разрыва. Очаги «восточных» афтершоков вблизи г. Дюздже могут быть отнесены к раннему этапу подготовки землетрясения в Дюздже с MS=7.2, произошедшего 12 ноября в 16^h57^m 1999 г. Большинство очагов афтершоков в Мраморном море характеризуются правосторонними сдвигами, направление которых параллельно подводным ветвям Северо-Анатолийского разлома.

В [32] анализировались телесейсмические записи объемных волн сильных землетрясений 1999 г. на участке Северо-Анатолийского разлома (на котором ранее наблюдалось сейсмическое затишье): 17 августа в Измите (Коджаэли) и 12 ноября в Дюздже (120 км к востоку от Измита). Использованы широкополосные записи Глобальной сейсмографической сети (GSN). Исследовались процессы разрывообразования, поверхностные разрывы и пространственновременное распределение афтершоков. В обоих землетрясениях происходили подвижки по простиранию разлома. Землетрясение 12 ноября в Дюздже связано с участком Северо-Анатолийского разлома, примыкающим с востока к разрыву Измитского землетрясения. Величины смещений в 32 пунктах, измеренные с помощью GPS непосредственно до и после землетрясения 12 ноября, позволили оценить геометрию и распределение косейсмичесих смещений [33]. Оно характеризуется самым большим отношением смещения к длине разрыва, по сравнению с любыми землетрясениями на Северо-Анатолийском разломе. В [34, 35] предложена интерпретация геологических условий возникновения разрушительных землетрясений 17 августа и 12 ноября, исходя из закономерностей сейсмогенеза. Определены параметры очагов этих землетрясений и проанализировано их взаимоотношение с параметрами соседних крупных сейсмических очагов. Автодорожным исследовательским центром (г. Сакраменто, штат Калифорния, США) систематизированы данные ущерба проходящему по территории Турции участку дорожной сети и сооружениям от землетрясения 12 ноября. Жертвы среди населения г. Дюздже – 1000 погибших и 5000 пострадавших [36].

В [37] исследуется механизм очага землетрясения с MS=5.9, произошедшего 7 сентября в $11^{h}56^{m}$ в Афинах (Греция), а также распределение смещений, связанных с этим землетрясением. При анализе использовался метод эмпирической функции Грина. Установлено, что значительная часть смещений (~50% от суммарной величины) приурочена к интервалу глубин, превышающему гипоцентральную, а часть (~25%) – в близповерхностной области. В целом, так называемая «активизированная область» имеет площадь около 100 км². Показано, что наблюдаемое асимметричное распределение поверхностных смещений может быть связано с выявленной близповерхностной областью смещений. Сделан также вывод о распространении разрыва, связанного с данным землетрясением, в глубинную область.

В западных областях Тайваня за последние 289 лет (1711–1999 гг.) произошло 24 сильных землетрясения (М~6.0-7.6), которые унесли жизни ~10 000 человек и принесли убытки в несколько миллиардов долларов. К ним относится и разрушительное землетрясение 1999 г. с MS=6.6, произошедшее 20 сентября в $21^{h}46^{m}$ в Цзицзи (погибли ~2300 и ранены более 10 000 человек) [38]. В [39] исследуется влияние геометрии разлома на протекание сейсмического процесса в зоне землетрясения 20 сентября. Различные особенности разрушений, вызванные катастрофическим землетрясением в Цзицзи, проявились в эпицентральной области не только на висячем, но и на лежачем крыле разлома Челунпу (на его северном и южном концах) [40]. В [41] приведено описание последствий разрушительного землетрясения по результатам обследования, проведенного группой экспертов EERI. Землетрясение произошло в результате подвижки по субмеридиональному разлому Челунпу, падающему на восток, который вскрылся на протяжении 60 км. Подвижка имела преимущественно взбросовый характер с амплитудой вертикального смещения до 8 м и подчиненной сдвиговой компонентой. Описан характер повреждений сооружений разных типов, в том числе зданий, мостов, плотин, систем жизнеобеспечения, а также социальные и экономические последствия. При землетрясении в Цзицзи получено большое число записей на свободной поверхности Земли. Проанализировано 130 записей [42], полученных в зоне в пределах 55 км от разлома. Изучался характер скоростей, смещений и длительности колебаний. Оказалось, что на приразломные колебания сильное влияние оказывали расстояние от разлома, направленность вспарывания, локальные условия участка регистрации и др. Отмечено, что пиковые ускорения этого землетрясения не такие большие, как можно было бы ожидать, однако пиковые скорости и пиковые смещения были очень большими (292 см/с и 867 см соответственно). В течение трех месяцев после землетрясения зарегистрированы постсейсмические смещения около 14 см [43]. Исследования показали, что падение разлома выполаживается с глубиной и на глубине 8-12 км превращается в почти горизонтальный срыв. Максимальная величина постсейсмического смещения составила 25 см в гипоцентральной области на глубине 7–12 км. Сложность разрыва во время землетрясения была выявлена по результатам инверсии данных GPS и обработки записей сильных колебаний. Смещения оказались сконцентрированными на поверхности блока клинообразной формы [44]. Сложность разрыва объясняет различие между простиранием плоскости разрыва, определенным по длиннопериодным сейсмическим записям, и явлениями на поверхности Земли. Привлечение других геофизических и геологических данных помогло восстановить уникальную картину тектонических деформаций с очень большими смещениями (>10 м) массивного клинообразного блока земной коры. Полагают, что это связано с переходом от пологого надвига к поддвигу в зоне между Филиппиноморской и Евразийской плитами. Анализ последовательностей землетрясений в Цзицзи, включающих форшоки и афтершоки, позволил установить существование шести аномальных явлений, касающихся модели форшоков (1), сейсмического молчания перед главным толчком (2), других типов сейсмического затишья (3), сейсмических зон (4), роеподобной активности в афтершоковой области (5) и вторичных афтершоков (6) [45]. По результатам анализа разработан метод прогноза сильных мелкофокусных землетрясений на конвергирующей границе в западной части Тайваня. В [46] анализируется геометрия разлома и области афтершоков в Цзицзи. Результаты показывают, что очаговая область может рассматриваться как система сопряженных разломов, состоящая из полого падающего к востоку разлома Челунпу и круто падающего к западу другого более глубокого разлома. По спутниковым данным измерены величины косейсмических горизонтальных подвижек. Прорисована трасса разлома и выявлено вращение поверхностных смещений по часовой стрелке по направлению к северу с много большими смещениями и деформациями в висячем крыле [47]. Поверхностные косейсмические сдвиги составили 516 м в эпицентральной зоне, увеличиваясь к северу до 10-11 м.

При землетрясении 30 сентября в $16^{h}31^{m}$ с MS=7.5 в Оахаке (Мексика) произошли подвижки на плоскости разлома с простиранием 295°, падением 50°, наклоном 83°. Разрыв распространялся с востока–юго-востока на запад–северо-запад со средней скоростью 3 $\kappa m/c$ [48]. Сдвиги на разломе концентрировались в основном в двух областях с максимальным сдвигом 2.5 *м* на расстояниях 20 и 40 κm от гипоцентра. Большая часть смещений произошла на глубинах 45 κm . Небольшая область с максимальным сдвигом 1.5 *м* наблюдалась вблизи эпицентра. Общий сейсмический момент равен $1.8 \cdot 10^{20} H_{cm}$.

Эпицентр землетрясения, произошедшего 16 октября в 09^h46^m с MS=7.5 в Южной Калифорнии, локализован в пустыне Мохаве [49]. В районе Хектор-Майн были незначительные разрушения и несколько человек были ранены. Случайно над районом была выполнена радиолокационная интерферометрическая съемка до (15 сентября) и после землетрясения (20 октября) [50]. Это позволило определить деформации земной поверхности в эпицентре на четвертый день после толчка. Изображения хорошего качества позволили определить смещения блоков пород вдоль основного разлома, которые составили более 7 м на расстоянии свыше 20 км. Полевые оценки смещения по геологическим данным и поверхностной морфологии рельефа оказались на 1-2 м меньше, чем по данным указанной съемки. Кроме того, градиенты интерферометрических фаз показали особенности смещений на соседних разломах, опускания местности на глубину до 30 мм и диаметром 1 км на южной окраине впадины Трой-Драй-Лейк. В [51] построены карты распределения трех ортогональных компонент поля косейсмических смещений при землетрясении в районе Хектор-Майн. Вертикальные и горизонтальные смещения большей частью асимметричны по отношению к плоскости разлома, что совпадает с расчетными упругими модулями линейных деформаций для разломов с подвижками по простиранию. Некоторые отклонения от симметрии в поверхностных смещениях могут быть следствием сложности геометрии разлома. В результате этого землетрясения появился новый поверхностный разрыв длиной 50 км [52]. По результатам интерпретации данных радарных исследований построены модель разрыва и поле смещений. Максимумы смещений (6.5 м) наблюдались на северном конце разлома и в центральной его части, где 3 м правостороннего сдвига относятся к поверхности, а 5.8 *м* – к глубине 8 *км*.

Сильное землетрясение произошло 6 декабря в $23^{h}12^{m}$ с MS=6.7 на Аляске. Оно вызвало разрушения в Кадьяке. Эпицентр землетрясения [53] располагался к западу от области разрыва землетрясения 1964 г.

На Филиппинах 11 декабря в $18^{h}03^{m}$ произошло землетрясение с MS=7.0. Эпицентр находился в северной части г. Лингаен в пров. Пангасинан. Землетрясение ощущалось в Маниле и на большей части о. Лусон. Погибли 3 человека, ранены 24 человека [53].

Литература

- 1. Шаторная Н.В. (отв. сост.). Каталог сильных землетрясений Земли с магнитудой ≥6.0. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Сейсмологический бюллетень (ежедекадный) за 1999 год / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ГС РАН, 1999–2000.
- 3. Касахара К. Механика землетрясений. М.: Мир, 1985. 264 с.
- 4. Ванек И., Затопек А., Карник В. и др. Стандартизация шкал магнитуд // Изв. АН СССР. Сер. геофизическая. – 1962. – № 2. – С. 153–158.
- 5. Горбунова И.В., Шаторная Н.В. О калибровочной кривой для определения магнитуды землетрясений по волнам *PKIKP* // Физика Земли. 1976. № 7. С. 77–81.
- 6. Землетрясение в департаменте Киндио, Колумбия, 25 января 1999 г. [The Quindio, Colombia, Earthquake of January 25, 1999] // EEIR Newslett. 1999. 33. № 3. С. 1–12.] ⇒РЖ «Физика Земли». 2000. № 8 (реф. 76).
- 7. Голенецкий С.И., Бержинская Л.П., Ордынская А.П., Бержинский Ю.А. Макросейсмические проявления землетрясений 29.06.1995 г. и 25.02.1999 г. в городах Иркутске, Ангарске, Шелехове // Сейсмические опасность и воздействия (Тезисы Международной научной конференции, посвященной памяти профессора О.В.Павлова. Иркутск, 3–6 окт., 2000). Новосибирск: Наука (СО РАН), 2000. С. 38–40. // ⇒РЖ «Физика Земли». 2001. № 12 (реф. 112).
- 8. Ружич В.В., Семенов Р.М., Алакшин А.М., Чипизубов А.И., Аржанников С.Г., Смекалин О.П., Емельянова И.А., Демьянович М.Г., Радзиминович Н.А. Южно-Байкальское землетрясение 25.02.1999 года и его последствия // Сейсмология в Сибири на рубеже тысячелетий (Материалы Международной геофизической конференции, Новосибирск, 27–29 сент., 2000). Новосибирск: Наука (СО РАН), 2000. С. 202–205 (рус. яз.), 373–376 (англ. яз.). // ⇒РЖ «Физика Земли». 2003. № 9 (реф. 84).
- 9. Мельникова В.И., Радзиминович Н.А., Гилёва Н.А., Саньков В.А., Деверше Д. Напряженнодеформированное состояние Южно-Байкальской впадины и рой землетрясений 25.02.1999 г. // Сейсмология в Сибири на рубеже тысячелетий (Материалы Международной геофизической конференции,

Новосибирск, 27–29 сент., 2000). – Новосибирск: СО РАН, 2000. – С. 157–159 (рус. яз.), 348–350 (англ. яз.) // ⇒РЖ «Физика Земли». – 2003. – № 8 (реф. 120).

- 10. Радзиминович Н.А., Гилёва Н.А., Мельникова В.И., Масальский О.К., Радзиминович Я.Б., Ружич В.В., Бержинская Л.П., Ордынская А.П., Емельянова И.А., Смекалин О.П. Южно-Байкальское землетрясение 25 февраля 1999 года с *Мw*=6.0, *I*₀=8 (Прибайкалье). (См. раздел II (Макросейсмические обследования) в наст. сб.)
- 11. **Фирстов П.П., Рудаков В.П.** Результаты регистрации подпочвенного радона в 1997–2000 гг. на Петропавловск-Камчатском геодинамическом полигоне // Вулканология и сейсмология. 2003. № 1. С. 26–41. // ⇒РЖ «Физика Земли». 2003. № 7 (реф. 107).
- 12. Краева Н.В. Средние параметры сейсморазрыва Камчатского землетрясения 08.03.1999 (*M*=6.9) // Проблемы геодинамики и прогноза землетрясений (Материалы 1-го Российско-Японского семинара. Хабаровск, 26–29 сент., 2000). Хабаровск: Ин-т тектон. и геофиз. ДВО РАН, 2001. С. 126–138 (рус. яз), 276–277 (англ. яз.). // ⇒РЖ «Физика Земли». 2003. № 10 (реф. 85).
- 13. Pandey Y., Dharmaraju R., Chauhan P.K.S. Определение очаговых параметров землетрясения в Чамоли, Индия [Estimation of source parameters of Chamoli earthquake, India // Proc. Indian Acad. Sci. Earth and Planet. – Sci. – 2001. – 110. – № 2. – С. 171–177.] ⇒РЖ «Физика Земли». – 2002. – № 4 (реф. 79).
- Микhopadhyay S., Kayal J.R. Сейсмическая томография структуры очаговой области землетрясения 1999 г. в Чамоли в Гархвалских Гималаях (Индия) [Seismic tomography structure of the 1999 Chamoli source area in the Garhwal Himalaya // Bull. Seismol. Soc. Amer. – 2003. – 93. – № 4. – С. 1854–1861.] ⇒РЖ «Физика Земли». – 2004. – № 5 (реф. 54).
- 15. Анализ трех землетрясений 1999 г. на острове Новая Британия (Тихий океан) [Analysis of three 1999 new Britain earthquakes (Park Sun Cheon) // Individ. Stud. Particip. Int. Inst. Seismol. and Earthquake Eng. 1999. **35**. C. 91–104.] ⇒РЖ «Физика Земли». 2000. № 11 (реф. 112).
- 16. **Мигумо Такэру.** Землетрясение с *Мw*=6.8, произошедшее 15 июня 1999 г. в центральной части Мексики в результате внутриплитового сдвига // [Newslett. Seismol. Soc. Jap. 1999. **11**. № 3. С. 4–8.] ⇒РЖ «Физика Земли». – 2000. – № 2 (реф. 103).
- 17. **Ramirez Julio, Leader Team, Miller James.** Землетрясение 15 июня 1999 г. в Теуакане, Мексика [The Tehuacan, Mexico, earthquake of June 15,1999 // EERI Newslett. 1999. **33**. № 9. С. 1–8.] ⇒РЖ «Физика Земли». 2002. № 1 (реф. 114).
- 18. Землетрясение 1999 г. в Турции с магнитудой 7.4 [Earthquake strikes Turkey // EERI Newslett. 1999. 33. № 9. С. 1–3.] ⇒РЖ «Физика Земли». 2002. № 1 (реф. 104).
- 19. Землетрясение 17 августа 1999г. в Измите (Коджаэли), Турция [The Izmit (Kocaeli), Turkey earthquake of August 17, 1999 // EERI Newslett. – 1999. – **33**. – № 10. – С. 1–12.] ⇒РЖ «Физика Земли». – 2000. – № 8 (реф. 72).
- 20. Землетрясение в Западной Турции 17 августа 1999 г. [Erdbeben in der Westturkei vom 17, August 1999. // Schweiz. Ing. und Archit. 1999. 117. № 43. С. 4–10.] ⇒РЖ «Физика Земли». 2000. № 9 (реф. 107).
- 21. **Housner G.W.** След землетрясения [The footprint of an earthquake // Earthquake Spectra. 1999. **15**. № 4. С. 825.] ⇒РЖ «Физика Земли». 2000. № 11 (реф. 108).
- 22. Michel Remi, Avouac Jean-Philippe. Деформации, связанные с землетрясением 17 августа 1999 г. в Измите, Турция, по данным съемок со спутника SPOT [Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images // J. Geophys. Res. B. – 2002. – **107**. – № 4. – ЕТ6 2/1–ЕТ6 2/7, 3.] ⇒РЖ «Физика Земли». – 2003. – № 7 (реф. 68).
- 23. Suzuki Kohei. Сообщения о разрушениях и повреждениях нефтеочистительного и нефтеперегонного завода землетрясением 1999 г. в Коджаэли, Турция // J. Jap. Soc. Eng. 2000. **103**. № 977. С. 242–245.] ⇒РЖ «Физика Земли». 2000. № 9 (реф. 63).
- 24. Hubert-Ferrari Aurelia, Barka Aykut, Jacques Eric, Nalbant Suleyman S., Meyer Bertrand, Armijo Rolando, Tapponnier Paul, King Geoffrey C.P. Сейсмическая опасность в районе Мраморного моря после Измитского землетрясения 17 августа 1999 г. (Турция) [Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake // Nature (Gr. Brit.). – 2000. – 404. – № 6775. – C. 269–273.]=>РЖ «Физика Земли». – 2000. – № 9 (реф. 140).
- 25. Bouchon Michel, Tokoz Nafi, Karabulut Hayrullan, Bouin Marie-Paule, Dietrich Michel, Aktar Mustafa, Edie Margaret. Сейсмическое отображение процесса разрыва Измитского землетрясения 1999 г. (Турция) по сейсмическим записям, полученным вблизи разлома [Seismic imaging of the 1999 Izmit (Turkey) rupture inferred from the near-fault racording // Geophys. Res. Lett. – 2000. – 27. – № 18. – C. 301–3016.] ⇒РЖ «Физика Земли». – 2000. – № 9 (реф. 124).
- 26. **Kiratzi Anastasia, Louvari Eleni.** Параметры очагов последовательности землетрясений 1999 г. в Турции (Измит-Болу), определенные по телесейсмическим данным [Source parameters of the Izmit-Bolu

1999 (Turkey) earthquake sequence from teleseismic data] // Ann. geofis. – 2001. – 44. – № 1. – С. 33–47.] ⇒РЖ «Физика Земли». – 2001. – № 12 (реф. 109).

- 27. Yagi Yuji, Kikuchi Masayuki. Процесс разрыва в очаге землетрясения 17 августа 1999 г. в Коджаэли (Турция) по данным, полученным в ближней зоне и на телесейсмических расстояниях [Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data // Geophys. Res. Lett. 2000. 27. № 13. С. 1969–1972.] ⇒РЖ «Физика Земли». 2001. № 12 (реф. 134).
- 28. Raschke Mathias. Макросейсмический эффект землетрясений, произошедших 17 августа 1999 г. в Коджаэли/Измите (Турция) [Makroseismische Effekte des Kocaeli/Izmit (Turkey)-Erdbebens vom 17 August 1999 // Thesis: Wiss. Z. Bauhaus-Univ. Weimar. – 2001. – 47. – № 1–2. – С. 170–179.] ⇒РЖ «Физика Земли». – 2002. – № 7 (реф. 79).
- 29. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 30. Рихтер Ч.Ф. Модифицированная шкала Меркалли, вариант 1956 г. // Элементарная сейсмология. М.: ИЛ, 1963. С. 131–132.
- 31. **Orgulu Gonca, Aktar Mustafa.** Инверсия тензоров региональных моментов для сильных афтершоков Измитского землетрясения (*Mw*=7.4) 17 августа 1999 г. (Турция) [Regional Moment Tensor inversion for strong aftershocks of the August 17, 1999 Izmit earthquake (*Mw*=7.4) // Geophys. Res. Lett., 2001.– **28.** № 2 с. 371–374.] ⇒РЖ «Физика Земли». 2002. № 2 (реф. 80).
- 32. Tibi R., Bock G., Xia Y., Baumbach M., Grosser H., Milkereit C., Karakisa S., Zunbul S., Kind R., Zschau J. Процесс разрыва при землетрясениях 1999 г. 17 августа в Измите и 12 ноября в Дюздже (Турция). Rupture processes of the 1999 August 17 Izmit and November 12 Duzce (Turkey) earthquakes // Geophys. J. Ins. 2001. 144. № 2. С. 1–5.] ⇒РЖ «Физика Земли». 2001. № 5 (реф. 63).
- 33. Ayhan M.E., Burgmann R., McClusky S., Lenk O., Aktug B., Herece E., Reilinger R.E. Кинематические характеристики землетрясения 12 ноября 1999 г. (*Mw*=7.2) в Дюздже (Турция) [Kinematics of the *Mw*=7.2, 12 November 1999, Duzce, Turkey Earthquake // Geophys. Res. Lett. – 2001. – 28. – №2. – C. 367–370] ⇒РЖ «Физика Земли». – 2002. – № 2 (реф. 79).
- 34. Балакина Л.М., Москвина А.Г. Северо-Анатолийская сейсмогенная зона (САСЗ). II. Землетрясения 17.08 и 12.11.1999 г. в свете закономерностей сейсмических проявлений в западной части зоны // Физика Земли. 2002. № 8. С. 29–49. // ⇒РЖ «Физика Земли». 2003. № 2 (реф. 162).
- 35. Балакина Л.М., Москвина А.Г. Северо-Анатолийская сейсмогенная зона (САСЗ). І. Закономерности сейсмических проявлений, обусловленные геологическими параметрами // Физика Земли. 2002. № 8. С. 29–49. // ⇒РЖ «Физика Земли». 2003. № 2 (реф. 163).
- 36. Ghasemi Hamid, Cooper James D., Imbsen Roy. Ущерб дорожной сети и сооружениям от землетрясения 12 ноября 1999 г. в районе г. Дюздже (Турция) [The perfomance of the trans European Motorway structures during the Nov. 12, 1999 Duzce earthquake. 32 Joint Meeiting of the US-Japan Cooperative Program in Natural Resources on Wind and Seismic Effects, Gaithersburg (Md), May 16–19, 2000 // NIST Spec. Publ. 2001. № 963. С. 463–477.] ⇒РЖ «Физика Земли». 2003. № 4 (реф. 77).
- 37. Roumelioti Z., Dreger D., Kiratzi A., Theodoulidis N. Анализ распределения смещений, связанных с землетрясением 7 сентября 1999 г. в Афинах (Греция) с использованием эмпирической функции Грина [Slip distribution of the 7 September 1999 Athens earthquake inferred an empirical Green's function study // Bull. Seismol. Soc. Amer. 2003. 93. № 2. С. 775–782.] ⇒РЖ «Физика Земли». 2004. № 6 (реф. 55).
- 38. Lewis Charles. Распределение сильных землетрясений на западе Тайваня: 1711–1999 г. [Patterns of western Taiwan's worst earthquakes: 1711–1999 // Геофиз. ж. 2001. **23**. № 3. С. 83–89.] ⇒РЖ «Физика Земли». 2002. № 1 (реф. 188).
- 39. **Oglesby David D., Day Steven M.** Влияние геометрии разлома на землетрясение 1999 г. в Цзицзи (Тайвань) [The effect of fault geometry on the 1999 Chi-Chi (Taiwan) earthquake // Geophys. Res. Lett. 2001. **28**. № 9. С. 1831–1284.] ⇒РЖ «Физика Земли». 2002. № 3 (реф. 144).
- 40. Shieh Chiou-Fen, Sheu Shyh-Yang, Shih Ruey-Chyuan. Корреляция поверхностных разрушений и косейсмических смещений и высвобождение напряжений при землетрясении 1999 г. в Цзицзи, Тайвань [Correlation between surface damage and the coseismic displcement and stress relaxation of the 1999 Chi-Chi, Taiwan earthquake // Geophys. Res. Lett. – 2001. – 28. – № 17. – С. 3381–3384.] ⇒РЖ «Физика Земли». – 2002. – № 3 (реф. 145).
- 41. Землетрясение в Цзицзи на Тайване 21 сентября 1999 г. [The Chi-Chi, Taiwan earthquake of September 21, 1999 // EERI Newslett. 1999. 33. № 12. С. 1–12.] ⇒РЖ «Физика Земли». 2002. № 3 (реф. 66).
- 42. Wang G.-Q., Zhou X.-Y., Zhang P.-Z., Igel H. Характеристики амплитуды и длительности сильных колебаний от землетрясения 1999 г. в Цзицзи, Тайвань [Characteristics of amplitude and duration for near

fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake // Soil Dyn. and Earthquak Eng. – 2002. – 22. – № 1. – С. 73–96.] ⇒РЖ «Физика Земли». – 2003. – № 7 (реф. 72).

- 43. Hsu Ya-Ju, Bechor Noa, Segall Paul, Yu Shui-Beih, Kuo Long-Chen, Ma Kuo-Fong. Быстрый постсейсмический сдвиг после землетрясения 1999 г. в Цзицзи, Тайвань. Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake // Geophys. Res. Lett. – 2002. – 29. – № 16. – С. 1/1–1/4.] ⇒РЖ «Физика Земли». – 2003. – № 7 (реф. 71).
- 44. Ji Chen, Helmberger Donald V., Song Teh-Ru Alex, Ma Kuo-Fong, Wald David J. Рапределение смещений и тектоническое объяснение землетрясения 1999 г. в Цзицзи на Тайване [Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan Earthquake // Geophys. Res. Lett. – 2001. – 28. – № 23. – С. 4379–4382.] ⇒РЖ «Физика Земли». – 2002. – № 3 (реф. 64).
- 45. Cheng Kuei-hsiang, Chao Ru-jen. Сейсмический прогноз на основе данных о сериях землетрясений в Цзицзи (Тайвань) [название статьи по англ. // Earth Sci. Front. 2002. 9. № 2. С. 493–498.] ⇒РЖ «Физика Земли». 2002. № 10 (реф. 78).
- 46. Chen Kou-Cheng, HuangBor-Shour, Wang Jeen-Hwa, Yen Horng-Yuan. Разрывообразование на сопряженных разломах, связанное с последовательностью землетрясений 1999 г. в Цзицзи, Тайвань [Conjugate thrust faulting associated with the 1999 Chi-Chi, Taiwan, earthquake sequence // Geophys. Res. Lett. – 2002.– 29. – № 8. – С. 118/1–118/4.] ⇒РЖ «Физика Земли». – 2002. – № 3 (реф. 67).
- 47. Domingues Stephane, Avouac Jean-Philippe, Michel Remi. Горизонтальные косейсмические деформации при землетрясении 1999 г. в Цзицзи по космоснимкам со спутника SPOT: значение для сейсмического цикла в западных предгорьях центральной части Тайваня [Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: implications for the seismic cycle along the western foothills of central Taiwan // J. Geophys. Res. B. 2003. 108. № 2. С. ESE8/1–ESE8/19.] ⇒РЖ «Физика Земли». – 2004. – № 4 (реф. 118).
- 48. Hernandez B., Shapiro N.M., Singh S.K., Pacheco J.F., Cotton F., Campillo M., Iglesias A., Cruz V., Gomez J.M., Alcantara L. Процесс разрыва внутриплитового землетрясения (*Mw*=7.5), произошедшего 30 сентября 1999 г. в Оахаке, Мексика, с помощью инверсии данных о сильных колебаниях [Rupture history of September 30, 1999 intraplate earthquake of Oaxaca, Mexico (*Mw*=7.5) from inversion of strong-motion data // Geophys. Res. Lett. – 2001. – 28. – № 2. – С. 363–366.] ⇒РЖ «Физика Земли». – 2002. – № 3 (реф. 138).
- 49. Землетрясение 1999 г. с *М*=7.1 в Южной Калифорнии (США) [*M*=7.1 earthquake hits Southern California // EERI Newslett. 1999. 33. № 11. С. 1.] ⇒РЖ «Физика Земли». 2002. № 1 (реф. 112).
- 50. Sandweii David T., Sichoix Lydie, Agnew Duncan, Bock Yehuda, Minster Jean-Bernard. Радиолокационные интерферометрические исследования землетрясения Хектор-Майн с *Mw*=7.1 в квазиреальном масштабе времени [Near realtime radar interferometry of the *Mw*=7.1 Hector Mine Earthquake // Geophys. Res. Lett. – 2000. – 27. – № 19. – С. 3101–3104.] ⇒РЖ «Физика Земли». – 2002. – № 8 (реф. 71).
- 51. Fialko Yuri, Simons Mark, Agnew Duncan. Полное (трехмерное) поле поверхностных смещений в эпицентральной области землетрясения 1999 г. с *M*=7.1 в районе Хектор-Майн, Калифорния (США) из пространственных геодезических наблюдений [The complete (3-D) surface displacement field in the epicentral area of the 1999 *Mw*=7.1 Hector Mine earthquake, California, from space geodetic observations // Geophys. Res. Lett. 2001 **28**. № 16. С. 3063–3066.] ⇒РЖ «Физика Земли». 2002. № 1 (реф. 134).
- 52. Peltzer Gilles, Crampe Frederic, Rosen Paul. Землетрясение с Mw=7.1 в районе Хектор-Майн, Калифорния (США): поверхностный разрыв, поле поверхностных смещений, распределение смещений на разломе по данным ERS SAR [The Mw=7.1, Hector Mine, California earthquake: surface rupture, surface displacement field, and fault slip solution from ERS SAR data // Conference-debat «Failles et seismes». Paris: 20 mars, 2000.] ⇒РЖ «Физика Земли». – 2002. – № 3 (реф. 85).
- 53. Сильные землетрясения на Аляске и Филиппинах [Large earthquakes hit Alaska and Philippines // EERI Newslett. – 2000. – 34. – № 1. – С. 1.] ⇒РЖ «Физика Земли». – 2000. – № 2 (реф. 75).